Влияние влажности продукта и окружающей среды на микроорганизмы кратко

Обновлено: 02.07.2024

Существует определенный параллелизм между жизнедеятельностью микроорганизмов и факторами окружающей среды. Чем благоприятнее эти условия для данного микроорганизма, тем интенсивнее он развивается и тем выше темп его жизнедеятельности. Связь микроорганизмов с окружающей средой проявляется в течение всего периода индивидуального развития, причем она имеет многосторонний характер. При ассимиляции питательных веществ микроорганизм растет, развивается и выделяет в окружающую среду определенные продукты обмена. На изменение условий питания он отвечает приспособительной перестройкой своего обмена веществ. При изменении реакции среды, температуры, концентрации питательных веществ, давления, радиации и т. д. нарушается обмен веществ, прекращаются или ограничиваются рост и размножение микроорганизма. Иными словами, происходят все те морфологические и физиологические изменения, которые объединяются в понятие жизнедеятельность.

Обмен веществ у микроорганизмов не сводится только к построению веществ тела, к размножению. Одновременно осуществляются различные процессы, приводящие к улучшению самими микроорганизмами условий внешней среды для дальнейшего размножения. Естественно, ни влажность, ни температура не зависят от микроорганизма. К ним он может только пассивно приспосабливаться. Микроорганизмы могут приспосабливаться к своим потребностям и активно изменять при помощи ферментных систем химические условия. Например подщелачивание среды автоматически активирует ферменты, способные вызывать кислотообразование, интенсивная аэрация вызывает образование защитных восстановительных соединений, снижающих окислительно-восстановительный потенциал rH2.

Все факторы внешней среды, оказывающие большое влияние на развитие микроорганизмов, можно разделить на три основные группы: физические, химические и биологические. Из физических факторов наиболее важное значение имеют влажность, концентрация веществ, температура, радиация, свет; из химических - реакция среды и окислительно-восстановительные условия в ней; из биологических - антимикробные вещества. Необходимо помнить, что существует тесная взаимосвязь между многими факторами окружающей среды и что изменение одного из них часто меняет реакцию микроорганизма на действие других факторов.

Физические факторы

Влажность. В клетках микроорганизмов протекает множество различных биохимических процессов. Одни сложные вещества разлагаются, другие образуются из более простых соединений. Вода же является той необходимой средой, в которой только и могут осуществляться все эти химические реакции. Микробная клетка на 65-85 % состоит из воды, и вся ее жизнедеятельность связана с наличием влаги (табл. 1.1).

Содержание воды в некоторых микроорганизмах

Без предварительного растворения в воде многие питательные вещества не могут проникнуть внутрь микробной клетки, и жизнь ее становится невозможной. Большое влияние оказывает наличие влаги на микробные клетки, находящиеся в стадии роста, хотя между ними и в этом отношении наблюдаются значительные различия. Микроскопические грибы могут расти и на твердых питательных субстратах с минимальным содержанием воды. Микроорганизмы в природе находятся в непрерывно изменяющихся условиях, сильно колеблется и содержание влаги. Многие представители хорошо приспособились к высушиванию. Например, некоторые бесспоровые бактерии переносят высушивание и остаются жизнеспособными иногда в течение нескольких лет. Особенно хорошо приспособились к высушиванию споры различных грибов и бактерий. Споры, находящиеся в течение многих лет в сухом месте, при увлажнении начинают прорастать. Однако, как бы стойки ни были вегетативные клетки микроорганизмов к высушиванию, в высушенном состоянии они остаются бездеятельными, так как отсутствие влаги препятствует процессам их питания, а следовательно, росту и размножению. В этом состоянии, что особенно важно, они только сохраняются, хотя их жизнедеятельность заметно приостанавливается.

Концентрация веществ. На рост и жизнедеятельность микроорганизмов большое влияние оказывает концентрация различных веществ. Высокие концентрации любых веществ, в том числе питательных, создают высокое осмотическое давление во внешней среде, превышающее внутреннее осмотическое давление в клетке. Вода при этом выходит наружу, клетки обезвоживаются и начинается плазмолиз. Из-за невозможности поступления в микробную клетку питательных веществ прекращается нормальный обмен с внешней средой. Благодаря тому что цитоплазматическая мембрана имеет высокую избирательную проницаемость, клетки приспосабливаются к изменению осмотического давления в окружающей среде. В этих условиях может иметь место даже накопление в цитоплазме или минеральных солей (если они могут проникать в клетку), или осмотически активных веществ, образующихся в результате гидролиза резервных веществ цитоплазмы.

В последнем случае можно говорить даже об определенной способности к осморегуляции.

Концентрация минеральных солей, необходимая для нормального роста микроорганизмов

Концентрация питательного вещества должна быть оптимальной, т. е. достаточной для обеспечения максимального роста. Для различных веществ оптимальные концентрации различны. Так, минеральные соли, содержащие Р, S, Са, Mg, Zn, Na и другие элементы, требуются в небольших количествах. Концентрации минеральных солей, необходимые для нормального роста различных микроорганизмов, приведены в табл. 1.2. Концентрация в среде источников углерода (углеводы, кислоты, спирты, углеводороды и др.), которые чаще всего одновременно являются и источниками энергии, т. е. окисляемыми или сбраживаемыми веществами, может изменяться от десятых долей процента до 15-20%. Абсолютное содержание источника углерода для обеспечения нормальной жизнедеятельности микроорганизма и получения необходимого количества метаболита рассчитывают, используя экспериментально установленные экономические коэффициенты выхода.

Зависимость накопления микроорганизмов от температуры культивирования

Температура. Жизнь и размножение микроорганизмов зависят от многих физических факторов. Наиболее существенным фактором является прежде всего температура окружающей среды. Как и все факторы внешней среды, температурная зависимость характеризуется тремя кардинальными точками (минимум, оптимум, максимум), которые различны для отдельных микроорганизмов (табл. 1.3). Все микроорганизмы по их отношению к температуре делят на три основные группы: психрофилы, мезофилы и термофилы (рис. 1.6).

Температурный оптимум психрофилов находится в пределах 0-15 °С. Сюда относятся преимущественно представители микрофлоры северных морей. Для психрофилов характерна небольшая скорость роста. Ко второй группе относится большинство используемых в промышленности бактериальных и грибных культур микроорганизмов, температурный оптимум развития которых находится в пределах 25-37 °С. К термофильным микроорганизмам относятся формы, температурный оптимум которых 50-60 °С, крайние пределы 30-70 °С. Термофильные микроорганизмы представляют особый интерес для промышленного использования, так как культивирование их при высоких температурах создает селективные условия и позволяет снизить требования к стерильности процесса.

Свет. На развитие микроорганизмов большое влияние оказывают солнечный свет и другие формы лучистой энергии. Наиболее сильным действием обладает коротковолновая ультрафиолетовая часть спектра (200-300 нм) с ярко выраженным фотохимическим эффектом. Большой активностью обладают также рентгеновские лучи (ионизирующее излучение с длиной волны 0,005-1 нм), y-лучи (коротковолновые рентгеновские лучи), а-, B-частицы, нейтроны. Действие всех этих форм лучистой энергии на микроорганизмы зависит от дозы, а также от физиолого-биохимического состояния микроорганизма. Есть все основания полагать, что действие различного рода излучений связано в первую очередь с изменением структуры ДНК. Во многих случаях спектр действия УФ-лучей соответствует спектру их поглощения нуклеиновыми кислотами. При изучении механизма действия УФ-лучей на молекулярном уровне было обнаружено, что при денатурации ДНК, облученной высокими дозами УФ-лучей (порядка 1*10-2 Дж), возникают разрывы между нуклеотидами, а также образование поперечных сшивок между комплементарными нитями молекулы ДНК.

Действие рентгеновских лучей также связано с ДНК. Наблюдения показали, что рентгеновские лучи, а также некоторые продукты, возникающие под их действием (Н+ и ОН-, радикалы, перекиси), разрушают ДНК.

Следует отметить, что на влиянии различного рода излучений на микроорганизмы основаны приемы стерилизации воды и некоторых других продуктов.

Давление. Микроорганизмы устойчивы к давлению в 500 и даже 1000 кПа, что, по-видимому, связано с малой чувствительностью белков к его денатурирующему влиянию. Для большинства микроорганизмов давление 100 МПа приводит к летальному исходу.

Химические факторы

Концентрация ионов водорода. Большое влияние на развитие микроорганизмов оказывает такой химический фактор внешней среды, как концентрация ионов водорода или pH. Каждый микроорганизм имеет свой максимум и минимум pH, в пределах которых он может развиваться (табл. 1.4).

Значения pH среды для некоторых микроорганизмов

Как свидетельствуют данные таблицы, есть и некоторые общие закономерности. Бактериальные микроорганизмы хорошо развиваются при pH, близком к нейтральному - от 6,5 до 7,5. У микроскопических грибов и различных видов дрожжей оптимум pH в кислой зоне - от 4 до 6. Концентрация водородных ионов в среде оказывает большое влияние на развитие микроорганизмов и на их физиологическую активность. Это положение можно подтвердить ходом процесса брожения. Например, при спиртовом брожении, протекающем при pH 4, образуются диоксид углерода и этиловый спирт. При сдвиге pH в щелочную сторону (до 7,5) брожение также происходит, но в этом случае кроме диоксида углерода и спирта образуется еще и уксусная кислота.

Окислительно-восстановительный потенциал. Выражают через rH2. Если pH выражает степень кислотности и щелочности, то rH2 - степень аэробности. И. Л. Работнова (1958) показала, что в водном растворе, насыщенном кислородом, rH2 = 41, а в условиях насыщения водородом - rH2 = 0. Шкала от 0 до 41 характеризует любую степень аэробности. По отношению к этому фактору внешней среды все микроорганизмы подразделяются на следующие основные группы: аэробы, анаэробы и факультативные анаэробы. Аэробы содержат в своих клетках систему дыхательных ферментов и в качестве акцепторов водорода при окислительно-восстановительных процессах используют молекулярный кислород. Для аэробных микроорганизмов, например для дрожжей, rH2= 10 / 30 (рис. 1.7, а). Анаэробы получают энергию без участия кислорода воздуха за счет сопряженного окисления - восстановления веществ субстрата. Эти микроорганизмы жизнедеятельны при rH2 не выше 20. Рис. 1.7, б свидетельствует, что размножаются анаэробы только при крайне низких значениях rH2 - не выше 3-5. Для представителей этой группы микроорганизмов молекулярный кислород не только не нужен, но в ряде случаев и ядовит.

Кривые размножения и изменения rH2 для культуры аэробов и анаэробов

Микроорганизмы, для которых кислород не обязателен, так как они живут за счет сопряженного окисления-восстановления без вовлечения кислорода, называются факультативными анаэробами. Они живут в широком диапазоне rH2 - от 0 до 30. Кислород для них не ядовит или слабо ядовит.

Биологические факторы (антимикробные вещества)

Различные вещества, находящиеся в окружающей среде, могут служить источником питания микроорганизмов и способствовать росту и развитию, а могут и ингибировать рост микробной клетки, не оказывая на нее летального действия. Наиболее известными антимикробными веществами являются антибиотики, которые даже в небольших концентрациях угнетают рост и активность микробов. Антибиотики образуют главным образом актиномицеты, а также некоторые грибы и бактерии. Механизм действия антибиотиков состоит в том, что одни из них нарушают процессы деления бактериальной клетки, другие изменяют отдельные процессы метаболизма, мешают использованию витаминов, конкурируют с отдельными ферментами, нарушают процессы дыхания, способствуют образованию перекисей, лизису клеток, оказывают депрессирующее действие на поверхностное натяжение и т. д.

Микробная клетка состоит на 80-90% из воды и вся ее жизнедеятельность связана с наличием влаги. Без предварительного растворения в воде питательные вещества не могут проникнуть внутрь клетки. Для бактерий минимум влаги в субстрате составляет около 30%, для актиномицетов – 20%, для плесневых грибов –15%. Эти цифры очень приблизительны, т. к. для характеристики потребности организмов в воде чаще используют показатель активности воды, а не относительной оводненности субстрата. Большинство микроорганизмов хорошо переносят высушивание, особенно грибы. При высушивании бактерий из рода Pseudomonas в течение месяца количество жизнеспособных уменьшается в 100 раз, а представители рода Azotobacter в воздушно сухой почве сохраняются десятками лет. При дефиците влаги микроорганизмы не размножаются. Поэтому в сушеных продуктах хотя и имеется много микроорганизмов, они не могут развиваться.

Приемы хранения и переработки с использованием пониженного содержания влаги:

Высушивание до воздушно-сухого веса, когда влажность продуктов не превышает 15% приводит к тому, что никакие микроорганизмы не способны развиваться в субстрате. Метод используется при хранении круп, различных трав, специй, фруктов.

Подвяливание - снижение влажности продукции до 40-50% не приводит к полной остановке микробных процессов, поэтому используется лишь в сочетании с другими факторами, например, использование повышенных концентраций соли или сахар, изменение рН. Используется для хранения мяса, рыбы, кормов (сенаж).

Лиофильная сушка (сублимация) –высушивание в вакууме из замороженного до –760 С состояния. Этот метод используется для консервации микробных культур, сыворотки, вакцин, лекарственных препаратов.

Среди факторов внешней среды наибольшее значение для микроорганизмов имеют физические факторы, к которым относятся температура, свет и другие виды лучистой энергии, влажность, механические воздействия и т. д. Эти факторы могут благоприятствовать или же препятствовать развитию микробов.

При воздействии каждого физического фактора различают три кардинальные точки: минимум, оптимум и максимум. Минимум означает наименьшее значение любого фактора, ниже которого развитие микроба невозможно, оптимум - наиболее благоприятные условия и максимум - наиболее высокое значение фактора. Развитие микроорганизма возможно между максимальными и минимальными пределами (границами), вне которых жизнь данного организма невозможна. При наилучших (оптимальных) условиях все процессы жизнедеятельности этого организма протекают наиболее интенсивно.

Если же хотя бы один фактор будет находиться ниже минимума, организм не сможет развиваться даже при оптимальном значении всех остальных факторов среды.

Температура.

Важнейшим физическим фактором внешней среды является температура. Она определяет скорость размножения микроорганизмов, а также интенсивность протекания химических реакций процессов обмена веществ в клетках. При переходе к крайним температурам жизненные процессы сначала замедляются, а затем или совсем приостанавливаются и жизнь переходит в скрытую форму, или вообще прекращаются.

О влиянии температуры чаще всего судят по росту и размножению микробов. Для каждого микроорганизма можно определить кардинальные температурные точки. Оказалось, что границы жизни в мире микробов гораздо шире, чем у животных и растений. Они лежат в области от нескольких градусов ниже нуля до 70-90 °С.

Широкие температурные пределы жизни имеют огромное значение для микроорганизмов. Они позволяют развиваться микрофлоре на поверхности земного шара в районах, резко различающихся своими климатическими условиями. Температурные пределы довольно широки и для отдельных видов микроорганизмов (табл. 1).

Таблица 1. Температурные пределы роста некоторых микроорганизмов.

Светящиеся бактерии северных морей

Бациллус субтилис (сенная палочка)

Бациллус антрацис (палочка сибирской язвы)

По отношению к температурным условиям микроорганизмы делят на три группы: психрофилы, мезофилы и термофилы.

Психрофилы - холодостойкие микроорганизмы, способные размножаться и проявлять химическую активность при низких температурах. При этом степень холодостойкости разных микроорганизмов различна. Психрофильные микробы представляют опасность для продуктов, находящихся в холодильниках. Среди психрофильных микроорганизмов известны палочковидные бактерии, микрококки, плесневые грибы. Порча охлажденных продуктов связана главным образом с размножением психрофильных бактерий семейства Псевдомонас и Ахромобактер. Некоторые психрофилы способны к размножению даже при температуре от -5 до -9 °С, образуя на продуктах сначала отдельные колонии, а затем слизистые пленки.

Мезофилы - широко распространенные формы микроорганизмов, имеющие оптимум около 30 °С, минимум около 0 °С и максимум 42 °С. Среди них известны многие вредные для пищевой промышленности микроорганизмы, вызывающие порчу продуктов, а также полезные.

Термофилы - теплолюбивые микроорганизмы с оптимумом 50-60 °С, минимумом 30 °С и максимумом около 70-85 °С. Они могут развиваться в местах с повышенной температурой: в горячих источниках, в верхних слоях почвы жарких стран, в самосогревающихся скоплениях навоза, влажного сена, зерна и др. Среди термофилов известно много возбудителей порчи пищевых продуктов, например в сахарном, консервном и рыбном производствах.

В широком температурном диапазоне могут расти некоторые бактерии, например рода Бациллус (сенная палочка).

Не всегда происходит отмирание клеток при температуре ниже минимума развития. Стойкость к низкой температуре велика у микроорганизмов, а в некоторых случаях они сохраняют жизнеспособность даже вблизи абсолютного нуля. Так, споры некоторых бактерий прорастали после пребывания в жидком водороде при температуре -252 °С в течение 10 ч. Такую же стойкость имеют многие дрожжи и плесневые грибы. Однако механизм этой устойчивости изучен недостаточно.

Более изучен механизм действия на микробные клетки высоких температур. Так, уже небольшое превышение температурного максимума останавливает процесс жизнедеятельности микроорганизмов.

Дальнейшее незначительное повышение температуры вызывает быстрое отмирание клеток. Причина этого в необратимых изменениях свойств белков цитоплазмы, при которых золи (растворы) переходят в гели (твердое вещество).

Стойкость к повышенным температурам неодинакова у разных микробов. Вегетативные клетки бактерий, споры дрожжей, конидии плесневых грибов быстро погибают при температуре 60-80 °С. Устойчивы к воздействию высоких температур споры бактерий - самые стойкие в этом отношении живые образования на Земле. Среди бактерий известны многие с чрезвычайно высокой термостойкостью спор - они выдерживают длительное кипячение и погибают лишь при нагревании до температуры 120-130 °С. При этом нагревание в сухом состоянии оказывается менее эффективным, чем во влажном. По-видимому, в термоустойчивости спор играет значительную роль химический состав оболочки.

Термоустойчивость спор микроорганизмов представляет большую опасность при производстве различных пищевых продуктов.

Свет и другие формы лучистой энергии.

На поверхности земли все микроорганизмы подвергаются действию различных видов лучистой энергии, которые представляют собой электромагнитные колебания с различной длиной волн. Солнечная радиация приносит на поверхность Земли ультрафиолетовые, тепловые и видимые световые лучи. Часть их, поглощаемая атмосферой, теряется, остальные достигают поверхности суши и океана.

Солнечные лучи подавляют развитие всех микроорганизмов. Подобное воздействие обусловлено ультрафиолетовой частью солнечного спектра - электромагнитными колебаниями с длиной волны 250-260 нм. Ультрафиолетовые лучи обладают сильным бактерицидным действием, поэтому УФ-лампы используют как средство, стерилизующее воздух и предметы. Многие патогенные микробы, в частности тифозные и туберкулезные бактерии, очень чувствительны к действию УФ-лучей. Палочки сибирской язвы под действием солнечного света погибают за 10 мин. Однако бактерицидное действие света распространяется на очень тонкий слой почвы - всего 2-3 мм. Эффективность действия солнечных лучей в воде уменьшается по мере увеличения ее мутности, и в мутных (загрязненных) водах содержится наибольшее количество микробов.

В основе действия лучистой энергии лежат химические и физические изменения, которые происходят в организмах или в окружающей среде, вследствие чего она становится непригодной для развития микробов. УФ-лучи адсорбируются белками и нуклеиновыми кислотами клеток. Это вызывает повреждение клеточных структур и химические изменения.

Тепловые (инфракрасные) лучи спектра слабо действуют на микроорганизмы и только нагревают среду.

Рентгеновские лучи (коротковолновые электромагнитные колебания) обладают высокой проникающей способностью.

Короткие и длинные радиоволны не оказывают действия на микроорганизмы, но ультракороткие радиоволны очень активны из-за нагревания среды. Ультразвуковые колебания оказывают определенное биологическое действие и полностью подавляют жизнь микроорганизмов.

Влажность.

Жизнедеятельность микроорганизмов зависит от воды, так как в ней растворяются питательные вещества. При отсутствии свободной воды становится невозможным питание микроорганизмов и останавливается их развитие.

По потребности в воде микроорганизмы делят на три группы: гидрофиты - влаголюбивые, мезофиты - средневлаголюбивые и ксерофиты - устойчивые к высушиванию. Гидрофитами являются большинство бактерий и дрожжей и некоторые грибы. Плесневые грибы - гидрофиты требуют относительной влажности воздуха 80-98 %, а при влажности 70-75 % развитие замедляется. Среди плесневых грибов многие являются мезофитами, но есть и ксерофиты. Они способны расти при меньшем содержании влаги по сравнению с бактериями и дрожжами. Предельная для размножения дрожжей влажность воздуха 65%. Для большинства бактерий и дрожжей требуется влажность не менее 85-90 %, некоторым достаточно содержания влаги 80-85 %. Влажность воздуха зависит от его температуры, так как с понижением температуры влагоудерживающая способность воздуха снижается.

Вследствие разной потребности во влаге микробы неодинаково переносят высушивание. Хорошо сохраняют жизнеспособность при высушивании споры бактерий и грибов, и в сухом виде они длительное время не теряют способности к прорастанию. Например, споры палочки сибирской язвы сохраняются в высушенном виде более 20 лет. Такая стойкость представляет очень большую эпидемиологическую опасность.

Споры и конидии грибов сохраняют способность к прорастанию в течение 2-3 лет.

Вегетативные клетки неспорообразующих бактерий переносят высушивание по-разному. Например, уксуснокислые бактерии при высушивании погибают через несколько часов. Высушенные молочнокислые бактерии длительно сохраняют жизнеспособность и применяются в некоторых производствах в качестве сухих заквасок. Сухие хлебопекарные дрожжи остаются жизнеспособными в течение года. Довольно устойчивы к высушиванию и патогенные микробы. Так, холерный вибрион переносит высушивание в течение 24 ч, палочка чумы - до 8 сут, брюшнотифозные бактерии - до 70 сут, туберкулезная палочка и стафилококк - до 90 сут.

Давление.

Большинство микроорганизмов развивается обычно в условиях невысокого (100-200 кПа) давления. Глубоководные микроорганизмы в морях и океанах испытывают гораздо большее давление. Вегетативные клетки бактерий, вирусы и другие микроорганизмы погибают при увеличении давления до 600-700 МПа. Споры бактерий переносят давление 2000 МПа. Поэтому для уничтожения микробов применять повышенное давление неэффективно.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Лекция. Влияние внешней среды на развитие микроорганизмов и распространение их в природе

Жизнедеятельность микробов находится в зависимости от окружающей среды. Создавая те или иные условия в среде, где развиваются микробы, можно способствовать развитию полезных и подавлять жизнедеятельность вредных микроорганизмов. Пищевые продукты могут хорошо сохраняться только при создании неблагоприятных условий для развития в них вредных микробов.
Основными факторами, влияющими на жизнедеятельность микробов, являются: температура, влажность, действие света, характер питательной среды.
Температура. Все микробы имеют максимальную, оптимальную и минимальную температуру своего развития. Оптимальная температура для большинства микроорганизмов 25—35°С. Поэтому пищевые продукты в этих условиях быстро портятся.
Минимальный температурный предел у разных микробов различен. Понижение температуры замедляет или прекращает развитие микробов, но не убивает их. Поэтому при охлаждении (6°С) и замораживании (от -6 до -20°С) пищевые продукты хорошо сохраняются, но при оттаивании и обработке их микробы вновь начинают свою деятельность.
Максимальная температура (45—50°С) также приостанавливает развитие микробов. Дальнейшее повышение температуры ведет к гибели вегетативных клеток, а затем и спор. На губительном действии высоких температур на микробы основаны пастеризация (60—90°С) и стерилизация (100— 120°С) пищевых продуктов.
В зависимости от температуры развития микробы делят на психро-филъные (холодоустойчивые), у которых оптимум развития 15°С (плесневые грибы); мезофилъные (развивающиеся при средней температуре), у которых оптимум 25—37° С (болезнетворные бактерии, дрожжи); термофильные (теплолюбивые), у которых оптимум 50° С (молочно-кислые бактерии).
Влажность. Повышенная влажность увеличивает количество растворимых питательных веществ, следовательно, способствует питанию и развитию микробов. Поэтому пищевые продукты, содержащие большое количество влаги (молоко, мясо, рыба, овощи, плоды), быстро портятся.
Нижний предел влажности среды для развития бактерий 20 %, а плесневых грибов — 15 %. Поэтому надежным способом сохранения продуктов от порчи является их сушка до влажности ниже указанного предела.
Среда с повышенной концентрацией веществ. Как уже было сказано, микробы живут в среде с небольшой концентрацией растворимых веществ. При повышении концентрации соли (до 10—20 %) и сахара (до 60—70 %) многие микробы полностью прекращают свое развитие (гнилостные, молочно-кислые) в результате обезвоживания микробных клеток. Действие высокой концентрации соли на микробы используют при посоле рыбы, мяса, а сахара — при приготовлении варенья, джема, повидла.

Реакция среды. Большинство микробов развивается в нейтральной (рН = 7) или слабощелочной среде (рН = 8), а плесени и дрожжи — в слабокислой среде (рН = 3-6). Изменяя реакцию среды, можно влиять на ход развития микроорганизмов. На этом основаны способы консервирования овощей, плодов путем квашения (с помощью образующейся молочной кислоты) и маринования (с помощью добавляемой уксусной кислоты), в процессе которых подавляется жизнедеятельность гнилостных микробов.
Свет. Прямой солнечный луч губит микробы, в том числе и болезнетворные. Губительны ультрафиолетовые лучи солнца и специальных ламп БУВ, используемых для дезинфекции воды, воздуха, помещений.
Химические вещества. Многие химические соединения губительно действуют на микробы и используются для их уничтожения. Они называются антисептиками или дезинфицирующими веществами. Так, хлорную известь в общественном питании применяют для дезинфекции рук, посуды и оборудования (0,2 %), сорбиновуюкислоту—для сохранения соков. Наличие бензойной кислоты в клюкве, бруснике предохраняет их от порчи.
Биологические факторы. Микробы в процессе жизнедеятельности могут влиять друг на друга, способствуя развитию или угнетению. Последнее свойство микробов используется человеком в борьбе с болезнетворными микробами. Многие бактерии, плесневые грибы выделяют в окружающую среду вещества — антибиотики, губительно действующие на развитие других микробов. Пенициллин, стрептомицин, грамицидин, биомицин — антибиотики, широко применяемые в медицине.
Другими веществами, близкими к антибиотикам по характеру действия на микробы, являются фитонциды. Эти вещества, выделяемые многими растениями (луком, чесноком, хреном, цитрусовыми и др.), убивают болезнетворные микробы дизентерии, гнилостную палочку и др.
Распространение микробов в природе
Микробы широко распространены в природе: в почве, воде, воздухе, которые являются очагами деятельности разнообразной микрофлоры.
Микрофлора почвы. Самой благоприятной средой для развития микробов является почва, в 1 г которой находится до нескольких миллиардов микробов. Развитию микробов в почве способствуют имеющиеся в ней питательные вещества (органические, минеральные), постоянная влажность и температура, отсутствие солнечного света, губительно действующего на микробы. Больше всего микробов содержится на глубине от 1 до 30 см. В песчаной почве их меньше, чем в черноземной. Некоторые микробы очищают почву от остатков животного и растительного происхождения путем минерализации сложных органических веществ. Однако почва может быть загрязнена и болезнетворными микробами, попавшими туда с трупами животных, отбросами, которые вызывают различные заболевания человека.
Болезнетворные микробы, как правило, постоянно в почве не обитают, но попадая в нее могут некоторое время сохраняться. Так в почве могут находиться возбудители дизентерии, брюшного тифа, холеры, которые выживают в ней до 30—40 дней, а споры сибирской язвы, столбняка, ботулинуса, газовой гангрены сохраняются в ней годами.
Корни растений своими выделениями, микробы-антагонисты, частые перепады влажности и температуры почвы оказывают губительное действие на микробы.
Почва является основным резервуаром, из которого микробы попадают в воду и воздух.
Микрофлора воды. Для некоторых микроорганизмов вода является естественной средой обитания, особенно, в открытых водоемах — в реках, озерах, прудах, меньше в артезианской воде. Загрязненность воды может составлять до миллиона микробов в 1 мл.
Со сточными водами, выделениями больных людей и животных в воду могут попадать болезнетворные микробы: холерный вибрион, возбудители брюшного тифа, дизентерии, бациллы сибирской язвы и др. Они сохраняются в воде длительное время. Так холерный вибрион выживает в воде до нескольких месяцев, возбудитель туберкулеза до 5 месяцев, сальмонеллы до 3 месяцев.
Вода, загрязненная болезнетворными микробами, может явиться причиной массовых заболеваний людей. Особенно опасно фекальное загрязнение воды, в которых обнаруживаются возбудители желудочно-кишечных инфекций. Вода в природе может загрязняться промышленными стоками, содержащими различные химически активные вещества: аммиак, сероводород, соли азотной кислоты, хлориды, соли фосфорной кислоты.
Такую воду следует подвергать тщательной очистке — отстаивать, фильтровать, озонировать, обрабатывать ультрафиолетовыми лучами и т.д. на специальных очистительных станциях. При умеренном загрязнении водоемов чистота воды может через некоторое время восстанавливаться в результате естественного процесса самоочищения (оседание частиц, окисление загрязняющих частиц, утилизацией химических загрязнений микробами, участие бактериофагов, личинок насекомых, мальков рыб и т.д.).Таким образом восстанавливается естественное состояние водоемов.
Микрофлора воздуха. Воздух— неблагоприятная среда для жизни микроорганизмов и чистота его зависит от степени запыленности и загрязнения выбросами промышленных предприятий. Воздух чище зимой, чем летом; над океанами и морями чище, чем над сушей; над лесными массивами чище, чем над распаханной землей; в сельской местности чище, чем в городе. Больше обсеменены микробами нижние слои воздуха (1 м 3 воздуха содержит десятки тысяч микроорганизмов). Много микробов может быть в воздухе производственных помещений. В воздухе могут находиться болезнетворные микробы туберкулеза, дифтерии, гриппа и др. заболеваний.
Оздоровление воздуха природной среды, производственных помещений является важной повседневной задачей.
Очистить воздух в помещениях можно вентиляцией, систематической влажной уборкой, бактерицидными лампами, дезинфицирующими средствами и другими способами.

Лекция.Пищевые вещества и их значение.

Питание — процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ (нутриентов), необходимых для покрытия пластических и энергетических нужд организма, образования его физиологически активных веществ.

Пищевые вещества содержатся в пищевых продуктах , имеющих животное и растительное происхождение, и используются человеком для питания в натуральном и переработанном виде. Пищевая, биологическая и энергетическая ценность пищевых продуктов определяется содержанием в них пищевых, или питательных, веществ: (белков, жиров, углеводов), витаминов, минеральных солей, воды, органических кислот, вкусовых, ароматических и ряда других веществ.Важное значение имеют свойства перевариваемости и усвояемости питательных веществ.

Различают питание естественное и искусственное (клиническое парентеральное и зондовое энтеральное). Выделяют также лечебное и лечебно-профилактическое питание.

Естественное питание имеет многие национальные, ритуальные особенности, привычки, моду.

Пищевые вещества

К ним прежде всего относятся белки, жиры и углеводы, при окислении которых высвобождается определенное количество тепла (в среднем для жиров — 9,3 ккал/г, или 37 кДж/г, белков и углеводов по 4,1 ккал/г, или 17 кДж/г). Согласно правилу изодинамии, они могут взаимно заменяться в удовлетворении энергетических потребностей организма, однако каждое из пищевых веществ и их фрагментов имеет специфические пластические свойства и свойства биологически активных веществ. Замена в пищевом рационе одних веществ другими ведет к нарушению функций организма, а при длительном, например безбелковом, питании наступает смерть от белкового голодания. Существенное значение в питании имеет вид каждого из пищевых веществ, содержащих незаменимые компоненты, что определяет их биологическую ценность.

Биологическая ценность животных белков выше, чем растительных (например, у белков пшеницы 52—65 %). Усвояемость белков животного происхождения составляет в среднем 97 %, а растительных — 83—85 %, что зависит также и от кулинарной обработки пищи.

Считают, что при биологической ценности белков смешанной пищи не менее 70 % людей имеют белковый минимум в сутки 55—60 г. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85—90 г белка в сутки (не менее 1 г белка на 1 кг массы тела). У детей, беременных и кормящих грудью женщин эти нормы выше (см. далее).

Л и п и д ы поступают в организм человека в составе всех видов животной, а также растительной пищи, особенно ряда семян, из которых для пищевых целей получают многие виды растительных жиров.

Биологическая ценность пищевых липидов определяется наличием в них незаменимых жирных кислот, способностью переваривания и всасывания в пищеварительном тракте (усвоения). Сливочное масло и свиной жир усваиваются на 93—98 %, говяжий — на 80—94 %, подсолнечное масло — на 86—90 %, маргарин — на 94—98 %.

Основное количество углеводов поступает в организм в виде полисахаридов растительной пищи. После гидролиза и всасывания углеводы используются для удовлетворения энергетических потребностей. В среднем за сутки человек принимает 400— 500 г углеводов, из которых 350—400 г составляет крахмал, 50— 100 г моно- и дисахариды. Избыток углеводов депонируется в виде жира.

Витамины должны быть непременным компонентом пищи. Нормы их потребности зависят от возраста, пола, вида трудовой деятельности, ряда других факторов

Суточная потребность в воде у взрослого человека составляет 21—43 мл /кг, минимальная суточная потребность человека массой тела 70 кг составляет около 1700 мл, из них около 630 мл он получает в виде воды и напитков, 750 мл — с пищей и 320 мл образуется в ходе обменных (окислительных) процессов. Недостаточный прием воды вызывает дегидратацию организма, которая имеет различную степень выраженности в зависимости от уровня обезвоживания. Смерть наступает при потере '/з—'/4 общего количества воды в организме, на долю которой приходится около 60 % массы тела. Избыточное поступление воды вызывает гипергидратацию, которая может привести к водной интоксикации.

Большое физиологическое значение макро- и микроэлементов определило обязательные нормы их потребления для разных групп населения.

Лекция Особенности питания детей и подростков.

Теоретические основы питания

Каждый организм сочетает в себе биохимические признаки, характерные только для него, и признаки, общие для данной биологической группы (вид, род, семейство). Это значит, что нет идеальной диеты (диета — рацион и режим питания), если она рассчитывается на весь вид, даже при учете возраста, пола, климата, вида трудовой деятельности. Каждому человеку необходим индивидуальный набор компонентов рациона (рацион — порция пищи на определенный срок), отвечающий индивидуальным особенностям его обмена веществ. Однако на современном этапе развития науки и практики индивидуальный рацион питания внедрить нельзя. Для оптимизации питания людей объединяют на однородные по большому числу признаков группы. Полагают, что разнообразие рационов позволяет человеку самому отбирать необходимые ему вещества, поэтому смешанный рацион создает возможности для приспособления питания к индивидуальным биохимическим особенностям обмена веществ.

О рганизм детей и подростков имеет ряд существенных особенностей. Ткани организма детей на 25 % состоят из белков, жиров, углеводов, минеральных солей и на 75 % из воды. Основной обмен у детей протекает в 1,5—2 раза быстрее, чем у взрослого человека. В организме детей и подростков, в связи с их ростом и развитием, процесс ассимиляции преобладает над диссимиляцией. В связи с усиленной мышечной активностью у них повышены общие энергетические затраты.
Средний расход энергии в сутки (ккал) на 1 кг массы тела детей различного возраста и взрослого человека составляет: до 1 года — 100; от 1 до 3 лет - 100-90; 4-6 лет - 90-80; 7-10 лет - 80-70; 11 —13 лет - 70-65; 14-17 лет — 65-45; взрослых людей - 45.
Большое внимание в питании детей и подростков уделяют содержанию белка и его аминокислотному составу как основному пластическому материалу, из которого строятся новые клетки и ткани. При недостатке белка в пище у детей задерживается рост, отстает умственное развитие, изменяется состав костной ткани, снижается сопротивляемость к заболеваниям и деятельность желез внутренней секреции.
Суточная потребность в белке зависит от возраста ребенка. На 1 кг массы тела необходимо белка: детям в возрасте от 1 года до 3 лет — 4 г; 4-6 лет - 4-3,5 г; 7-10 лет - 3 г; 11-13 лет - 2,5-2 г; 14-17 лет — 2—1,5 г.
Белок животного происхождения должен составлять у детей младшего возраста 65-70 %, школьного - 60 % суточной нормы этого пищевого вещества. По сбалансированности незаменимых аминокислот лучшим продуктом белкового питания в детском возрасте считается молоко и молочные продукты. Для детей до 3 лет в рационе питания ежедневно следует предусматривать не менее 600 мл молока, а школьного возраста — не менее 500 мл. Кроме того, в рацион питания детей и подростков должны входить мясо, рыба, яйца, — продукты, содержащие полноценные белки с богатым аминокислотным составом.
Жиры играют важную роль в развитии ребенка. Они выступают в роли пластического, энергетического материала, снабжают организм витаминами A, D, Е, фосфатидами, полиненасыщенными жирными кислотами, необходимыми для развития растущего организма. Особенно рекомендуют сливки, сливочное масло, растительное масло (5—10% общего количества).
У детей отмечается повышенная мышечная активность, в связи с чем потребность в углеводах у них выше, чем у взрослых, и должна составлять 10—15 г на 1 кг массы тела.

В питании детей важное значение имеют легкоусвояемые углеводы, источником которых являются фрукты, ягоды, соки, молоко, сахар, печенье, конфеты, варенье. Количество Сахаров должно составлять 25% общего количества углеводов. Однако избыток углеводов в питании детей и подростков приводит к нарушению обмена веществ, ожирению, снижению устойчивости организма к инфекциям.

В связи с процессами роста потребность в витаминах у детей повышена.
Особое значение в питании детей и подростков имеют витамины A, D как факторы роста. Источниками этих витаминов служат молоко, мясо, яйца, рыбий жир. В моркови, помидорах, абрикосах содержится провитамин А — каротин. Витамин С с витаминами групп В стимулирует процесс роста, повышает сопротивляемость организма к инфекционным заболеваниям.
Минеральные вещества в детском организме обеспечивают процесс роста и развития тканей, костной и нервной системы, мозга, зубов, мышц. Особое значение имеют кальций и фосфор.

Режим питания детей и подростков.
Соблюдение режима питания детей и подростков имеет большое значение для усвоения организмом пищевых веществ. Детям дошкольного возраста рекомендуют принимать пищу четыре раза в день, через каждые 3 ч, в одно и то же время, распределяя рацион питания следующим образом: завтрак — 25 %, обед — 35 %, полдник — 15 %, ужин — 25 %.

В школьном возрасте также целесообразно четырехразовое питание с равномерным распределением суточного рациона: завтрак — 25 %, второй завтрак — 20 %, обед - 35 %, ужин — 20 %. Важным оздоровительным мероприятием для детей-учащихся служит правильная организация питания в школе в виде горячих школьных завтраков и обедов в группах продленного дня, рацион которых должен составлять 50—70 % суточной нормы. Энергетическая ценность школьного питания должна соответствовать энергозатратам детей.

Четырехразовый режим питания школьников и учащихся ПУ устанавливают в зависимости от распорядка занятий. Для младших школьников завтраки организуют во вторую перемену, а для старших — в третью.

1. Основные принципы питания.
2. Режим питания.
3. Последствия недостаточного потребления пищевых веществ.

Читайте также: