Виды изменчивости и виды мутаций у человека факторы мутагенеза кратко

Обновлено: 31.05.2024

Виды мутаций у человека. Варианты

Последовательность ядерной ДНК у любых двух человек идентична почти на 99,9%. Только очень небольшая доля последовательности ДНК различается у разных людей, обеспечивая генетическую изменчивость. Некоторые различия в последовательности ДНК не имеют влияния на фенотип, тогда как другие — непосредственные причины болезней. Между двумя крайностями — изменения, ответственные за генетически предопределенную фенотипическую изменчивость в анатомии и физиологии, переносимость пищи, реакции на лечение или побочные эффекты медикаментов, восприимчивость к инфекциям, склонность к опухолям и, возможно, даже изменчивость в различных чертах личности, спортивных способностях и художественном таланте.

Одно из важных понятий генетики человека и медицинской генетики — то, что генетические болезни — только наиболее очевидное и часто крайнее проявление генетических различий, один конец непрерывного спектра изменений от редких вариантов, вызывающих болезнь, через более частые варианты, увеличивающие восприимчивость к болезни, до наиболее частых изменений, не имеющих явного отношения к болезни.

Виды мутаций у человека

Мутация — любое изменение в последовательности нуклеотидов или расположения ДНК. Мутации можно классифицировать на три категории: влияющие на количество хромосом в клетке (геномные мутации), изменяющие структуру отдельных хромосом (хромосомные мутации) и изменяющие индивидуальные гены (генные мутации). Геномные мутации — изменения числа неповрежденных хромосом (анеуплоидии), возникающие вследствие ошибок в расхождении хромосом в мейозе или митозе.

виды мутаций у человека

Хромосомные мутации — изменения, затрагивающие только часть хромосомы, например частичные дупликации, делеции, инверсии и транслокации, которые могут происходить спонтанно или возникать вследствие аномального расхождения транслоцированных хромосом в ходе мейоза. Генные мутации — изменения в последовательности ДНК ядерного или митохондриального генома, от мутации в единственном нуклеотиде до изменений, захватывающих много миллионов пар оснований. Множество типов мутаций представлены разнообразными аллелями в отдельных локусах при более чем тысяче разных генетических заболеваний, а также среди миллионов вариантов ДНК, обнаруживаемых во всем геноме в нормальной популяции.

Описание разных мутаций не только увеличивает осведомленность о генетическом разнообразии человека и хрупкости человеческого генетического наследия, но также содействует получению информации, необходимой для обнаружения и скрининга генетических болезней в конкретных семьях риска, а также — для некоторых болезней — в популяции в целом.

Геномная мутация, приводящая к утрате или дублированию целой хромосомы, изменяет дозу и, таким образом, уровень экспрессии сотен или тысяч генов. Аналогично затрагивающая большую часть одной или нескольких хромосом хромосомная мутация также может влиять на экспрессию сотен генов. Даже небольшая генная мутация может иметь большие последствия, в зависимости от того, какой ген затронут и к чему приводит изменение в экспрессии этого гена. Мутация гена в виде изменения единственного нуклеотида в кодирующей последовательности может вести к полной утере экспрессии гена или образованию белка с измененными свойствами.

Некоторые изменения ДНК, тем не менее, не имеют фенотипических эффектов. Хромосомная транслокация или инверсия может не влиять на критическую часть генома и абсолютно не иметь фенотипических эффектов. Мутация в пределах гена может не иметь эффекта вследствие того, что либо не изменяет аминокислотную последовательность полипептида, либо, даже если это происходит, изменение в закодированной аминокислотной последовательности не изменяет функциональные свойства белка. Следовательно, не все мутации имеют клинические последствия.

Все три типа мутаций происходят со значимой частотой во множестве разных клеток. Если мутация происходит в ДНК половых клеток, она может передаваться последующим поколениям. В отличие от этого, соматические мутации происходят случайным образом только в части клеток определенных тканей, приводя к соматическому мозаицизму, наблюдаемому, например, при многих опухолях. Соматические мутации не могут передаваться последующим поколениям.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Под изменчивостью понимают способность организмов приобретать признаки и свойства, отличные от родительских, характерных для данного вида. Изменчивость является общим свойством всех живых систем и может выражаться в изменении как генотипа, так и фенотипа.

Традиционно различают ненаследственную и наследственную изменчивость.

Виды изменчивости

Модификационная изменчивость

Модификационная (фенотипическая) изменчивость - изменения фенотипа организма, обусловленные влиянием факторов внешней среды. Данный вид изменчивости не приводит к изменениям генотипа особи - все изменения касаются только фенотипа.

Напомню, что генотипом называют генетическую конституцию - совокупность генов одного организма, полученных от родителей. Фенотип (греч. phаino - обнаруживаю) - совокупность наблюдаемых характеристик организма (любой морфологический, гистологический, биохимический, поведенческий признак).

Для модификационной изменчивости характерен групповой характер, она часто (но не всегда) служит приспособлением к условиям внешней среды. Известным примером модификационной изменчивости является изменение окраски шерсти у зайца-беляка в зависимости от сезона года.

Модификационная изменчивость

Такое изменение окраски делает их более приспособленными, повышает выживаемость: заяц сливается с внешней средой и становится незаметен для хищников.

Однако не стоит забывать об относительности любой приспособленности: если среда резко изменится, то белый заяц на фоне темной земли станет легкой добычей для хищников.

Относительность приспособленности

Еще одним примером модификационной изменчивости служит изменение окраски шерсти у гималайских кроликов. Они рождаются полностью белыми, так как их эмбриональное развитие протекает в условиях повышенной температуры.

Однако в результате воздействия холода на разные участки их тела, шерсть начинает темнеть. В естественных условиях шерсть темная на ушах, носе, лапах и хвосте.

В эксперименте лед привязывают к спине, и через некоторое время шерсть на этом месте начинает темнеть. Это наглядно демонстрирует влияние внешней среды на проявление признака.

Изменения окраски шерсти у гималайских кроликов

Вам известно, что человек, побывавший на солнце, получает его "отпечаток" - загар. Потемнение цвета кожи в данном случае связано с активной выработкой пигмента меланина, который защищает кожу и внутренние органы от УФ излучения.

Загар также является типичным примером модификационной изменчивости. Одни люди загорают быстро, у других этот процесс занимает гораздо больше времени - все дело в норме реакции.

Норма реакции

Нормой реакции называют генетически (наследственно) закрепленные пределы (границы) изменчивости признака. Принято говорить, что у каждого признака существует определенная норма реакции: она может быть узкой или широкой.

Узкая норма реакции характерна для признаков, которые относятся к качественным: форма глаза, желудка, сердца, размеры головного мозга, рост.

Количественные признаки имеют широкую норму реакцию и достаточно вариабельны в течение жизни: яйценоскость кур, удойность коров, вес, размер листьев.

Узкая и широкая норма реакции

  • Причина изменения - влияние факторов внешней среды
  • Изменения признаков организма не затрагивают генотип, происходят в соматических клетках и не передаются потомкам
  • Изменение признаков ограничено в пределах нормы реакции, которая определяется генотипом
  • Изменчивость носит групповой характер, характерна для многих особей (к примеру, сезонная изменчивость)
Наследственная изменчивость

Наследственная изменчивость (неопределенная, индивидуальная, генотипическая) - форма изменчивости, вызванная изменениями генотипа организма, которые могут быть связаны с мутационной или комбинативной изменчивостью.

В отличие от модификационной изменчивости, где затрагивается только фенотип (внешние проявления), генотипическая изменчивость затрагивает генотип, а это означает, что генетические изменения затрагивают и половые клетки, которые передаются потомству. Поэтому и называется она - наследственная.

Наследственная изменчивость

Комбинативная изменчивость

Комбинативная изменчивость возникает в результате появления у потомков новых сочетаний генов (комбинаций). Эти комбинации возникают во время мейоза в результате хорошо вам знакомого (я надеюсь!) кроссинговера - обмена участками между гомологичными хромосомами.

  • Случайная комбинация генов в ходе кроссинговера
  • Независимое расхождение хромосом в мейозе
  • Случайная встреча гамет при оплодотворении

Комбинативная изменчивость

Я всегда говорю ученикам, что комбинативная изменчивость - это полная неопределенность: мы не знаем, какие комбинации возникнут между генами при кроссинговере, не знаем, какие хромосомы образуются и в какие гаметы они разойдутся, и, наконец, не знаем какие половые клетки (гаметы) встретятся при оплодотворении.

То, что мы отличаемся от своих родителей, и есть результат этих неопределенностей.

Сходство детей и родителей

Мутационная изменчивость

Мутационная изменчивость связана с возникновением мутаций. Мутации (лат. mutatio - изменение) - внезапные, возникающие спонтанно или вызванные мутагенами наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

  • Мутации - резкие спонтанные изменения генотипа
  • Стойкие, передаются потомкам через половые клетки (гаметы)
  • Ненаправленные. Большинство мутаций - вредные (часть из них летальные), лишь очень небольшая часть носит полезный приспособительный характер, мутации также могут быть безразличными (нейтральными) для организма
  • Носят индивидуальный характер

Гетерохромия

Изменения при генных мутациях происходят в последовательности нуклеотидов молекулы ДНК. Может случаться такое, что один или несколько нуклеотидов выпадают из ДНК (делеция), вставляются новые нуклеотиды, удваиваются имеющиеся нуклеотиды (дупликация).

Изменения ДНК ведут к тому, что в результате на рибосомах синтезируется белок с иной аминокислотной последовательностью. К примеру: изначально триплет ДНК "ТАЦ" кодировал аминокислоту "Мет", нуклеотид "Т" выпал из триплета произошла вставка нуклеотида "Г". В результате вместо аминокислоты "Мет" теперь синтезируется аминокислота Вал.

Новые аминокислоты могут поменять свойства белка, так что признак, за который он отвечает, будет меняться. Только что вы узнали об универсальной схеме - изменении фенотипа в результате изменений генотипа.

Генные мутации

В результате хромосомных мутаций происходят структурные изменения хромосом (не следует путать с кроссинговером, который происходит в норме и подразумевает обмен участками между гомологичными хромосомами). Последствия хромосомных мутаций часто оказываются летальны.

В результате таких мутаций может происходить утрата (делеция) участка хромосомы, его удвоение (дупликация), поворот на 180° (инверсия), перенос участка одной хромосомы на другую (транслокация), перенос участка внутри одной хромосомы (транспозиция).

Хромосомные мутации

    Автополиплоидию - кратное увеличение числа наборов хромосом

В результате таких мутаций количество хромосом увеличивается в кратное количество раз (2,3,4 и т.д.). В результате получаются организмы триплоиды, тетраплоиды и т.д. Иногда такие мутации вызывают искусственно, к примеру, в селекции растений. Известно, что у полиплоидов более крупные и сочные плоды.

В селекции полиплоидию у растений вызывают добавлением специального химического вещества - колхицина, который блокирует образование нитей веретена деления. Вследствие этого хромосомы не расходятся и остаются в одной клетке - набор хромосом увеличивается в 2 раза.

Полиплоидия у растений

Имеет значение в процессе видообразования. Примером данной мутации может послужить отдаленная гибридизация (аутбридинг) пшеницы и ржи. Их генотип состоит из гаплоидного набора пшеницы (n) и гаплоидного набора ржи (m).

В результате такого скрещивания в 1875 году в Шотландии был получен первый искусственный стерильный гибрид - тритикале. Тритикале дает отличный урожай, в дальнейшем путем полиплоидии стерильность данного гибрида была преодолена.

Тритикале

Также примером отдаленной гибридизации, соответственно и аллополиплоидии, является гибрид осла (самца) и лошади (самки) - мул. Это животное отличается большой выносливостью, но опять-таки бесплодное вследствие геномной мутации.

Мул

Анеуплоидия - изменение кариотипа (совокупность признаков хромосом), при котором число хромосом в клетках не кратно гаплоидному набору (n). Таким образом, в результате анеуплоидии отсутствует одна (или несколько) хромосом, либо же хромосомы имеются в избытке ("лишние" хромосомы).

В случае отсутствия в хромосомном наборе одной хромосомы говорят о моносомии, двух хромосом - нуллисомии. Если к паре хромосом добавляется одна лишняя, говорят о трисомии.

Наследственные болезни, в том числе связанные с геномными мутациями: синдром Шерешевского-Тёрнера, Дауна - мы более детально обсудим в следующей статье, которая посвящена наследственным заболеваниям.

Синдром Дауна

Раз уж мы затронули аутбридинг, то следует коснуться явления инбридинга и гетерозиса для их полного понимания.

Инбридинг (англ. in — в, внутри + breeding — разведение) - скрещивание близкородственных форм, в результате которого в ряду поколений увеличивается гомозиготность. С помощью инбридинга выводят чистые линии (AA, aa, BB, bb). Однако известно, что близкородственное скрещивание может приводить к проявлению рецессивных генов заболеваний и ослаблению потомства.

Инбридинг

Гетерозис (греч. ἕτερος - другой + -ωσις - состояние) - явление увеличения жизнеспособности гибридов, вследствие унаследования ими различных вариантов аллельных генов от своих разнородных родителей. Увеличение жизнеспособности связывают с переходом генов в гетерозиготное состояние.

Гетерозис

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


Наследственная изменчивость. Виды мутаций

Ключевые слова конспекта: наследственная (генотипическая) изменчивость: комбинативная, мутационная; мутации: биохимические, физиологические, анатомо-морфологические, прямые, обратные, спонтанные, индуцированные, ядерные, цитоплазматические, половые, соматические. Раздел ЕГЭ: 3.6. Закономерности изменчивости… Наследственная изменчивость: мутационная, комбинативная. Виды мутаций и их причины…

В отличие от модификационной изменчивости наследственная, или генотипическая, изменчивость затрагивает генотип и передаётся по наследству. Она бывает двух видов : комбинативная и мутационная.

Комбинативная изменчивость

Появление новых сочетаний признаков вследствие комбинации генов приводит к комбинативной изменчивости. Часто у потомков появляются такие сочетания признаков, которые не были характерны для родителей. Например, появление зелёных гладких и жёлтых морщинистых семян у гороха посевного при скрещивании гетерозиготных особей с гладкими жёлтыми семенами — результат комбинации признаков. Комбинация двух доминантных генов у кроликов приводит к появлению новых фенотипов. Примером комбинации служит проявление признаков у потомков при комплементарном взаимодействии генов (при скрещивании особей с розовидным и гороховидным гребнями появляются куры с ореховидным гребнем).


Комбинация признаков окраски и длины шерсти у кроликов

Основой комбинативной изменчивости являются следующие факторы:

  • 1) случайная комбинация негомологичных хромосом в мейозе и, как следствие, независимое наследование признаков;
  • 2) рекомбинация генов в результате кроссинговера в процессе мейоза;
  • 3) половой процесс, приводящий к случайному сочетанию отцовских и материнских генов.

Комбинативная изменчивость определяет разнообразие особей и способствует приспособлению вида к условиям окружающей среды. Наличие комбинаций определяет появление особей со специфическими признаками, которые используют при выведении новых сортов растений и пород животных.

Мутационная изменчивость

Мутации ослинника (энотеры)

Мутации ослинника (энотеры): 1 — нормальная форма; 2 — карликовая форма.

Мутации (от лат. mutatio — изменение) — это внезапные скачкообразные изменения наследственного материала клетки. Они, в отличие от модификаций, наследуются и связаны с изменением генотипа.

Мутационная изменчивость — это наследственные изменения генотипического материала (хромосом и генов). Под воздействием внешней среды могут возникнуть ошибки в репликации ДНК, нарушения в процессе деления клетки. Например, в результате мутации в гене у дрозофилы не развиваются крылья и появляются бескрылые особи. Иногда под воздействием химических агентов или при механических повреждениях у растений ядро клеток начинает делиться быстрее, чем сама клетка. Вследствие этого возникают клетки с удвоенным набором хромосом, которые могут дать начало цветкам и семенам с другим генотипом. Облучение зёрен пшеницы перед посевом рентгеновскими лучами приводит либо к образованию неполноценных колосьев, либо к отсутствию сформированного колоса, а иногда — к формированию более крупного полноценного колоса. Воздействие одинаковых условий вызывает разную реакцию у организма. В результате мутаций появляются новые типы белков, которые обусловливают появление новых признаков.

Наследственная изменчивость

Мутационная изменчивость имеет следующие особенности.

  1. Изменения затрагивают генотип организма и наследуются.
  2. Изменения носят скачкообразный характер. Не наблюдается последовательности в изменении свойств, модификации отсутствуют.
  3. Изменения индивидуальны и возникают у единичных особей.
  4. Изменения не адекватны условиям окружающей среды, т. е. носят независимый характер, и могут быть нейтральными, полезными, но чаще всего являются вредными.
  5. Мутации могут привести к образованию новых признаков у организма или к его гибели. Например, мутация окраски глаз у дрозофил привела к образованию в природе белоглазых мух.

Классификация мутаций

1) По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими. При биохимических мутациях изменению подвергаются белки-ферменты, которые могут ускорить синтез структурных белков, а в некоторых случаях, наоборот, прекратить его. Например, альбинизм — мутация, связанная с отсутствием в организме фермента, ответственного за синтез пигмента меланина.

При анатомо-морфологических мутациях наблюдаются аномалии в формировании органов или систем органов, например: недоразвитие желудка у серых каракулевых овец, гомозиготных по доминантному гену серой окраски. Большое количество мутаций выявлено у дрозофилы

Мутации у дрозофилы

Мутации у дрозофилы: 1 — величина и форма крыльев; 2 — пигментация и форма глаз

2) По степени приспособленности мутации делят на полезные и вредные. Чаще мутации вредны, так как понижают жизнеспособность особей, а иногда могут быть летальными и вызывать гибель организма.

Мутация всегда изменяет приспособленность организмов. Степень полезности или вредности мутации выявляется со временем. Если мутация позволяет организму лучше приспособиться к условиям среды, даёт дополнительный шанс выжить, то она закрепляется у организмов. Примером может служить серповидно-клеточная анемия у человека. При наличии такой мутации возникают нарушения в структуре гемоглобина, что приводит к образованию эритроцитов серповидной формы:


Неполное доминирование при серповидно-клеточной анемии: 1 — нормальные эритроциты (АА); 2 — гетерозиготы (Аа); 3 — аномальные эритроциты (аа)

Они не способны транспортировать достаточное количество кислорода, поэтому организм испытывает кислородное голодание и в конце концов погибает. Однако у гетерозигот по этому признаку эритроциты изменены незначительно, и организм вполне жизнеспособен. При этом у таких людей появляется одна особенность: они устойчивы к заболеванию малярией, так как в их изменённых эритроцитах не способен размножаться малярийный плазмодий — возбудитель малярии. В результате при массовом заболевании малярией гомозиготы с нормальными эритроцитами могут погибнуть, тогда как гетерозиготы выживают. В Африке, где свирепствует малярия, среди людей чаще, чем в других местах земного шара, встречаются гетерозиготы.

3) По направленности мутации бывают прямые и обратные:

ген А → ген А*, ген А* → ген А.

Последние встречаются реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность обратной мутации в той же точке очень мала, чаще всего мутациям подвергаются другие гены.

4) По способу возникновения различают спонтанные и индуцированные мутации. Спонтанные мутации происходят в природе самопроизвольно. Они зависят как от внутренних, так и от внешних факторов. Индуцированные мутации возникают при воздействии на организмы мутагенов — факторов, вызывающих мутации. Это физические (радиация, электромагнитное излучение, температура и т. д.), химические (ароматические углеводороды, гербициды и т. д.), биологические (бактерии и вирусы) факторы.

5) По локализации в клетке мутации бывают ядерными и цитоплазматическими. Ядерные мутации связаны с аномалиями в хромосомном аппарате ядер и передаются по наследству. Цитоплазматические мутации связаны с нарушением ДНК в таких органоидах цитоплазмы, как хлоропласты и митохондрии. Так как эти органоиды сохраняются только в яйцеклетках, то цитоплазматическая мутация передаётся по материнской линии. Например, ДНК хлоропластов клеток растений управляет образованием пигмента хлорофилла, который обеспечивает развитие зелёной окраски. Решающим для окраски листа потомков является содержание генов пластид в яйцеклетках, а не в клетках пыльцевых зёрен. Митохондриальная ДНК регулирует синтез дыхательных ферментов в клетке. Нарушения проявляются по материнской линии, так как митохондрии содержатся в цитоплазме яйцеклетки — из сперматозоида при оплодотворении в зиготу переходит только ядро.


Соматическая мутация окраски глаза у дрозофилы. Пигментация в части глаза отсутствует

6) В зависимости от типа клеток различают половые и соматические мутации. Если изменения связаны с хромосомами половых клеток, то они передаются следующим поколениям при половом размножении. Мутации могут происходить и в соматических клетках, но они не наследуются. Примером соматической мутации является нарушение пигментации глаза у дрозофилы.

У человека появление белой пряди волос на голове иногда связано с соматической мутацией — нарушением образования пигмента. Эта мутация появляется не сразу, а в процессе жизни. Однако белая прядь волос может быть обусловлена и половой мутацией. В этом случае она передаётся по наследству и проявляется сразу при рождении.

У растений соматические мутации передаются по наследству при вегетативном размножении, например, пестролистность комнатных растений.

Большинство мутаций рецессивные, поэтому они скрыты и лишь изредка проявляются у единичных особей только в гомозиготном состоянии. Доминантные мутации встречаются гораздо реже, они проявляются сразу же и в случае летальности быстро исчезают с гибелью особей.


классификация мутаций

Цель настоящей статьи - раскрытие сущности понятия мутагенеза, а также роли данного процесса в понимании эволюции всех живых организмов на нашей планете. Подробно изложены современные классификации мутагенеза, в том числе разбору подвергнуто понятие о генных мутациях. В материале работы изложены наиболее вероятные причины, которые могут потенцировать частоту возникновения и масштабность различных нарушений в хранении, воспроизведении и передаче генетической информации.


2. Ходжкин Ю. Генетическое подавление. 2005 г., 27 декабря. В: WormBook: Интернет-обзор биологии C. elegans. Пасадена (Калифорния): WormBook; 2005-2018.

5. Жимулёв, И.Ф. Общая и молекулярная генетика /И.Ф. Жимулёв. — Издание четвертое. — Новосибирск: Новосибирское университетское издательство, 2007. — 480с.

Введение. Мутагенез - внесение изменений в нуклеотидную последовательность ДНК (мутаций). (Гуго де Фриз 1901)

Виды мутагенеза. Различают естественный и искусственный мутагенез.

Естественный (спонтанный) - возникает вследствие УФ-лучей, химических мутагенов, радиации.

Искусственный (индуцированный) - искусственное получение мутаций путем воздействия радиационного излучения и химических веществ. Широко используется в селекции (полиплоидия).

Роль мутагенеза. Зачастую мутации выступают в качестве материала для естественного отбор. Например: при кардинальном изменении окружающих организм условий мутации, считавшиеся ранее ненужными, могут стать полезными, и повысят процент выживаемости данного организма и впоследствии его потомков.

Согласно одной из теорий происхождения жизни на нашей планете все живое произошло от одной клетки. В процессе эволюции эта клетка дифференцировалась с помощью мутаций. Так возникли мы и самое важное –

разные люди (цвет волос, глаз и т.д.) Стоит также отметить, что мутации играют большую роль в селекции. Путем искусственного мутагенеза получают более крупные плоды. Таким образом, благодаря мутациям возникают новые штаммы, сорта, породы организмов.

Мутации с нарушением генетического кода (генные мутации). Генные мутации – это изменение строения одного гена, т.е. изменение в последовательности нуклеотидов, а следовательно, изменение генетического кода и изменение молекулы белка, синтезируемого по этому коду. Если изменяется код, то изменяется и кодируемый им признак. Последствия генных мутаций могут быть разные – все зависит от гена, с которым произойдет спонтанное изменение. Если случится нарушение синтеза аминокислоты, необходимой для полноценного функционирования организма, то будут серьезные осложнения вплоть до смертельного исхода. Если действие мутировавшего гена будет подавлено парным геном из гомологичной хромосомы или если изменение в молекуле синтезируемого белка не будет нарушать его функций, то мутация никак не отразится на фенотипе.

Виды генных мутаций:

1. Дупликация – удвоение пары или нескольких пар нуклеотидов;

2. Инсерция – вставка пары нуклеотидов (или несколько);

3. Делеция – выпадение участка генома;

4. Инверсия – переворот на 180 градусов;

5. Замена – замена пары нуклеотидов на другую.

Так, например, замена глутаминовой кислоты на валин в молекуле глобина (белковой части гемоглобина) приводит к катастрофическим последствиям). Гемоглобин начинает хуже связывать и переносить кислород. Эритроциты, в которых содержится гемоглобин, становятся непрочными и легко разрушаются. Вследствие замены одной из ста сорока шести аминокислот на другую развивается тяжелое заболевание – серповидноклеточная анемия. Так назвали из-за формы гемоглобина – в форме серпа.

Читайте также: