Устройство реактора чернобыльской аэс кратко

Обновлено: 07.07.2024

Авария в 1986 на АЭС в Украинском городе Чернобыль стало следствием ошибок допущенных в конструкции реактора в совокупности с недостаточно подготовленным персоналом. Следствием аварии стал паровой взрыв и пожар с выбросом по меньшей мере 5% от ядра радиоактивного реактора в атмосферу и с подветренной стороны. Атомная электростанция включала 4 ядерных реактора и еще 2, которые в момент аварии строились.


Реактор типа РБМК1000 содержит графитовые трубки с слегка обогащенным топливом диоксидом урана (U235–до 2%). Вертикальные трубки содержат циркониевый сплав с диоксидом урана вокруг которого течет охлаждающая вода. В реакторе имеется две петли - канала для подачи пара в турбину, которая вырабатывает электрический ток. Остывшая вода закачивается в нижней части топливного канала, затем она вскипает по мере продвижения вверх по трубе под высоким давлением и преобразуется в пар. Пар подается в электротурбину, которая способна выдать до 500 мегаватт электроэнергии. Роль воды в атомном реакторе крайне велика. Во-первых она используется в качестве охлаждающей жидкости, во-вторых преобразуется в пар, который приводит в действие турбину. Для управления реактором используется специально разработанный механизм, позволяющий изменять пучок твэлов без остановки реактора. Между графитовыми блоками циркулирует смесь гелия и азота, что помогает предотвратить окисление графита и увеличить нагревание воды, которое получается при взаимодействии нейтронов в графите с топливным каналом. Ядро реактора составляет 6.5 метров в высоту и 13 метров в ширину. В каждой из двух петель (водяных контуров) находятся четыре циркуляционных насоса, один из которых всегда в режиме ожидания. Мощность реактора регулируется при помощи механизма опускания и поднимания 211 стержней в трубу замедлителя. При опускании в замедлитель нейтроны поглощаются в большем количестве и уменьшают скорость деления. Мощность реактора составляла 3200 мега ватт тепловой и 1000 мега ватт электрической энергии. В конструкции реактора были предусмотрены специальные системы безопасности, например аварийное охлаждение активной зоны. Причиной аварии на Чернобыльской АЭС явилось взаимодействие очень горячего топлива с охлаждающей жидкостью, что привело к фрагментации топлива наряду с быстрым производством пара и неконтролируемым увеличением давления. Интенсивное парообразование быстро распространилась по всему контуру, что вызвало паровой взрыв и утечку продуктов деления в атмосферу. Около двух-трех секунд спустя, второй взрыв выбросил отравляющие фрагменты из топливных каналов и раскаленного графита.
Более 30 лет прошло с момента чернобыльской катастрофы на территории Украины. С каждым годом желающих своими глазами оценить последствия катастрофы 1986 года становиться все больше. Для путешествия в зону отчуждения вовсе необязательно получать украинское гражданство. Сегодня множество украинских экскурсионных фирм организуют посещение Чернобыльской зоны отчуждения и Припяти как для граждан Украины так и для иностранцев. Поэтому самостоятельно оценить ужасающие последствия катастрофа на атомной АЭС может каждый из нас.

На злополучной электростанции использовался реактор типа РБМК — реактор большой мощности канальный. В его активной зоне находился графитовый цилиндр высотой 7 м и диаметром около 12 м. Графит в РБМК выполняет роль замедлителя нейтронов и пронизан технологическими каналами. В активную зону опускаются твэлы — тепловыделяющие элементы, заполненные таблетками с диоксидом урана. Также через активную зону прокачивается вода, которая является и замедлителем, и теплоносителем.

Реактор Чернобыльской АЭС имел ряд конструктивных недостатков, два из которых и стали непосредственной причиной аварии. Первый — это так называемый положительный паровой коэффициент реактивности. Из-за него испаряющаяся вода вызывала в активной зоне реактора бесконтрольный рост мощности. Второй недостаток — так называемый концевой эффект. Он состоит в том, что при погружении стержня управления и защиты в активную зону на какое-то время вносится положительная реактивность вместо отрицательной.

При мощности реактора в 200 МВт были включены дополнительные главные циркуляционные насосы. Увеличение расхода теплоносителя через реактор привело к уменьшению парообразования. А из-за того, что расход холодной воды остался небольшим (соответствующим режиму работы реактора на уровне 5—6% от полной мощности), температура теплоносителя в активной зоне приблизилась к точке кипения. Из-за этого в ходе испытаний реактор испытывал тенденцию к увеличению мощности. А когда прозвучал сигнал аварийной защиты и в активную зону начали опускать стержни управления и защиты, из-за концевого эффекта реактор не был заглушен, а начал бесконтрольно разгоняться.

К апрелю 1986 г. на станции действовали четыре блока, каждый из которых включал в себя ядерный реактор типа РБМК-1000 и две турбины с электрогенераторами мощностью по 500 МВт1. Каждый блок вырабатывает 1000 МВт электроэнергии, мощность же выделения тепла в реакторе — 3200 МВт (отсюда нетрудно определить кпд блока — 31%).

Последняя буква аббревиатуры РБМК (реактор большой мощности канальный) указывает на важную особенность конструкции. Теплоноситель в активной зоне РБМК движется по отдельным каналам, проложенным в толще замедлителя, а не в едином массивном корпусе, как в другом основном типе советских энергетических реакторов — ВВЭР. Это позволяет делать реактор достаточно большим и мощным: активная зона РБМК-1000 имеет вид вертикального цилиндра диаметром 11,8 м и высотой 7 м. Весь этот объем заполнен кладкой из графитовых блоков размерами 25x25x60 см3 общей массой 1850 т. В центре каждого блока сделано цилиндрическое отверстие, сквозь которое и проходит канал с водой-теплоносителем. На периферии активной зоны расположен слой отражателя толщиной около метра — те же графитовые блоки, но без каналов и отверстий.

Графитовая кладка окружена цилиндрическим стальным баком с водой, играющим роль биологической защиты. Графит опирается на плиту из металлоконструкций, а сверху закрыт другой подобной плитой, на которую для защиты от излучения положен дополнительный настил.

В 1661-м канале с теплоносителем размещены кассеты с ядерным топливом — таблетками спеченной двуокиси урана диаметром чуть больше сантиметра и высотой 1,5 см, содержание 235U в которых несколько выше естественного — 2%. Две сотни таких таблеток собираются в колонну и загружаются в тепловыделяющий элемент (твэл) — пустотелый цилиндр из циркония с примесью 1% ниобия длиной около 3,5 м и диаметром 13,6 мм. В свою очередь, 36 твэлов собираются в кассету, которая и вставляется в канал. Общая масса урана в реакторе — 190 т. В других 211 каналах перемещаются стержни-поглотители.

Помимо описанных устройств, в состав каждого энергоблока входят система управления и защиты, регулирующая мощность цепной реакции, системы обеспечения безопасности — в частности, система аварийного охлаждения реактора (САОР), предотвращающая плавление оболочек твэлов и попадание радиоактивных частиц в воду, — и многие другие.

На 25 апреля 1986 года, пятницу, намечалась остановка четвертого блока ЧАЭС для планового ремонта. Было решено, воспользовавшись этим, испытать один из двух турбогенераторов в режиме выбега (вращения ротора турбины по инерции после прекращения подачи пара, за счет чего генератор некоторое время продолжает давать энергию).

Как установили впоследствии специалисты, программа испытаний была составлена непродуманно. Это стало одной из причин трагедии. Корень ошибок заключался в том, что эксперимент сочли чисто электротехническим, не влияющим на ядерную безопасность реактора.

Предусматривалось, что при падении тепловой мощности реактора до 700—1000 МВт (далее везде указана тепловая мощность) прекратится подача пара на генератор № 8 и начнется его выбег. Чтобы исключить срабатывание САОР в ходе эксперимента, программа предписывала заблокировать эту систему, а электрическую нагрузку насосов САОР имитировать подключением к турбогенератору четырех главных циркуляционных насосов (ГЦН).

События развивались так

25 апреля. 1 ч. 00 мин. Начато медленное снижение мощности реактора.

13 ч. 05 мин. Мощность снижена до 1600 МВт. Остановлен турбогенератор № 7. Питание систем блока переведено на турбогенератор № 8.

23 ч. 10 мин. Диспетчер снял свой запрет, и снижение мощности было продолжено.

1 ч. 00 мин. Мощность повышена лишь до 200 МВт вместо предписанных программой 700—1000 МВт. Из-за продолжающегося отравления увеличить ее больше не удавалось, хотя стержни автоматического регулирования были почти целиком выведены из активной зоны, а стержни ручного регулирования подняты оператором.

1 ч. 07 мин. Пущен второй резервный ГЦН, заработали восемь насосов вместо шести. Это увеличило поток воды через каналы настолько, что возникла опасность кавитационного срыва ГЦН, а главное — усилило охлаждение и еще больше снизило и без того слабое парообразование. Одновременно уровень воды в барабанах-сепараторах опустился до аварийной отметки. Работа блока стала крайне неустойчивой.

Оказались затронутыми и ядерные процессы в реакторе. Дело в том, что коэффициент размножения нейтронов в РБМК зависит от соотношения объемов воды и пара в его каналах: чем больше доля пара, тем выше реактивность. Иначе говоря, паровой коэффициент реактивности РБМК (составная часть общего мощностного коэффициента реактивности) положителен, то есть возможна положительная обратная связь: если реакция усиливается, в каналах может образоваться больше пара, отчего коэффициент размножения нейтронов увеличится, реакция вновь усилится и т. д. Правда, пока процесс шел в противоположном направлении: пара становилось меньше, и реактивность падала, так что стержни автоматического регулирования еще приподнялись.

До саморазгона оставались уже считанные минуты.

1 ч. 19 мин. Поскольку уровень воды в барабанах-сепараторах был опасно низким, оператор увеличил подачу питательной воды (конденсата). Одновременно персонал заблокировал сигналы аварийной остановки реактора по недостаточному уровню воды и давлению пара. Такое отступление от регламента эксплуатации программой испытаний не предусматривалось.

1 ч. 19 мин. 30 с. Уровень воды в сепараторах начал расти. Однако теперь из-за притока относительно холодной питательной воды в активную зону парообразование там практически прекратилось.

Это приблизило опасность вплотную. При отсутствии пара в каналах РБМК цепная реакция становится очень чувствительной к тепловым возмущениям: ведь в этих условиях увеличение содержания пара в теплоносителе на 1% по массе вызывает прирост объема пара на 20%; это соотношение во много раз больше, чем при обычной доле пара в каналах (14%). Значит, создается ситуация, когда вклад положительного парового коэффициента реактивности в общий мощностной коэффициент может стать настолько большим, что начнется саморазгон.

Между тем стержни автоматического регулирования, препятствуя снижению мощности, окончательно вышли из активной зоны, а так как и этого оказалось мало, оператор поднял выше и стержни ручного регулирования. Все это недопустимо снизило оперативный запас реактивности, то есть долю стержней, опущенных в зону.

Когда конец стержня находится вблизи границы активной зоны (внизу или вверху), его окружает меньший объем топлива, а следовательно, его движение слабей влияет на цепную реакцию. Реактор хорошо откликается на перемещение стержней, лишь когда их концы близки к центру зоны. Значит, при полностью поднятых стержнях заглушить реакцию быстро не удастся: ведь высота активной зоны РБМК-1000 — 7 м, а скорость введения стержней — 40 см/с. Вот почему так важно оставлять в зоне достаточное количество полуопущенных стержней.

1 ч. 19 мин. 58 с. Давление продолжало падать, и автоматически закрылось устройство, через которое излишки пара раньше стравливались в конденсатор. Это несколько замедлило падение давления, но не остановило его.

Теперь счет пошел на секунды.

1 ч. 21 мин. 50 с. Уровень воды в барабанах-сепараторах значительно повысился. Поскольку это было достигнуто за счет четырехкратного увеличения расхода питательной воды, оператор теперь резко сократил ее подачу.

1 ч. 22 мин. 10 с. В контур стало поступать меньше недогретой воды, и кипение немного усилилось, а уровень в сепараторах стабилизировался. Разумеется, при этом несколько возросла реактивность ρ, но стержни автоматического регулирования, слегка опустившись, тут же скомпенсировали этот рост.

1 ч. 22 мин. 45 с. Расход питательной воды и содержание пара в каналах наконец выровнялись, а давление начало медленно расти. Реактор, казалось, возвращался в стабильный режим, и было решено начать эксперимент.

1 ч. 23 мин. 04 с. Перекрыта подача пара на турбогенератор № 8. При этом, опять же в нарушение программы и регламента, был заблокирован сигнал аварийной остановки реактора при отключении обеих турбин3. Почему? Очевидно, персонал хотел в случае необходимости повторить испытания (если бы реактор заглушили, это бы не удалось).

Трагическая эстафета причин и следствий вышла на финишную прямую.

1 ч. 23 мин. 30 с. Кипение усилилось, количество пара в активной зоне возросло — и вот реактивность и мощность стали постепенно повышаться. Все три группы стержней автоматического регулирования пошли вниз, но не смогли стабилизировать реакцию; мощность продолжала медленно нарастать.

1 ч. 23 мин. 40 с. Начальник смены дал команду нажать кнопку АЗ-5 — сигнал максимальной аварийной защиты, по которому в зону немедленно вводятся все стержни-поглотители.

Это было последней попыткой предотвратить аварию, последним действием персонала до взрыва и — последней из множества причин, вызвавших этот взрыв.

Произошел почти мгновенный скачок мощности и парообразования. Стержни остановились, пройдя лишь два-три метра. Оператор отключил удерживающие муфты, чтобы стержни упали под действием собственной тяжести. Но они уже не шевелились.

1 ч. 23 мин. 43 с. Стал положительным общий мощностной коэффициент реактивности. Начался саморазгон. Мощность достигла 530 МВт и продолжала катастрофически расти: коэффициент размножения на мгновенных нейтронах превысил единицу. Сработали две системы автоматической защиты — по уровню мощности и по скорости ее роста, но это ничего не изменило, так как сигнал АЗ-5, который посылает каждая из них, уже был дан оператором.

1 ч. 23 мин. 44 с. Мощность цепной реакции в 100 раз превысила номинальную. За доли секунды твэлы раскалились, частицы топлива, разорвав циркониевые оболочки, разлетелись и застряли в графите. Давление в каналах многократно возросло, и, вместо того чтобы втекать (снизу) в активную зону, вода начала вытекать из нее.

Это и был момент первого взрыва.

Реактор перестал существовать как управляемая система, Давление пара разрушило часть каналов и ведущие от них паропроводы над реактором. Давление упало, вода вновь потекла по контуру охлаждения, но теперь она поступала не только к твэлам, но и к графитовой кладке.

Начались химические реакции воды и пара с нагретым графитом и цирконием, в ходе которых образуются горючие газы — водород и окись углерода, а также, возможно, реакции циркония с двуокисью урана и графитом, реакция ядерного топлива с водой. Из-за бурного выделения газов давление вновь подскочило. Накрывавшая зону металлическая плита массой более 1000 т приподнялась. Разрушились все каналы и оборвались уцелевшие трубопроводы над плитой.

1 ч. 23 мин. 46 с. Воздух устремился в активную зону, и раздался новый взрыв, как считают, в результате образования смесей кислорода с водородом и окисью углерода. Разрушилось перекрытие реакторного зала, около четверти графита и часть топлива были выброшены наружу. В этот момент цепная реакция прекратилась. Горячие обломки упали на крышу машинного зала и в другие места, образовав более 30 очагов пожара.

1 ч. 30 мин. По сигналу тревоги на место аварии выехали пожарные части из Припяти и Чернобыля. Началась вторая глава чернобыльской трагедии.

КАКОЙ ЖЕ БЫЛ ВЗРЫВ?

Остановимся и переведем дух. Теперь, когда нам известна суть происходившего на 4-м блоке в роковую ночь, можно попытаться обоснованно ответить на многие открытые вопросы. Начнем с наивного на первый взгляд вопроса, который часто ставился в разговорах, но никогда не поднимался в прессе: какой же был взрыв?

Взрывы обычно классифицируют по двум признакам: по природе самой запасенной энергии, и по механизму ее быстрого высвобождения.

По природе запасенной энергии можно насчитать столько типов взрывов, сколько существует видов и форм энергии. Взрыв баллона с газом при появлении трещины в оболочке, взрыв метеорита при столкновении с планетой, взрыв проводника при протекании мощного импульса тока — все это взрывы за счет энергии физических процессов. При химических взрывах выделяется энергия межатомных связей. Если же высвобождается энергия атомного ядра, взрыв нельзя назвать иначе, чем ядерным.

По механизму высвобождения энергии взрывы делятся на тепловые и цепные. Первые происходят при наличии положительной обратной связи: чем больше выделяется энергии, тем выше температура, а чем она выше, тем больше выделяется энергии (как, например, при горении). Цепные взрывы осуществляются в системах, где энергия высвобождается в элементарных актах, каждый из которых инициирует несколько новых, но не через повышение температуры, а непосредственно, как нейтроны при делении урана или активные радикалы в цепных химических реакциях.

Во всех официальных документах взрыв на ЧАЭС называют тепловым. Однако это относится к механизму. А по природе энергий? По этому критерию он ядерный, ибо при разгоне реактора в первую очередь выделилась именно энергия деления ядер урана.

Впрочем, и с механизмом вопрос сложный. Начался взрыв, конечно, как тепловой: система охлаждения на справлялась с отводом тепла, содержание пара увеличивалось, и мощность реактора росла. Но положительная обратная связь замыкается здесь через цепной процесс деления урана, а уж когда реактор стал критичным на мгновенных нейтронах, вспыхнувшая в нем реакция по своей физической сущности мало чем отличалась от процессов в атомной бомбе.

Выходит, взрыв действительно ядерный? Но ведь взрывов было два, и последующий, самый мощный и разрушительный — типично химический. Кроме того, все мы знаем, что ядерный взрыв отличают четыре поражающих фактора: ударная волна, проникающая радиация (гамма-кванты и нейтроны), световое излучение и радиоактивное заражение. Ударной волны и светового излучения в Чернобыле не было, проникающая радиация и радиоактивное заражение были. Что же — назвать взрыв полуядерным?

С другой стороны, в атомной бомбе радиоактивные осколки рождаются непосредственно в момент взрыва, в Чернобыле же рассеялись радионуклиды, накопившиеся за многие месяцы. Поэтому, хотя энергия механических разрушений не составила и стотысячной доли хиросимских, по заражению долгоживущими радионуклидами чернобыльская авария эквивалентна взрыву 200—300 бомб, сброшенных на Хиросиму.

Опасность при аварии на АЭС связана не с грандиозным ядерным взрывом и огромными разрушениями, а с утечкой радионуклидов и загрязнением местности вокруг нее. Это и само по себе достаточно серьезная угроза.

ИЗ БИОГРАФИИ РБМК

Но почему реакторы типа РБМК получили такое распространение в нашей стране?

Прежде всего, уран-графитовые системы с водяным охлаждением — самые простые и технологически доступные (поэтому на них и делалась ставка при разработке атомного оружия). Первые реакторы — и у Ферми, и у Курчатова — имели именно такую структуру. Эта схема использовалась на Первой (Обнинской) АЭС, она же сохранилась на Белоярской и Сибирской АЭС, а затем привела к появлению РБМК-1000. Однако со временем устройства такого типа постепенно вытеснялись другими. За рубежом сохранился только один подобный реактор на старейшем американском заводе по производству плутония в Ханфорде, но его паровой коэффициент реактивности отрицателен, а не положителен.

Говорят, что недостатки — почти всегда продолжение достоинств. Отсутствие единого корпуса — это одновременно отсутствие дополнительного барьера на пути выброса радионуклидов при аварии. Вдобавок гигантские размеры РБМК исключают строительство контейнмента — внешней защитной оболочки, без которой сейчас в мире не сооружается практически ни один мощный реактор. Физические особенности конструкции РБМК позволяют использовать в нем менее обогащенное топливо (в частности, полученное после регенерации отработавших твэлов ВВЭР). Зато в силу опять-таки физических особенностей конструкции эксплуатационные выбросы радиоактивных благородных газов у РБМК чуть ли не в 40 раз выше, чем у ВВЭР.

ИЗЛЕЧИМ ЛИ СИНДРОМ ЧЕРНОБЫЛЯ?

Кстати, на журналистах, прославлявших достижения атомной энергетики, не удосужившись разобраться в ее проблемах, лежит своя доля вины за происшедшее. Если бы подобными статьями не было сформировано всеобщее убеждение в абсолютной безопасности АЭС, если бы население оказалось психологически подготовлено к возможности экстремальных ситуаций, можно было бы сообщить жителям Припяти о происходящем в первые же часы и дать им необходимые рекомендации, не опасаясь вызвать панику. Тем важнее сделать выводы теперь. Однако сменить плюс на минус — еще не значит объективно разобраться, и поток публикаций, отвергающих атомную энергетику не менее размашисто и дружно, чем ее недавно хвалили, показывает, что Чернобыль научил профессионализму и беспристрастности далеко не всех.

2Для удобства управления при работе на номинальной мощности реактор разделен на 12 независимых зон, в каждой из которых система локального автоматического регулирования (ЛАР) поддерживает нужную интенсивность цепной реакции. Для этого в каждой зоне есть 3 группы поглощающих стержней, по 4 стержня в каждой. Одна из них используется при регулировании на низких уровнях мощности. Из двух оставшихся групп одна (по выбору) применяется для регулирования в диапазонах средней и номинальной мощностей.

Трагедия на Чернобыльской АЭС случившаяся 20 лет назад, сильно подорвала доверие к атомной энергетике. Это был самый мощный выброс радиоактивных веществ в окружающую среду — гигантское смертоносное облако прошло над российскими, украинскими, белорусскими территориями, коснувшись и других стран. Главная версия относительно причин катастрофы свелась не к просчетам конструкторов — их не было, — а к халатности сотрудников АЭС. Это они, грубо нарушив правила эксплуатации реактора, вызвали в нем неуправляемую цепную реакцию.

В ночь на 26 апреля 1986 года двенадцать сотрудников, заступивших на дежурство за пульт управления 4-го блока Чернобыльской атомной электростанции (ЧАЭС), готовились к проведению ответственного эксперимента. Чтобы испытать новое устройство в аппаратуре управления выработкой электроэнергии, им предстояло смоделировать аварийную остановку турбины. Оборудование современных атомных станций тоже нуждается в электричестве, но при заглушении реактора и отключении внешней сети взять эту энергию было бы неоткуда, не будь на станции дизельгенераторов. Если во внешней сети происходит сбой, станция в первые минуты питается от аккумуляторов. Они дороги и громоздки, занимают целые залы и повышают себестоимость энергии. Строительство АЭС обходилось бы дешевле, если бы вместо аккумуляторов для питания станции, пока запускают дизели, можно было использовать кинетическую энергию раскрученных паровых турбин. На ЧАЭС уже проводились эксперименты с этой целью, но отказаться от аккумуляторов пока никак не удавалось.

В 00 часов 28 минут операторы приступили к снижению тепловой мощности реактора. Но, видно, в системе управления что-то не заладилось, и вместо запланированных 700 МВт мощность реактора упала до 30. Судя по показаниям самописца, в течение 5 минут мощность нейтронного потока сошла на нет и цепная реакция прекратилась. Реактор фактически встал. Короткоживущие изотопы, активно поглощающие нейтроны, начали отравлять его рабочую зону.

Чернобыльский РБМК-1000
Реактор размещается в бетонной шахте размером 24х24 м и представляет собой цилиндр диаметром 14 м и высотой более 20 м, сложенный из графитовых колонн. Каждая колонна имеет центральное отверстие, пронизывающее ее насквозь. В отверстия вставлены трубы технологических каналов диаметром 80 мм, где размещаются урановые сборки, двигаются стержни-поглотители и под давлением 65 атмосфер течет вода, отводящая тепло. Эти трубы сделаны из циркония, графитовая кладка герметично закрыта кожухом, а вокруг нее по бокам, сверху и снизу располагаются баки с водяной биологической защитой. Рабочая температура воды на входе технологических каналов составляет 210°С, на выходе — 284°С. Из каналов пароводяная смесь поступает в барабан-сепараторы, в которых от воды ежечасно отделяется 5 000 т сухого пара и направляется на лопатки двух паровых турбин мощностью по 500 МВт.

Чтобы в активной зоне реактора типа РБМК-1000 шла контролируемая цепная реакция, в системе управления используются 211 стержней, регулирующих коэффициент размножения нейтронов по всему объему активной зоны. При необходимости они автоматически передвигаются внутри нее вверх-вниз, поддерживая этот коэффициент близким к 1 локально и по всей зоне.

Так реактор РБМК-1000 работает в нормальном режиме. Если его работа дает сбой, автоматически включаются системы, обеспечивающие возвращение нужного параметра к рабочей норме или снижение тепловой мощности реактора вплоть до полной его остановки без повреждения активной зоны.

Общий вид 4-го блока Чернобыльской АЭС. Высокая труба над зданием предназначена для удаления газообразных отходов, возникающих при работе реактора

1— реактор
2— технологические каналы
3— пароводяные коммуникации
4— барабан-сепаратор
5— паровые коллекторы
6— трубопроводы, по которым остывшая вода возвращается в реактор
7— насосы, обеспечивающие циркуляцию воды
8— раздаточные коллекторы
9— водяные коммуникации
10 — система контроля герметичности оболочек урановых топливных элементов
11 — верхний слой защиты
12 — боковая зашита
13 — нижний слой защиты
14 — бассейн для выдержки рабочих стержней
15 — загрузочная машина
16 — мостовой кран

Однако было поздно

Поскольку автоматическую систему аварийной остановки реактора отключили еще раньше, цепная реакция вышла из-под контроля. Это произошло, скорее всего, на высоте 1,5— 2,5 м от основания реактора. Неконтролируемое расщепление ядер вызвало перегрев охлаждающей воды. Циркониевые трубы не выдержали давления смеси воды и пара, некоторые из них взорвались. Оказавшись внутри реактора, вода превратилась в сжатый пар. Стремительно расширяясь, этот пар приподнял крышку реактора, которая весила 2 500 тонн. Двигаясь вверх, крышка последовательно разорвала оставшиеся технологические каналы. Теперь уже многие тонны перегретой воды обратились в пар, и сила его давления подкинула крышку на 10—14 м. В эту дыру ринулась смесь пара, обломков кладки, ядерного топлива, технологических каналов и других конструкционных элементов. Крышка перевернулась в воздухе и упала обратно ребром, раздавив верхнюю часть активной зоны и вызвав дополнительный выброс радиоактивных веществ.

Это и был первый, относительно слабый взрыв, описанный очевидцами. Активная зона реактора была разрушена сжатым паром. Так взрывается, например, паровой котел.

Сейсмические приборы на трех сейсмостанциях в 100—180 км от места событий зарегистрировали только второй взрыв. Он имел магнитуду 2,5 балла по шкале Рихтера и мощность, эквивалентную взрыву 10 тонн тротила.

Кто виноват?
До 2001 года существовали две научно обоснованные версии чернобыльской катастрофы. Одна из них отражена в известном докладе, представленном СССР в МАГАТЭ в 1986-м. В нем отмечается, что дежурный персонал 6 раз грубо нарушил правила эксплуатации реактора, привел его в неуправляемое состояние и отключил почти все средства аварийной защиты. Реактор пошел в разгон и взорвался. Из материалов следовало, что серьезных претензий к конструкции реактора нет и что во всем виноват дежурный персонал.

В 1991-м комиссия, образованная Госатомнадзором, связала причины чернобыльской аварии с наличием на концах управляющих стержней длинных графитовых вытеснителей воды. Они поглощают нейтроны хуже, чем вода, поэтому их ввод в активную зону после нажатия кнопки АЗ-5 окончательно лишил реактор управления. Виновниками катастрофы были названы создатели реактора. При этом исходным событием в обеих официальных версиях считается нажатие кнопки АЗ-5, которое вызвало движение стержней вниз и привело к взрыву.

Первый взрыв — тепловой— уничтожил реактор и запустил процессы, приведшие к образованию взрывоопасной газовой смеси

Второй взрыв — смеси водорода с воздухом — разрушил здание 4-го блока

Схема разрушенного реактора
1 — крышка реактора
2 — элементы боковой водяной защиты
3 — нижняя биологическая защита
4 — барабан-сепаратор
5 — бассейн-барботер
6 — бассейн выдержки отработанного топлива

Взрыв гремучей смеси

В разрушенной активной зоне начались химические процессы. В результате пароциркониевой реакции за несколько секунд образовалось до 5 000 м3 водорода. Когда крышка реактора взлетела в воздух, газовая масса вырвалась из шахты в центральный зал. Легковоспламеняющаяся смесь из воздуха и водорода не могла не взорваться от случайной искры или от контакта с раскаленным графитом. Этот второй мощный взрыв разрушил центральный зал и другие помещения 4-го блока.

Между тем внутри 4-го блока уже поняли, что произошла крупная авария, но не представляли ее истинных масштабов. Руководитель испытаний отправил в центральный зал двух стажеров — посмотреть состояние реактора. Оба получили смертельные дозы, а вернувшись, сообщили, что тот разрушен. Дежурные бросились измерять уровни радиации в рабочих помещениях. Приборы зашкаливали.

Взрывы выбросили наружу газы, аэрозоли и пыль, образовавшиеся в активной зоне. Взмыв на высоту до 6 км, они были подхвачены ветром. Гигантское радиоактивное облако понеслось на северо-запад. Наиболее тяжелые частицы выпали в прилегающих к ЧАЭС районах, а легкие понеслись через Белоруссию, Польшу и Балтийское море в Скандинавские страны, оставляя на земле широкий след радиоактивных осадков. Когда ветер сменил направление, оставшуюся часть выброса широким фронтом понесло через Финляндию на Ленинградскую область и далее на Москву. 27 апреля смертоносное облако, сильно поредевшее, окончательно рассеялось в атмосфере, не долетев до столицы 400 км. Это был первый и самый мощный выброс радиоактивных веществ в окружающую среду.

Ядерный водопад

В разрушенном реакторе образовалась раскаленная смесь из диоксида урана, графита, циркония, воды и других частей активной зоны. В этой массе начались химические реакции, горение графита. Когда разгорается последний, температура среды достигает 2 500—3 000°С, плавится все вокруг, а такие компоненты, как радиоактивный цезий, испаряются в течение нескольких секунд. Радиоактивный распад продуктов деления в ядерном топливе еще сильнее разогревает среду.

Ликвидация в свинцовых рукавицах


Авария на Чернобыльской АЭС произошла 26 апреля 1986 года. Катастрофа поставила под угрозу развитие ядерной энергетики во всем мире. Вокруг станции была создана 30-километровая зона отчуждения. Радиоактивные осадки выпадали даже в Ленинградской области, а изотопы цезия обнаруживали в повышенных концентрациях в лишайнике и мясе оленей в арктических областях России.

В радиоактивный пепел США оказались на грани ядерной катастрофы

Существуют различные версии причин катастрофы. Чаще всего указывают на неправильные действия персонала ЧАЭС, повлекшие за собой возгорание водорода и разрушение реактора. Однако некоторые ученые полагают, что произошел настоящий ядерный взрыв.

Кипящий ад

В атомном реакторе поддерживается цепная ядерная реакция. Ядро тяжелого атома, например, урана, сталкивается с нейтроном, становится нестабильным и распадается на два более мелких ядра — продукты распада. В процессе деления выделяется энергия и два-три быстрых свободных нейтрона, которые в свою очередь вызывают распад других ядер урана в ядерном топливе. Количество распадов, таким образом, увеличивается в геометрической прогрессии, однако цепная реакция внутри реактора находится под контролем, что предотвращает ядерный взрыв.

В тепловых ядерных реакторах быстрые нейтроны не годятся для возбуждения тяжелых атомов, поэтому их кинетическую энергию уменьшают с помощью замедлителя. Медленные нейтроны, именуемые тепловыми, с большей вероятностью вызывают распад атомов урана-235, используемого в качестве топлива. В таких случаях говорят о высоком сечении взаимодействия ядер урана с нейтронами. Сами тепловые нейтроны называются так, поскольку находятся в термодинамическом равновесии с окружающей средой.

Сердцем Чернобыльской АЭС был реактор РБМК-1000 (реактор большой мощности канальный мощностью 1000 мегаватт). По сути, это графитовый цилиндр с множеством отверстий (каналов). Графит выполняет роль замедлителя, а через технологические каналы загружается ядерное топливо в тепловыделяющих элементах (ТВЭЛах). ТВЭЛы сделаны из циркония, металла с очень маленьким сечением захвата нейтронов. Они пропускают нейтроны и тепло, которое нагревает теплоноситель, препятствуя утечке продуктов распада. ТВЭЛы могут объединяться в тепловыделяющие сборки (ТВС). Тепловыделяющие элементы характерны для гетерогенных ядерных реакторов, в которых замедлитель отделен от горючего.

РБМК — одноконтурный реактор. В качестве теплоносителя используется вода, которая частично превращается в пар. Пароводяная смесь поступает в сепараторы, где пар отделяется от воды и направляется на турбогенераторы. Отработанный пар конденсируется и вновь поступает в реактор.

Крышка реактора РБМК

Крышка реактора РБМК

В конструкции РБМК имелся недостаток, сыгравший роковую роль в катастрофе на Чернобыльской АЭС. Дело в том, что расстояние между каналами было слишком большим и слишком много быстрых нейтронов тормозилось графитом, превращаясь в тепловые нейтроны. Они хорошо поглощаются водой, но там постоянно образуются пузырьки пара, что снижает абсорбционные характеристики теплоносителя. В результате повышается реактивность, вода еще сильнее нагревается. То есть РБМК отличается достаточно высоким паровым коэффициентом реактивности, что осложняет контроль за протеканием ядерной реакции. Реактор должен оснащаться дополнительными системами безопасности, работать на нем должен только высококвалифицированный персонал.

Наломали дров

Схема реактора ЧАЭС

Схема реактора ЧАЭС

Ввод дополнительных насосов усилил нагрузку на выбегающий турбогенератор, что снизило объемы воды, поступающей в активную зону реактора. Вместе с высоким паровым коэффициентом реактивности это быстро увеличило мощность реактора. Попытка внедрения поглощающих стержней из-за их неудачной конструкции лишь усугубила ситуацию. Всего лишь через 43 секунды после начала эксперимента реактор разрушился в результате одного-двух мощных взрывов.

Концы в воду

Очевидцы утверждают, что четвертый энергоблок АЭС был разрушен двумя взрывами: второй, самый мощный, случился через несколько секунд после первого. Считается, что аварийная ситуация возникла из-за разрыва труб в системе охлаждения, вызванного быстрым испарением воды. Вода или пар вступили в реакцию с цирконием в тепловыделяющих элементах, что привело к образованию большого количества водорода и его взрыву.

Шведские ученые полагают, что к взрывам, один из которых был ядерным, привели два различных механизма. Во-первых, высокий паровой коэффициент реактивности способствовал увеличению объема перегретого пара внутри реактора. В результате реактор лопнул, и его 2000-тонная верхняя крышка взлетела на несколько десятков метров. Поскольку к ней были прикреплены тепловыделяющие элементы, возникла первичная утечка ядерного топлива.

Разрушенный 4-й энергоблок ЧАЭС

Разрушенный 4-й энергоблок ЧАЭС

Впервые о ядерной природе взрыва специалисты заговорили еще в 1986 году. Тогда ученые из Радиевого института Хлопина провели анализ фракций благородных газов, полученных на череповецкой фабрике, где производились жидкий азот и кислород. Череповец находится в тысяче километров к северу от Чернобыля, и радиоактивное облако прошло над городом 29 апреля. Советские исследователи выявили, что соотношение активностей изотопов 133 Xe и 133m Xe равнялось 44,5 ± 5,5. Эти изотопы — короткоживущие продукты ядерного распада, что указывает на слабый ядерный взрыв.

Шведские ученые рассчитали, сколько ксенона образовалось в реакторе до взрыва, во время взрыва, и как менялись соотношения радиоактивных изотопов вплоть до их выпадения в Череповце. Оказалось, что наблюдавшееся на заводе соотношение реактивностей могло возникнуть в случае ядерного взрыва мощностью 75 тонн в тротиловом эквиваленте. Согласно анализу метеорологических условий на период 25 апреля — 5 мая 1986 года, изотопы ксенона поднялись на высоту до трех километров, что предотвратило его смешение с тем ксеноном, который образовался в реакторе еще до аварии.

Читайте также: