Ультразвуковая резка и очистка поверхностей материалов ультразвуковая сварка и пайка кратко

Обновлено: 02.07.2024

На момент написания этой статьи пандемия CoVID-19 привела к дефициту защитных масок во всем мире. В рамках борьбы с коронавирусом SARS-CoV-2 некоторые компании меняют привычное производство и начинают изготавливать средства индивидуальной защиты (СИЗ). Так, в марте текущего года в Китае на первом месте по производству защитных масок лидировала компания Foxconn. Так как коронавирус теперь бушует в Европе, России, США и многих других странах мира, крупнейшие мировые компании идут по стопам Foxconn, но далеко не все выдерживают. Так, итальянская фирма Miroglio, специализирующаяся на производстве готовой одежды и тканей, недавно объявила о прекращении производства масок. А вот немецкая компания Weber Ultrasonics, которая занимается разработкой компонентов для ультразвуковой сварки, не производит маски, однако их технология имеет решающее значение для производителей СИЗ по всему миру. Именно по этой причине на технологию ультразвуковой сварки сегодня обращено пристальное внимание. Из этой статьи вы узнаете, что это за технология и как она работает.


Сегодня найти отрасли производства, в которых не применяется ультразвуковая сварка довольно трудно

Что такое ультразвук?

Ультразвук – это звуковые волны, которые перемещаются в пространстве подобно фотонам света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвуку для распространения требуется упругая среда, например газ, жидкость или твердое тело. Примечательно, что человеческое ухо воспринимает ограниченную частоту звуковых волн, а под ультразвуком ученые понимают частоты выше 20 000 герц. Несмотря на то, что о существовании ультразвуковых волн известно с 1883 года, его практическое использование началось не так давно. Так, в 2020 году технологии с использованием ультразвука применяются практически повсеместно. А в дикой природе ультразвуковые волны помогают обнаружить препятствия, ориентироваться в пространстве и общаться дельфинам, летучим мышам, китам, долгопятам и грызунам. Также ультразвуковые волны встречаются в качестве компонентов естественных шумов, например в шуме дождя, ветра, водопада и в звуках, которые сопровождают грозовые разряды и.т.д.

Ультразвуковая сварка – это технология с помощью которой соединяют ткани (без ниток и клея) и многие другие материалы, включая пластик и металл.

Для чего нужна ультразвуковая сварка?

Несмотря на то, что до пандемии коронавируса об этом мало кто задумывался, но технология ультразвуковой сварки довольно давно применяется для изготовления гигиенических и медицинских изделий из полипропилена – материала на основе нетканых материалов. Так, немецкая компания Weber Ultrasonics защитные маски еще не производит, а вот их ультразвуковые сварочные системы имеют решающее значение для производителей масок. Преимущественно, что так было и до вспышки CoVID-19, однако с начала пандемии компания столкнулась с растущим спросом на компоненты для ультразвуковой сварки. Об этом сообщает Кристиан Унсер, главный коммерческий директор компании Weber Ultrasonics:

Во всем мире экономическая ситуация сегодня критическая, но у таких компаний, как наша, дела идут хорошо. Мы уже работаем с производителями масок и многие из них обращаются к нам, чтобы приобрести ультразвуковые компоненты, такие как генераторы, ускорители и преобразователи и др.

Так что же представляет собой этот ультразвуковой процесс? При всей кажущейся сложности, ультразвуковая сварка на самом деле простой процесс. Источником энергии являются ультразвуковые колебания, которые воздействуют на соединяемые детали. В нашем случае ткани – собранные вместе под небольшим давлением. По мимо тканей это могут быть любые другие материалы.

Если не вдаваться в подробности, то через две части материала, которые нужно сварить между собой, пропускается высокочастотные звуковые волны (ультразвук). Они нагревают материал и и за счет своего колебания создают трение между деталями. Таким образом обе части как бы проникают друг в друга и свариваются между собой. А чтобы было еще проще, представьте себе две зефирки, которые вы слегка нагрели на плите и соединили между собой. Тут принцип такой же, только нагревание и трение достигается за счет ультразвуковых волн.

Две детали кладут друг на друга, надавливают и плотно прижимают, затем пропускают через них ультразвук, немного ждут и все готово.

Сварка, ламинирование, резка и тиснение нетканых и рулонных материалов с помощью ультразвука дарит многочисленные преимущества по сравнению с другими способами склейки. Но какие и почему?

Чтобы всегда быть в курсе новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Google News

Преимущества ультразвуковой сварки


Ультразвуковая сварка возможна в труднодоступных местах, а
отсутствие вредных выделений делает этот процесс безопасным для здоровья

На нашем канале в Яндекс.Дзен можно найти материалы, которые не публикуются на сайте. Подписывайтесь, чтобы не пропустить ничего интересного!

Ультразвуковая обработка — обработка материалов (изделий) или веществ действием ультразвука (обычно с частотой 15-50 кГц) в технологических процессах.

Ультразвуковой обработке подвергают жидкие, газообразные и твердые среды для ускорения в них массо- и теплообмена, химических реакций, разрушения, уплотнения и коагуляции и тому подобное. В частности, ультразвук используется для интенсификации процессов диспергирования реагентов, разделенные тонких шламовых частиц, тушение флотационных пен, очистки поверхностей минеральных частиц, классификации технологических суспензий, фильтрации промышленных жидкостей и сточных вод, получения аэрозолей, очистки газов от твердых частиц, сушки сыпучих материалов, повышения производительности бурение и резки горных пород и т.

Предпосылки применения ультразвука

Акустика, как раздел физики, изучающий теоретические аспекты ультразвука получила значительное развитие уже в XIX веке. Основы теории колебаний и нелинейной акустики были разработаны Дж. В.Релеем. Дальнейшее исследование ультразвуковых колебаний стало возможным после открытия эффекта магнетострикции (Дж. П.Джоулем) и пьезоэлектричества (П. Кюри).

Источниками ультразвуковых колебаний, используемых при обработке, служат газ и гидроструйные излучатели, динамические сирены, электромеханические, пьезоэлектрические и магнитострикционные преобразователи.

Технологии обработки на базе ультразвука

С помощью ультразвука осуществляют следующие технологические операции (список не является исчерпывающим).

Ультразвуковая упрочняюще-финишная обработка (УЗУФО)

Ультразвуковая упрочняюще-финишная обработка осуществляется путём прижатия колеблющегося торца излучателя-индентора к поверхности обрабатываемого изделия, совершающего вращательное или возвратно-поступательное движение и сканирования, таким образом, по всей поверхности, которую необходимо обработать.
Назначение
Финишная обработка наружных, внутренних, торцевых, плоских и фасонных поверхностей.
Область применения
Применяется практически во всех отраслях промышленности и ремонтных мастерских, использующих металлообрабатывающее оборудование.
Преимущества
Получение высокого класса чистоты (10-12 класс), упрочненного поверхностного слоя, снятие остаточных внутренних растягивающих напряжений, формирование сжимающих напряжений.
Износостойкость деталей, обработанных методом УЗУФО, в два-три раза выше, чем после шлифования.


Ультразвуковое нарезание и накатывание
наружной и внутренней резьбы (УЗНР)

УЗ нарезание наружной резьбы резцом

УЗ нарезание внутренней резьбы метчиком

УЗ накатывание внутренней резьбы метчиком

При УЗНР на инструмент подаются колебания ультразвуковой частоты различной амплитуды, что снижает усилие, необходимое для проведения технологической операции.

Область применения

Практически во всех областях промышленности.
Преимущества
Получение резьбы более высокого качества и с меньшими энергозатратами по сравнению с традиционным способом.

Ультразвуковое волочение

При ультразвуковом волочении, выдавливании и штамповке механические колебания накладываются на инструмент, что в значительной степени снижает механическое усилие, необходимое для проведения технологического процесса.
Назначение
Волочение проволоки, трубки.
Область применения
Сталепрокатные заводы, ювелирная промышленность и т. д.
Преимущества
Получение продукции высокого качества за меньшее число проходов; повышение износостойкости инструмента.

Ультразвуковая сварка

Ультразвуковая сварка (УЗС) — это способ создания неразъёмных соединений с помощью энергии, выделяющейся в зоне контакта свариваемых деталей, при прохождении через последнюю ультразвуковых механических колебаний.
Основным преимуществом ультразвуковой сварки металлов является узкая направленность теплового воздействия, и как следствие отсутствие деформации и напряжения, стабильность результата сварки. Кроме того, отсутствует тепловое и световое излучение при сварке, металл не доводится до расплавленного состояния. Ультразвук позволяет сваривать однородные и разнородные металлы различной толщины без подготовки поверхности. Например: пластинку из меди толщиной в несколько мкм приварить к детали из стали толщиной в несколько сотен или тысяч мм., что очень сложно сделать c помощью традиционной сварки.

Процесс ультразвуковой сварки осуществляется без расплавления свариваемых материалов.
Сваривают металлы толщиной, мм., не более:
алюминий – 3; медь – 2; сталь – 1,3; латунь – 1; молибден, кобальт, тантал, вольфрам, бериллий – 0,5 мм.

Назначение
Точечная и шовная сварка тонких элементов к деталям любой толщины.
Область применения
Электротехническая, электронная, приборостроительная, авиационная промышленность и др.
Преимущества
Сварка, микросварка однородных и разнородных металлов без предварительной подготовки поверхности; отсутствие сварочных напряжений.

Ультразвуковая ударная обработка

Среди методов, реально позволяющих повысить качество, надежность и ресурс сварных конструкций следует выделить ультразвуковую ударную обработку.

Назначение
Обработка сварного шва ответственных деталей; упрочнение деталей двигателей и автомобилей, оснастки и инструмента; удаление заусенцев на деталях после механообработки.
Область применения
Газо- и нефтетрубопроводы, металлоконструкции; автомобилестроение, машиностроение, мостостроение, судостроение и т.д.
Преимущества
Происходит снятие растягивающих напряжений и формирование сжимающих. Повышает долговечность изделий и конструкций .

Ультразвуковая обработка связаным и свободным образивом (размерная обработка)

Повышение качества выпускаемых промышленно­стью машин и оборудования зачастую связано с при­менением деталей из твердых и хрупких материалов, труднообрабатываемых традиционными способами формообразования, такими, как резание, литье, штам­повка и т. п.
Одним из наиболее эффективных технологичес­ких процессов является ультразвуковая размерная об­работка (УЗРО). Сущность УЗРО состоит в следую­щем. Обрабатываемая деталь устанавливается на тех­нологическом столе напротив выходного торца инструмента. Между инструментом и обрабатывае­мой поверхностью детали вводят абразивную сус­пензию. Инструмент с ультразвуковой частотой уда­ряет по зернам абразива, которые, в свою очередь, воздействуют на поверхность обрабатываемого из­делия и посредством скалывания разрушают поверх­ность последнего в зоне обработки. Разрушение и удаление материала производятся очень большим ко­личеством направленных микроударов. По мере воз­действия на обрабатываемый материал инструмент все больше углубляется в деталь. Таким образом, про­исходит копирование объемной формы инструмента в обрабатываемое изделие. Основными параметра­ми УЗРО являются производительность, качество об­рабатываемой поверхности и точность обработки.
При проектировании станков для размерной об­работки целесообразно стремиться к получению наибольшей амплитуды механических колебаний, что предъявляет особые требования к УЗГ, прочностным характеристикам инструмента и преобразователя. Это связано с тем, что при УЗРО колебательная си­стема (КС) работает в непрерывном режиме, близ­ком к режиму холостого хода, и большая часть под­водимой к ней мощности является мощностью по­терь на ее элементах.

Назначение

Обработка изделий из металла и металлокерамики, изготовление различных прессформ и инструментов.

Область применения

Ювелирное дело, электронная промышленность, машиностроение.

Преимущества

По сравнению с традиционными методами позволяет
производить объемную выборку материала сложных конфигураций с высокой чистотой поверхности, что невозможно выполнить другими способами
снизить себестоимость работы за счет отказа в применении дорогостоящих алмазных инструментов.

Ультразвуковая пайка

Кавитация, обусловленная мощными ультразвуковыми волнами в металлических расплавах и разрушающая окисную пленку алюминия, позволяет проводить его пайку оловянным припоем без флюса.

Назначение
Пайка деталей из алюминия (Al), меди (Cu) и т.д.
Область применения
Электротехническая, электронная, приборостроительная, авиационная и др. промышленность.
Преимущества
Под действием ультразвуковых колебаний не образовывается оксидная пленка.

Ультразвуковая упрочняюще-финишная обработка металлов (УЗУФО)

Эксплуатационные свойства деталей машин зависят от качества их сопрягающихся поверхностей и поверхностного слоя, которые определяются геометрическими и физико-механическими свойствами, а также взаимным расположением микронеровностей на сопрягаемых поверхностях.
Шероховатость поверхностей в значительной степени определяет основные эксплуатационные свойства деталей и узлов: износостойкость, сопротивление усталости, надежность посадок, контактную жесткость и теплопроводность стыков сопряженных деталей, коррозионную стойкость, сопротивляемость эрозии при систематическом воздействии влажности и газов, герметичность соединений, отражающую и поглощающую способность поверхностей и др.
Важной характеристикой состояния поверхностного слоя являются остаточные напряжения. Остаточные напряжении оказывают существенное влияние на прочность и долговечность деталей машин и конструкций: остаточные сжимающие напряжения ( – ), возникающие в поверхностном слое, повышают циклическую прочность деталей, так как они разгружают поверхностные слои от напряжений, вызванных нагрузками, и, наоборот, растягивающие остаточные напряжения (+) уменьшают прочность деталей вследствие повышения напряженности поверхностного слоя.
Повышение требований к качеству выпускаемой продукции влечет за собой необходимость совершенствования технологических процессов.
Поэтому отделочная (финишная) обработка, изменяющая в широких пределах свойства поверхностного слоя, занимает важное место среди технологических способов, повышающих надежность деталей. Основные усилия разработчиков отделочных технологий сводятся к автоматизации и повышению производительности процесса, уменьшения шероховатости поверхности до величины микронеровностей в десятые и сотые доли микрона.
Значительное место в технологических процессах по изготовлении деталей машин отводится абразивной обработке - шлифованию. Однако для процесса шлифования характерно формирование растягивающих остаточных напряжений в поверхностных слоях обработанных изделий, а также шаржирование (насыщение абразивными частицами) обработанной поверхности, что снижает усталостную прочность и износостойкость деталей. Операции шлифования и полирования вызывают неоднородную пластическую деформацию, а также не устраняют физико-химические неоднородности от предыдущей обработки (точение, сварка).
Для повышения прочности и износостойкости деталей необходимо применять методы обработки, улучшающие физико-химические свойства, структуру и микрогеометрию поверхности.
В последнее время в машиностроении и других отраслях промышленности широко применяются методы поверхностного пластического деформирования (ППД).
К ним относятся: дробеструйная обработка, обкатывание шариком или роликом, дорнование, алмазное выглаживание.
Одним из наиболее эффективных методов ППД является Ультразвуковая упрочняюще-финишная обработка металлов (УЗУФО).
Предварительно деталь протачивается на станке (токарном, строгальном и т.д.), затем на этом же станке с помощью малогабаритной ультразвуковой приставки проводится УЗУФО. При этом инструмент (индентор) с большой частотой (22 кГц) (22000 ударов в сек.) ударяет по микронеровностям обрабатываемой поверхности, что позволяет получить на поверхности малую шероховатость и упрочненный слой.
В Научно-Инновационном Центре Ультразвуковых Технологий СЗТУ на протяжении 25 лет РАЗРАБАТЫВАЮТСЯ, ИЗГОТАВЛИВАЮТСЯ И ПОСТАВЛЯЮТСЯ малогабаритные ультразвуковые комплекты для оснащения металлообрабатывающих станков.

комплект УЗУФО

Комплект легко устанавливается на универсальные и программные станки.

В процессе многолетней работы сотрудников НИЦУТ по совершенствованию ультразвуковых генераторов, преобразователей, колебательных систем, технологических устройств, материала и формы индентора, режимов ультразвуковой обработки, удалось достигнуть стабильных высоких результатов формирования структуры поверхностного слоя. По обработке большинства марок сталей, а также большинства марок цветных металлов и их сплавов получены следующие результаты:
– шероховатость поверхности от исходной Ra 1,6 получаем Ra 0,05;
– повышение в среднем микротвёрдости на 50…80 % на глубину до 0,8 мм;
– преобразование остаточных напряжений из растягивающих (+5,7) в сжимающие
(–53,2);
– увеличение опорной поверхности до 85 %;
– повышение усталостной прочности в 1,5…2 раза;
– повышение износостойкости в 2…2,5 раза;
– улучшение точностных параметров в 1,4 раза;
– повышение коррозионной стойкости.
Методом УЗУФО возможно обрабатывать детали различной конструктивной формы: круглые, плоские, наружные, внутренние, торцевые, сферические, конические, галтели, канавки и т.д.

Образцы обработанных изделий

Применение технологии УЗУФО позволяет исключить: во многих случаях операцию шлифования, полностью ручные доводочные операции абразивными шкурками и пастами, в некоторых случаях – термообработку, внутрицеховую транспортировку деталей, а также экономить производственные площади, улучшить экологию и повысить культуру производства.
Анализ результатов многолетних внедрений технологии и оборудования для ультразвуковой упрочняюще-финишной обработки металлов показывает, что широкое использование этой технологии в машиностроении, судостроении, авиакосмической, автотракторной и других отраслях промышленности позволит обеспечить прорыв в интенсификации производственных процессов, в повышении качества и надежность изделий, машин и приборов.

Метод ультразвуковой сварки был разработан в XX веке. Он предназначен для создания неразъемных соединений различных материалов. Для сваривания детали сдавливают друг с другом и подвергают воздействию интенсивных ультразвуковых колебаний.

Ультразвуковая сварка

Таким способом можно сваривать термопластик и большинство металлов. По сравнению с другими способами сварки, ультразвуковые установки отличаются простотой конструкции, а сам процесс — низкой себестоимостью и трудоемкостью.

Принцип действия ультразвуковой сварки и классификация

С физической точки зрения, ультразвуковая сварка проходит в три стадии:

  • нагрев изделий, активизация диффузии в зоне соприкосновения;
  • образование молекулярных связей между вязкотекучими поверхностными слоями
  • затвердевание (кристаллизация) и образование прочного шва.

Существует несколько классификаций ультразвуковой сварки ультразвуковой сварки.

По степени автоматизации различают:

  • Ручная. Оператор контролирует параметры установки и ведет сварочный пистолет по линии шва.
  • Механизированная. Параметры задаются оператором и поддерживаются установкой, детали подаются под излучатель.
  • Автоматизированная. Применяется на массовом производстве. Участие человека исключается.

Схемы колебательных систем для сварки ультразвуком

Схемы колебательных систем для сварки ультразвуком

По методу подведения энергии к рабочей зоне выделяют:

По методу движения волновода классифицируют:

  • Импульсная. Работа короткими импульсами за одно перемещение волновода.
  • Непрерывная. Постоянное воздействие излучателя, волновод двигается с постоянной скоростью относительно материала.

По споосбу определения количества энергии, затрачиваемой на соединение, существуют:

  • по времени воздействия;
  • по величине осадки;
  • по величине зазора;
  • по кинетической сотавляющей.

В последнем случае количество энергии определяется предельной амплитудой смещания опоры.

По способу подачи энергии в рабочую зону различают следующие режимы ультразвуковой сварки:

  • Контактная. Энергия распределяется равномерно по всему сечению детали. Позволяет сваривать детали до 1,5 толщиной. Применяется для сваривания внахлест мягких пластиков и пленок.
  • Передаточная. В случае высоких значений модуля упругости колебания возбуждаются в нескольких точках. Волна распространяется внутри изделия и высвобождает свою энергию в зоне соединения. Используется для тавровых швов и соединений встык жестких пластиков.

Схема точечной ультразвуковой сварки Схема установки для роликовой сварки ультразвуком

Способ подачи энергии колебаний в зону контакта заготовок определяется модулем упругости материала и коэффициентом затухания механических колебаний на ультразвуковых частотах.

Суть получения швов ультразвуком

Процесс сварки ультразвуком для пластиков и металлов имеет общие физические основы, но существенно различается по параметрам.

Для ультразвуковой сварки металлов требуется нагрев до высоких температур и приложение больших усилий сжатия. Для пластиков можно обойтись намного меньшими значениями этих параметров. Схема установки ультразвуковой сварки пластика также существенно проще.

Последовательность действий следующая

  • Подключают генератор ультразвука.
  • Ультразвук, проходя через конвертер, преобразуется в продольные механические колебания волновода.
  • Волновод подсоединяется перпендикулярно плоскости шва и передает заготовкам колебательную энергию.
  • Механическая энергия преобразуется в волновую, что обуславливает интенсивный нагрев области соприкосновения волновода и заготовки.
  • В нагретом поверхностном слое возрастает текучесть.
  • Динамическое усилие, прикладываемое со стороны излучателя, способствует нагреву зоны крнтакта.
  • Статическое усилие, приложенное в том же направлении — перпендикулярно поверхности контакта, понуждает к образованию прочные связи.

Сварной шов после ультразвуковой сварки

Сварной шов после ультразвуковой сварки

Таким методом удается соединять ультразвуком даже разные по своему строению материалы, такие как металлические сплавы и пластики.

При этом разница в температурах плавления может быть многократной.

Преимущества

Анализируя особенности ультразвукового сварочного производства, нельзя не отметить следующие его достоинства:

  • не требуется защитная газовая среда;
  • нет нужды в тщательной механической зачистке зоны сварки;
  • нет ограничений по форме деталей;
  • экологичность и ничтожный объем выделяющихся вредных веществ;
  • небольшие температуры нагрева по сравнению с другими способами;
  • не требуются сварочные материалы;
  • высокая производительность, сравнимая только с контактной сваркой — доли секунды.
  • низкие затраты энергии.

Полученный шов имеет эстетичный внешний вид и редко нуждается в дополнительной обработке.

Недостатки

Существуют у способа и минусы:

  • Размер заготовки ограничен 25-30 см. На больших расстояниях волны рассеиваются и поглощаются материалом.
  • Невозможность сварки деталей большой толщины.
  • Чувствительность к влажности.

Сочетание достоинств и недостатков метода позволяет применять его в самых различных производствах.

Воздействие ультразвука на материал деталей

Атомы твердых тел, как кристаллических, так и аморфных, расположены в определенном порядке, между ними установлены более или менее прочные связи, позволяющие телам сохранять свою форму. Атомы и молекулы способны колебаться относительно своего начального положения. Чем выше амплитуда этих колебаний, тем выше внутренняя энергия тела. Если амплитуда превышает определенный предел, установившиеся связи могут разорваться. Если к телу приложено усилие, не дающее ему потерять целостность, вместо разорванных связей возникают новые, этот процесс называют рекомбинацией.

Ультразвуковые волны высокой интенсивности, сообщая атомам тела большое количество энергии за короткое время, увеличивают амплитуду колебаний атомов и молекул в зоне воздействия. Связи между ними рвутся, и под приложенным давлением возникают новые, с частицами из поверхностных слоев второй заготовки. Так возникает чрезвычайно прочное соединение, превращающее детали в единое целое.

Работа с металлическими деталями

Высокой эффективностью отличается применение ультразвуковой сварки к деталям небольших размеров. Особенно удачно применяют метод в микроэлектронике и приборостроении.

Кроме того, метод способен сварить пары металлов, с трудом соединяемые другими способами: Cu+Al, Al+ Ni и т.д.

Прочностные характеристики шва достигают 70% от значений для исходного сплава.

Метод также позволяет сваривать металл, пластик, керамику, композиты, стекло в любых комбинациях. Применим он и к тугоплавким сплавам.

Преимущества и недостатки при работе с пластиками

При работе с пластмассами существуют следующие достоинства метода:

  • высокая производительность;
  • низкая себестоимость операции;
  • герметичность швов на толстостенных заготовках;
  • отсутствие необходимости в подготовке поверхности;
  • отсутствие перегрева;
  • отсутствие электрических наводок и электромагнитного излучения;
  • совместимость операции с другими операциями технологического процесса, напыления, разреза в других плоскостях и т.п.;
  • универсальность по типам пластиков;
  • отсутствие расходных материалов и химикатов.
  • эстетичность и малозаметность шва.

Ультразвуковая сварка пластмасс

Ультразвуковая сварка пластмасс

Выделяют и недостатки:

  • Малая мощность излучателя заставляет подводить энергию с двух сторон.
  • Сложность контроля качества шва.

Качество соединения стильно зависит от точности подбора и стабильности параметров установки во время работы.

Особенности сваривания полимеров с использованием ультразвука

Для соединения пластмасс ультразвуком используется специализированное оборудование. Его основные компоненты следующие:

  • Рама, на которой закреплены все основные узлы и детали.
  • Блок питания.
  • Система управления.
  • Генератор ультразвука
  • Привод давления.
  • Преобразователь колебаний.
  • Сварочная головка.

В промышленных моделях существует также рабочий стол с механизмом подачи деталей.

Используемое оборудование

Учитывая высокую стоимость аппарата УЗ-сварки, многие домашние мастера подумывают о самостоятельном изготовлении установки. К сожалению, это не сварочный трансформатор и даже не выпрямитель, и для проектирования и создания аппарата потребуются серьезные знания и навыки в области акустики и электроники. Кроме того, для изготовления деталей излучателя и волновода нужны станки высокого класса точности, недоступные в домашних условиях.

Пресс для ультразвуковой сварки

Пресс для ультразвуковой сварки

Оборудование для ультразвуковой сварки разделяют на три категории:

  • точеное;
  • шовное;
  • шовно–шаговое.

Диапазон мощности — 50 ватт до 2 киловатт, рабочая частота в районе 20-22 килогерц

Основной узел установки ультразвуковой сварки — генератор колебаний и преобразователь электрических колебаний в механические той же частоты.

Механические колебания ультразвукового генератора преобразуются магнитострикционным преобразователем. Для отведения излишнего тепла используется водяная система охлаждения

Волновой трансформатор согласует параметры взаимодействия преобразователя и волновода. Он повышает частоту колебаний на выходе волновода.

Волновод транспортирует энергетический поток к месту сваривания. На его рабочем окончании смонтирована сменная сварочная головка. Ее геометрические параметры выбирают, исходя из материала заготовки, его толщины и вида шва. Так, для приваривания выводов микросхем берут головку, заканчивающуюся тонким жалом.

Волновод

Опорная рама служит для размещения всех узлов и деталей. На ней также монтируется механизм перемещения заготовки или головки волновода.

Параметры сварочного оборудования

Чтобы получить прочный и долговечный шов, необходимо точно рассчитать и тщательно соблюдать параметры работы аппарата. Они зависят от типа материала заготовок, его толщины, требований к прочности шва. Точная настройка параметров для каждого нового изделия проводится в лабораторных условиях, с многократными испытаниями на разрушение соединения. Наилучшее сочетание параметров фиксируется и используется в производственном процессе.

К основным параметрам относят:

  • Амплитуда колебаний. Определяет поток энергии и время операции.
  • Усилие прижима. От него зависит прочность шва.
  • Частота работы генератора.
  • Статическое давление. Определяется амплитудой механических колебаний.
  • Продолжительность и скважность импульсов. Также определяет продолжительность операции.

К вспомогательным параметрам относят температуру начального прогрева для заготовок большой толщины, возвышение сварной головки над заготовкой и некоторые другие.

Установка для точечной сварки ультразвуком

Установка для точечной сварки ультразвуком

Выделение тепла при сварке ультразвуком

Тепло, выделяющееся при проведении сварочных работ, образуется вследствие пластических деформаций, а также механического трения свариваемых поверхностей. Температура нагрева не является неизменной, она определяется физико-механическими характеристиками: твердостью, теплоемкостью и теплопроводностью. Влияет также и пространственная конфигурация заготовок. Влияние этого тепла на протекание технологического процесса незначительно.

Возможности ультразвука

Использование ультразвука дает возможность прочно и долговечно соединять различные, даже сильно отличающиеся друг от друга материалы толщиной от нескольких микрон до нескольких миллиметров. При использовании ультразвука к минимуму сводятся искажения формы свариваемых заготовок.

Использование точечных швов дает возможность с высокой скоростью выполнить соединение на больших площадях. Шаг точек подбирается исходя из толщины заготовок и требований к прочности шва. В областях изделия, подвергающихся высоким напряжениям, шаг уменьшают. Применение роликовых насадок на излучатель позволяет выполнять сплошные герметичные швы любой конфигурации. Такие соединения применяются в упаковочных изделиях и надувных конструкциях.

Листовые и пленочные заготовки соединяют внахлест. Для заготовок в форме стрежней применяют тавровые швы.

Ограничены возможности метода по работе со сверхтонкими материалами. Вследствие высокой скорости работы, экологической безопасности и обеспечения нормальных условий труду персонала, популярность ультразвука продолжает расти.

Сферы использования ультразвуковой сварки

Области применения ультразвука для создания сварных соединений определяются исходя из характерных особенностей технологии:

Применение ультразвуковой сварки в производстве стройматериалов Использование ультразвуковой швейной машины

Технология проучила широкое распространение в следующих областях:

  • приборостроение;
  • электроника;
  • производство пластиковых оболочек;
  • выпуск пластмассовых изделий.

Применяется метод и в других отраслях для присоединения малогабаритных деталей к крупным.

Ограничения

Основное ограничение, накладываемое на применимость технологии – это размер свариваемых заготовок. Он ограничен 25-30 см. Это обуславливается малой мощностью генератора и высоким затуханием и рассеянием ультразвуковых колебаний в твердой среде. При прямом увеличении мощности и амплитуды колебаний потребуется непропорциональное увеличение размеров установки и потребляемой мощности. Это сведет на нет все экономические преимущества метода.

Кроме того, материалы, свариваемые ультразвуком, должны иметь минимальную влажность, причем ка на поверхности, таки по всему объему. Если этого невозможно добиться, то следует использовать другие технологии.

Процесс ультразвуковой сварки металла

Процесс ультразвуковой сварки металла

Использование сваривания ультразвуком не имеет экономического смысла и для толстостенных изделий.

Читайте также: