Учение о веществе кратко

Обновлено: 28.06.2024

Химия – это наука, которая сопутствует нам, где бы мы не находились: дома, в офисе, на природе или в городе. Трудно переоценить ее вклад в нашу жизнь, необходимость понимания и знания основных понятий и законов химии.

Итак, какие же основные понятия и законы включает химия? Сначала дадим определение науке: Химия — наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении.

Основные понятия химии

Основными в химии являются такие понятия, как атом, молекула, элемент, вещество, аллотропия и др.

У истока основных понятий химии стоит атомно-молекулярное учение, которое дает определение молекулы и атома:

Молекула

Это наименьшая частица определенного вещества, которая обладает его химическими свойствами. Состав и химическое строение молекулы определяют ее химические свойства. Все вещества состоят из молекул, а молекулы из атомов.

Атом

Это наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ, это электронейтральная частица, которая состоит из положительно заряженного ядра атома и отрицательно заряженных электронов, вращающихся вокруг ядра.

Молекулы и атомы находятся в постоянном движении.

Химический элемент

В настоящее время известно 118 элементов, 89 из которых найдены в природе, остальные получены искусственно (см. Интересные факты о химических элементах). Что же такое Химический элемент? Это такой вид атомов, который имеет определенный заряд ядра и строение электронных оболочек.

Теперь рассмотрим строение атомного ядра и следующее основное понятие химии.

Атомное ядро

Атомное ядро состоит из протонов (Z) и нейтронов (N), имеет положительный заряд, равный по величине количеству протонов (или электронов в нейтральном атоме) и совпадает с порядковым номером элемента в периодической таблице. Суммарная масса протонов и нейтронов атомного ядра называется массовым числом A = Z + N. Существуют химические элементы (изотопы), имеющие одинаковый заряд ядер, но при этом различные массовые числами, что достигается за счет разного числа нейтронов в ядре.

Вещество

Некая совокупность атомов и молекул, их ассоциатов и агрегатов, которые могут находиться в любом из трех агрегатных состояний, образуют вещество.

Простые вещества состоят из атомов одного вида, а сложные вещества (химические соединения) состоят из атомов разного вида и образуются при химическом взаимодействии атомов разных химических элементов.

Аллотропия

Встречается явление, при котором один химический элемент может образовывать нескольких простых веществ, различных по свойствам и строению. Это явление называется Аллотропией. Аллотропные модификации характерны, например, для кислорода (O2 и O3), фосфора (белый, красный, черный фосфор), углерода (алмаз, графит), серы (моноклинная, ромбическая, пластическая), олова (белое, серое, ромбическое олово).

Химическая формула

В 1814 г Й. Берцелиус предложил использовать химическую формулу запись состава веществ с помощью химических знаков и индексов.

Химическое вещество характеризуется атомной массой, а молекулы — молекулярной массой.

Относительная атомная масса (Ar)

Это отношение средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 /12 массы атома 12 C.

Относительная молекулярная масса (Mr)

Это величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 /12 массы атома углерода 12 C. Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов, составляющих химическое соединение, с учетом индексов.

Моль вещества (n)

Это количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится их в 12 г изотопа углерода 12 C.

Число структурных единиц, содержащихся в 1 моле вещества равно 6,02 • 10 23 .Эточисло называется числом Авогадро (NA)

Молярная масса (M) показывает массу 1 моля вещества и равна отношению массы вещества к соответствующему количеству вещества.

Химический эквивалент

Для более удобного сравнения способности различных элементов к соединению введено понятие химического эквивалента. Это одно из важнейших понятий химии, дадим ему определение:

Химическим эквивалентом вещества (Э) называется такое его количество, которое соединяется с 1 молем атомов водорода или замещает то же количество атомов водорода в химических реакциях.

Масса 1 эквивалента вещества называется эквивалентной массой (mэкв). Масса одного моля эквивалента элемента — это молярная масса эквивалента MЭ(X).

Молярную массу эквивалента химического элемента, простых и сложных веществ (Mэкв(X)) рассчитывают по формуле:

где M(X) – молярная масса; вал – суммарная валентность.

Например, молярная масса эквивалента алюминия составляет Mэкв(Са) = 40/2 = 20 г/моль.

Молярные массы эквивалента кислорода и водорода постоянны и составляют:

Эквивалентную массу соединения можно определить по его химической формуле, например,

М экв(оксида) = М(оксида)/(число атомов кислорода ∙ 2);
М экв(основания) = М(основания)/число гидроксильных групп;
М экв(кислоты) = М(кислоты)/число протонов;
М экв(соли) = М(соли)/(число атомов металла ∙ валентность металла).

Пример, определим эквивалент (Э) и эквивалентную массу Мэкв (Х) фосфора, серы и брома в соединениях PHз, Н2S и HBr.

В PHз 1 моль атомов водорода соединяется с 1/3 моль фосфора, поэтому эквивалент фосфора равен Э(N) = 1/3 моль

В Н2S 1 моль атомов водорода соединяется с 1/2 моль серы, поэтому эквивалент серы равен Э(S) = 1/2 моль

В HBr 1 моль атомов водорода соединяется с 1 моль брома, поэтому эквивалент брома равен Э(Br) = 1 моль.

Найдем эквивалентные массы:

Мэкв (Р) = 31/3 = 10,33 г/моль;

Мэкв (S) = 32/2 = 16 г/моль;

Мэкв (Br) = 80/1 = 80 г/моль.

Аналогично можно дать определение понятию эквивалентный объем.

Эквивалентный объем – это тот объем, который при данных условиях занимает 1 эквивалент вещества. Так как эквивалент водорода равен 1 моль, а в 22,4 л Н2 содержатся 2 эквивалента водорода; тогда эквивалентный объем водорода равен 22,4/2=11,2 л/моль, для О2 эквивалентный объем равен 5,6 л/моль.

Определить эквивалент вещества можно также по его соединению с другим веществом, эквивалент которого известен.

Определить молярную массу эквивалента (эквивалентную массу) можно исходя из закона эквивалентов, который рассмотрен немного ниже.

Основные законы химии

Нижеперечисленные законы принято считать основными законами химии.

Закон эквивалентов

По закону эквивалентов химические элементы соединяются между собой или замещают друг друга в количествах, пропорциональных их молярным массам эквивалентов:

где m1 и m2 — массы реагирующих или образующихся веществ, М экв1 и М экв2 — эквивалентные массы этих веществ.

Примеры расчета молярной массы эквивалента представлен в задачах 5-7 раздела Задачи к разделу Основные понятия и законы химии

Закон сохранения вещества

В 1756 г. М.В. Ломоносов, после длительных испытаний, пришел к важному открытию: вес всех веществ, вступающих в химическую реакцию, равен весу всех продуктов реакции.

Этот закон отражается в законе сохранения массы, который заключается в следующем: масса веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Вещества не исчезают и не возникают из ничего, а происходит химическое превращение. Закон является основой при составлении химических реакций и количественных расчетов в химии.

Закон постоянства состава

В 1808 Ж. Пруст сформулировал закон, который гласит, что независимо от способа получения все индивидуальные вещества имеют постоянный количественный и качественный состав.

Закон кратных отношений

В 1803 г Д. Дальтон открыл закон, заключающийся в том, что если два химических элемента образуют несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

Закон объемных отношений

В 1808 г Гей-Люссак сформулировал закон, который гласил:

Газовые законы

Важную роль в развитии химической науки сыграли газовые законы (справедливы только для газов).

В 1811 г. Авогадро ди Кваренья (Закон Авогадро) доказал, что- в равных объемах любых газов при постоянных условиях (температуре и давлении) содержится одинаковое число молекул. В одинаковых условиях одно и то же число молекул занимают равные объемы, а 1 моль любого при T=273°К и p=101,3 кПа газа занимает объем 22,4 л, который называется молярным объемом газа (Vm).

Независимо друг от друг трое ученых вывели следующие законы:

закон Бойля-Мариотта при Т= const: P1V1 = P2V2;

закон Шарля при V = const:P1 / T1 = P2 / T2

При объединении этих трех законов получаем:

Если условия отличаются от нормальных, то применяют уравнение Клапейрона – Менделеева:

pV = nRT = (m/M)RT, где

p — давление газа, V — его объем, n — количество молей газа, R — универсальная газовая постоянная (8,314 Дж/(моль*К).

Количество газа при нормальных условиях рассчитывают по формуле:

Плотность газов при заданных давлении и температуре прямо пропорциональна их молярной массе:

ρ = m/V = pM/(RT) = (p/RT)M.

Относительная плотность газов показывает, во сколько раз один газ тяжелее другого. Плотность газа В по газу А определяется следующим образом:

Это основные законы химии. В заключение приведем Закон парциальных давлений (закон Дальтона). Парциальное давление в смеси равно тому давлению газа, которым он обладал бы, если бы занимал такой же объем, какой занимает вся смесь при той же температуре. При условии, что в газовой смеси нет химического взаимодействия, общее давление газовой смеси равно сумме парциальных давлений газов, входящих в эту смесь:

Состав газовых смесей может выражаться количеством вещества (n), массовыми (ωn), объемными (φn) и молярными (χ) долями:

Учение о составе вещества охватывает три основные проблемы:

• анализ состава химического элемента;

• определение состава химического соединения;

• применение все большего числа химических элементов для производства новых материалов.

В истории развития учения о составе вещества решение первой из названных проблем начиналось с ошибочного представления о химическом элементе. Первая научная теория химии, - теория флогистона, касающаяся состава вещества, оказалась ошибочной. Примерно до середины XVII в. не был известен ни один химический элемент. Лишь в 1660-х годах Р. Бойль положил начало современному представлению о химическом элементе как о "простом теле" или как о пределе химического разложения вещества, переходящем из состава одного в состав другого сложного тела. В те времена для получения химического элемента как "простого тела" использовался универсальный метод разложения сложных тел - метод прокаливания. После прокаливания образовывалась окалина, которая принималась за элемент. В результате металлы - железо, медь, свинец, сурьму и т.д. - считали сложными телами, состоящими из соответствующих элементов и универсального "невесомого тела" - флогистона (греч. - "горючий").

Ошибочная теория флогистона, как и гелиоцентрическая теория, послужила толчком к многочисленным исследованиям. Появились точные методы количественного анализа вещества, способствовавшие открытию истинных химических элементов. Были открыты фосфор, кобальт, никель, водород, фтор, азот, хлор и марганец, кислород.

Открыв кислород и установив его роль в образовании кислот, окислов и воды, выдающийся французский химик А.Л. Лавуазье (1743-1794) опроверг теорию флогистона.

Лавуазье сделал первую попытку систематизации химических элементов. В свою систему элементов он включил кислород, водород, азот, серу, фосфор, семь известных в то время металлов, известь, магнезию, глинозем и кремнезем. Однако он ошибочно считал, что известь, глинозем и другие неделимы. Ошибку исправил в дальнейшем Д.И. Менделеев, доказав, что место химического элемента в периодической системе определяется атомной массой и открыв тем самым периодический закон химических элементов (1869 г.).

Более поздние исследования показали, что место элемента в периодической системе определяется не просто порядковым номером, а зарядом атомного ядра. Это означает, что не атомная масса, а именно заряд ядра обеспечивает индивидуальность химического элемента. Например, изотопы хлора 3717С1 и 3517С1 отличаются друг от друга атомной массой, но тем не менее они оба относятся к одному химическому элементу - хлору. В этой связи можно утверждать, что химический элемент - это совокупность атомов, обладающих одинаковым зарядом ядра.

К настоящему времени сложилось определенное представление о структуре атома и ядра и о квантово-механических свойствах составляющих их частиц. Раскрыт физический смысл периодического закона и дано квантово-механическое обоснование строения атомов химических элементов периодической системы Менделеева.

Во времена Менделеева было известно всего 62 элемента. В 1930-е годы система элементов заканчивалась ураном (Z = 92). В 1940-1945 гг. путем физического синтеза атомных ядер были открыты элементы: нептуний, плутоний, америций, кюрий, в 1949- 1952 гг. - берклий, калифорний и фермий, в 1955 г. - менделевий - всего примерно за 15 лет было открыто 9 элементов. Затем за все последующие 40 лет было синтезировано только 6 элементов: № 102 - нобелий, № 103 - лауренсий, №104 - кур-чатовий, № 105 - жолиотий, № 106 - резерфордий, № 107 - борий, № 108 - ганий и № 109 - мейтнерий. Все эти элементы крайне неустойчивы. Предполагается, что следующие элементы, которые предстоит обнаружить, будут также неустойчивыми, хотя и возможны "островки стабильности" даже для сравнительно больших порядковых номеров больше 126. Следует ожидать, что с развитием техники эксперимента будут открыты новые химические элементы.

До недавнего времени химики считали ясным, что следует относить к химическим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский ученый Ж. Пруст (1754 - 1826) установил закон постоянства состава: любое индивидуальное химическое соединение обладает строго определенным, неизменным составом, прочным притяжением составных частей (атомов) и тем отличается от смесей. На основе идеи об атомическом строении вещества этот закон теоретически обосновал в 1800 - 1810 гг. английский ученый Дж. Дальтон. Он показал, что все индивидуальные вещества в отличие от смесей состоят из однородных мельчайших частиц - "сложных атомов" молекул, которые в свою очередь состоят из простых атомов разных химических элементов.




Учение о составе вещества охватывает три основные проблемы:

• анализ состава химического элемента;

• определение состава химического соединения;

• применение все большего числа химических элементов для производства новых материалов.

В истории развития учения о составе вещества решение первой из названных проблем начиналось с ошибочного представления о химическом элементе. Первая научная теория химии, - теория флогистона, касающаяся состава вещества, оказалась ошибочной. Примерно до середины XVII в. не был известен ни один химический элемент. Лишь в 1660-х годах Р. Бойль положил начало современному представлению о химическом элементе как о "простом теле" или как о пределе химического разложения вещества, переходящем из состава одного в состав другого сложного тела. В те времена для получения химического элемента как "простого тела" использовался универсальный метод разложения сложных тел - метод прокаливания. После прокаливания образовывалась окалина, которая принималась за элемент. В результате металлы - железо, медь, свинец, сурьму и т.д. - считали сложными телами, состоящими из соответствующих элементов и универсального "невесомого тела" - флогистона (греч. - "горючий").

Ошибочная теория флогистона, как и гелиоцентрическая теория, послужила толчком к многочисленным исследованиям. Появились точные методы количественного анализа вещества, способствовавшие открытию истинных химических элементов. Были открыты фосфор, кобальт, никель, водород, фтор, азот, хлор и марганец, кислород.

Открыв кислород и установив его роль в образовании кислот, окислов и воды, выдающийся французский химик А.Л. Лавуазье (1743-1794) опроверг теорию флогистона.

Лавуазье сделал первую попытку систематизации химических элементов. В свою систему элементов он включил кислород, водород, азот, серу, фосфор, семь известных в то время металлов, известь, магнезию, глинозем и кремнезем. Однако он ошибочно считал, что известь, глинозем и другие неделимы. Ошибку исправил в дальнейшем Д.И. Менделеев, доказав, что место химического элемента в периодической системе определяется атомной массой и открыв тем самым периодический закон химических элементов (1869 г.).

Более поздние исследования показали, что место элемента в периодической системе определяется не просто порядковым номером, а зарядом атомного ядра. Это означает, что не атомная масса, а именно заряд ядра обеспечивает индивидуальность химического элемента. Например, изотопы хлора 3717С1 и 3517С1 отличаются друг от друга атомной массой, но тем не менее они оба относятся к одному химическому элементу - хлору. В этой связи можно утверждать, что химический элемент - это совокупность атомов, обладающих одинаковым зарядом ядра.

К настоящему времени сложилось определенное представление о структуре атома и ядра и о квантово-механических свойствах составляющих их частиц. Раскрыт физический смысл периодического закона и дано квантово-механическое обоснование строения атомов химических элементов периодической системы Менделеева.

Во времена Менделеева было известно всего 62 элемента. В 1930-е годы система элементов заканчивалась ураном (Z = 92). В 1940-1945 гг. путем физического синтеза атомных ядер были открыты элементы: нептуний, плутоний, америций, кюрий, в 1949- 1952 гг. - берклий, калифорний и фермий, в 1955 г. - менделевий - всего примерно за 15 лет было открыто 9 элементов. Затем за все последующие 40 лет было синтезировано только 6 элементов: № 102 - нобелий, № 103 - лауренсий, №104 - кур-чатовий, № 105 - жолиотий, № 106 - резерфордий, № 107 - борий, № 108 - ганий и № 109 - мейтнерий. Все эти элементы крайне неустойчивы. Предполагается, что следующие элементы, которые предстоит обнаружить, будут также неустойчивыми, хотя и возможны "островки стабильности" даже для сравнительно больших порядковых номеров больше 126. Следует ожидать, что с развитием техники эксперимента будут открыты новые химические элементы.

До недавнего времени химики считали ясным, что следует относить к химическим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский ученый Ж. Пруст (1754 - 1826) установил закон постоянства состава: любое индивидуальное химическое соединение обладает строго определенным, неизменным составом, прочным притяжением составных частей (атомов) и тем отличается от смесей. На основе идеи об атомическом строении вещества этот закон теоретически обосновал в 1800 - 1810 гг. английский ученый Дж. Дальтон. Он показал, что все индивидуальные вещества в отличие от смесей состоят из однородных мельчайших частиц - "сложных атомов" молекул, которые в свою очередь состоят из простых атомов разных химических элементов.

Иначе химические явления называют химическими реакциями .

Каждое вещество обладает строго определёнными свойствами.

Свойства веществ – признаки, позволяющие отличить одни вещества от других, или установить сходство между ними.

Физические свойства :

m - масса, V - объём, ρ - плотность.

Масса может быть выражена в граммах, объем в миллилитрах (если это жидкость) или литрах (если это газ).

1 мл = 1 см3, 1 л = 1 дм3, 1000 л = 1 м3

Поэтому плотность измеряют в г/мл, г/см3 (если это жидкость), или в г/л, г/дм3 (если это газ).

Если принять V = 1, то плотность - это масса единичного объёма вещества.

Так же можно сказать, что химические свойства - это те химические реакции, которые характеризуют группу веществ (класс веществ). Например, мы будем в дальнейшем изучать свойства воды, свойства класса оксидов, свойства класса алканов и т.д.

ООсновы атомно – молекулярного учения

Идея о том, что вещества состоят из мельчайших частиц возникла в Древней Греции в философских учениях Левкиппа и его ученика Демокрита. Эти частицы они назвали атомами (неделимые).

Существование атомов было доказано эмпирическим путём в конце 16 – начале 17 века Джоном Дальтоном и М. В. Ломоносовым. Ими же были заложены основы атомно – молекулярного учения .

В настоящее время, в связи с открытием делимости атома и появлением теории химической связи, основные положения атомно – молекулярного учения существенно изменились. Его суть можно свести к ряду важных положений, которые необходимо запомнить.

Все вещества, существующие в природе, представляют собой совокупность очень большого числа частиц (атомов, молекул или ионов). В зависимости от типа частиц все вещества условно подразделяют на две группы: вещества молекулярного строения и вещества немолекулярного строения (атомного или ионного).

Вещества немолекулярного строения – вещества, основными структурными единицами которых являются атомы или ионы.

Частицы, из которых состоит данное вещество, взаимодействуют между собой посредством электромагнитных (кулоновских) сил и находятся в постоянном движении. Движение частиц ограничено силами взаимодействия между ними.Каждое вещество, в зависимости от условий (температуры, давления) может находиться в определённом агрегатном состоянии.

В твёрдом агрегатном состоянии вещества, составляющие его частицы находятся относительно упорядоченно (кристаллическое состояние), их кинетическая энергия (энергия движения) существенно меньше чем потенциальная (энергия покоя). В газообразном состоянии, частицы свободно движутся в предоставленном им объёме и их кинетическая энергия существенно выше чем потенциальная.

В жидкости же потенциальная энергия частиц примерно равна их кинетической энергии. Это связано с тем, что часть частиц жидкости находится относительно упорядоченно в составе так называемых кластеров (англ. cluster — скопление). Другие же частицы свободно перемещаются по объёму жидкости. Чем ниже температура жидкости, тем больше в ней кластеров и наоборот.

Следует отметить, что существуют еще два дополнительные "состояния". Это жидкокристаллическое состояние и состояние плазмы .

Цитоплазматическая мембрана клетки - типичный пример жидкого кристалла. Молекулы фосфолипидов в биологической мембране относительно упорядоченно распределяются в двух слоях, но при этом могут в пределах слоя свободно перемещаться, а также "перескакивать" из одного слоя в другой.

Жидкие кристаллы имеют широкое применение в технике (напр., ЖК-мониторы компьютеров).

Плазма в своём составе содержит свободные электроны, катионы (положительно заряженные ионы) и анионы (отрицательно заряженные ионы).

Так как плазма содержит заряженные частицы, то она проводит электрический ток и на неё можно воздействовать внешним магнитным полем. Различают низкотемпературную и высокотемпературную плазму.

Изучает свойства плазмы наука физика.

Вещество из одного агрегатного состояния может переходить в другие агрегатные состояния при изменении внешних условий - температуры (T) и давления (P). Такие переходы принято называть фазовыми переходами .

Так, при повышении температуры, твердое вещество превращается в жидкость, а жидкость при ещё большей температуре превращается в газ. Дальнейшее повышение температуры переводит газ в плазму. При таких переходах вещество в другие вещества не превращается. Напомним, что такие явления мы называем физическими. Поэтому фазовые переходы - это физические явления.

При понижении температуры происходят обратные фазовые переходы - газ превращается в жидкость, а жидкость переходит в твердое состояние.

Фазовые переходы имеют названия.

Твердое ---> Жидкое (плавление, обратный переход - кристаллизация)

Жидкое ---> Газообразное (испарение, обратный переход - конденсация)

Газообразное ---> Плазма (ионизация, обратный переход - деионизация)

Твердое ---> Газообразное (сублимация или возгонка, обратный переход - десублимация)

Вещество – совокупность большого числа частиц, находящаяся в определённом агрегатном состоянии в зависимости от условий (температуры и давления).

Поэтому, например, такая фраза как: "Вода - жидкое вещество", является некорректной. Если мы говорим об агрегатном состоянии вещества, то следует обязательно уточнить условия в которых находится вещество - температуру и давление. Такая фраза как: "При нормальном атмосферном давлении и комнатной температуре, вода - жидкое по агрегатному состоянию вещество", является правильной.

С точки зрения физики, что более точно, вещество - это форма материи, состоящая из частиц, обладающих массой покоя. Существуют частицы, не обладающие массой покоя, например, фотоны. Материя, состоящая из частиц, не обладающих массой покоя называется поле .

Протоны, нейтроны, электроны - это частицы, обладающие массой покоя, следовательно это частицы вещества. Но химия не изучает вещество, состоящее, к примеру, из электронов (электронный газ), или вещество, состоящее из нейтронов (нейтронный газ). Это удел физики.

Химия изучает вещества, состоящие из атомов, молекул или ионов.

Ввиду этого вещество условно можно подразделить на физическое (электронный газ в проводнике, нейтронный газ и т.д.) и химическое (состоящее из атомов, молекул, ионов, свободных радикалов).

На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов.

4. Эволюционная химия
3. Учение о химических процессах
2. Структурная химия
1. Учение о составе
1660-е гг. 1800-е гг. 1950-е гг. 1970-е гг. Настоящее время

Рис. 1. Основные концепции химической науки.

Но еще и в XVIII веке железо, медь и другие, известные в то время металлы, ученые рассматривали как сложные тела, а окалину, получающуюся при их нагревании - за простое тело. Но окалина – это оксид металла, сложное тело.

Ошибочное представление, существовавшее в XVIII веке, было связано с ложной гипотезой флогистона немецкого врача и химика Георга Шталя (1660 - 1734). Он считал, что металлы состоят из окалины и флогистона (от греч. flogizein - зажигать, гореть), особого невесомого вещества, которое при нагревании улетучивается и остается чистый элемент. В состав пчелиного воска и угля, по его мнению, входит преимущественно флогистон, который при горении улетучивается и в результате остается лишь немного золы.

Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений о флогистоне. Лавуазье впервые систематизировал химические элементы на базе имевшихся в XVIII в. знаний. Постепенно химики открывали все новые и новые химические элементы, описывали их свойства и реакционную способность и благодаря этому накопили огромный эмпирический материал, который необходимо было привести в определенную систему. Такие системы предлагались разными учеными, но были весьма несовершенными потому, что в качестве системообразующего фактора брались несущественные, второстепенные и даже чисто внешние признаки элементов.

Великая заслуга Д. И. Менделеева состоит в том, что, открыв в 1869 г. периодический закон, он заложил фундамент для построения подлинно научной системы химических элементов. В качестве системообразующего фактора он выбрал атомный вес. В соответствии с атомным весом он расположил химические элементы в систему и показал, что их свойства находятся в периодической зависимости от величины атомного веса. До системного подхода Менделеева учебники по химии были очень громоздки. Так, учебник химии Л.Ж. Тенара состоял из 7 томов по 1000 – 1200 страниц каждый.

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном (Z = 92). В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Длительное время химикам казалось очевидным, что именно относится к химическим соединениям, а что — к простым телам или смесям. Однако применение в последнее время физических методов исследования вещества позволило выявить физическую природу химизма, т.е. те внутренние силы, которые объединяют атомы в молекулы, представляющие собой прочную квантово-механическую целостность. Такими силами оказались химические связи.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химические связи представляют собой обменное взаимодействие электронов с соответствующими характеристиками. Речь идет, прежде всего, об электронах, расположенных на внешней оболочке и связанных с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами выделяют типы связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов, например, NaCl.

Металлическая связь это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Дальнейшее развитие науки позволило уточнить, что свойства химических элементов зависят от заряда ядра атомов, который определяется числом протонов или соответственно электронов. В настоящее время химическим элементом называют совокупность атомов с конкретным зарядом ядра Z, хотя и различающихся по своей массе, вследствие чего атомные веса элементов не всегда выражаются целыми числами.

Простое вещество – это форма существования химического элемента в свободном состоянии. Однако, к примеру, даже газообразный (не говоря уже о жидком и твердом агрегатном состоянии) водород существует в двух разновидностях, различающихся магнитной ориентацией ядер Н – ортоводород и параводород. Они различаются, к примеру, теплоемкостью. Существует также две разновидности газообразного и четыре – жидкого кислорода. Поэтому простых веществ насчитывается св. 500, в то время как химических элементов – чуть более ста.

С позиций атомизма решается также проблема химического соединения. Что считать смесью, а что химическим соединением? Обладает ли такое соединение постоянным или переменным составом?

Долгое время сформулированный Прустом закон постоянства химического состава считался абсолютной истиной, хотя другой французский химик Клод Бертолле (1748 – 18232) указывал на существование соединений переменного состава в форме растворов и сплавов. Впоследствии были найдены более убедительные доказательства существования химических соединений переменного состава в школе известного русского физикохимика Николая Семеновича Курнакова (1860 - 1940). В честь К. Бертолле он назвал их бертоллидами. К ним он отнес те соединения, состав которых зависит от способа их получения. Например, соединения таких двух металлов, как марганец и медь, магний и серебро и других характеризуются переменным составом, но они составляют единые химические соединения. Со временем химики открыли другие соединения такого же переменного состава и пришли к выводу, что они отличаются от соединений постоянного состава тем, что не обладают специфическим молекулярным строением.

Поскольку выяснилось, что природа соединения, то есть характер связи атомов в его молекуле зависит от их химических связей, то расширилось и представление о молекуле. Молекулой по-прежнему называют наименьшую частицу вещества, которая определяет его свойства и может существовать самостоятельно. Однако к молекулам теперь относят также разнообразные другие квантово-механические системы (ионные, атомные монокристаллы, полимеры, возникающие на основе водородных связей, и другие макромолекулы). В них химическая связь осуществляется не только путем взаимодействия внешних, валентных электронов, но и ионов, радикалов и других компонентов. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе.

Таким образом, ныне исчезает резкое прежнее противопоставление химических соединений постоянного состава, обладающих специфическим молекулярным строением, и соединений переменного состава, лишенных этой специфики. Теряет также силу отождествление химического соединения с молекулой, состоящей из нескольких разных атомов химических элементов. В принципе молекула соединения может состоять и из двух или нескольких атомов одного элемента: это молекулы Н2, О2, графит, алмаз и другие кристаллы.

Ныне имеются сведения о 8 млн. индивидуальных химических соединений постоянного и миллиардах – переменного состава.

В рамках учения о составе и строении элементов важное место занимаетпроблема производства новых материалов.Речь идет о включении в их состав новых химических элементов. Дело в том, что 98,7% массы слоя Земли, на котором осуществляет свою производственную деятельность человек, составляют восемь химических элементов: 47,0% — кислород, 27,5% — кремний, 8,8% — алюминий, 4,6% — железо, 3,6% — кальций, 2,6% — натрий, 2,5% — калий, 2,1% — магний. Однако эти химические элементы распределены на Земле неравномерно и также неравномерно используются. Более 95% изделий из металла в своей основе содержат железо.Такое потребление ведет к дефициту железа. Поэтому стоит задача использовать для человеческой деятельности и другие химические элементы, способные заменить железо, в частности, наиболее распространенный кремний. Силикаты, различные соединения кремния с кислородом и другими элементами составляют 97% массы земной коры.

На основе современных достижений химии появилась возможность замены металлов керамикой не только как более экономичным продуктом, но во многих случаях и как более подходящим конструкционным материалом по сравнению с металлом. Более низкая плотность керамики (40%) дает возможность снизить массу изготовляемых из нее предметов. Включение в производство керамики новых химических элементов: титана, бора, хрома, вольфрама и других позволяет получать материалы с заранее заданными специальными свойствами (огнеупорность, термостойкость, высокая твердость и т.д.).

Во второй половине XX в. стали использоваться все новые и новые химические элементы в синтезе элементоорганических соединений от алюминия до фтора. Часть таких соединений служит в качестве химических реагентов для лабораторных исследований, а другая — для синтеза новейших материалов.

Около 10 лет назад насчитывалось более 1 млн. разновидностей продукции, выпускаемой химической промышленность. Ныне в химических лабораториях нашей планеты ежедневно синтезируется 200 – 250 новых химических соединений.

Читайте также: