Участие микроорганизмов в круговороте серы кратко

Обновлено: 10.05.2024

Круговорот серы. Данный цикл охватывает воду, почву и атмосферу. Основные резервы серы находятся в почве и в отложениях. Содержание серы в воздухе относительно невелико. На рис. 3.5 представлен этот круговорот, ключевым звеном которого являются процессы аэробного окисления сульфида (сероводорода) до сульфата (804 ) и анаэробного восстановления сульфата до сульфида. Эти реакции осуществляются соответствующими группами бактерий. Благодаря окислительно-восстановительным процессам происходит обмен серы между фондом доступного сульфата в аэробной зоне почвы и фондом сульфидов железа, расположенным глубоко в почве и в осадках (в анаэробной зоне). В результате микробного восстановления глубоководных отложений к поверхности воды движется НгЭ, что, например, типично для Черного моря. Выделяющийся из воды сульфид окисляется до сульфата атмосферным кислородом.[ . ]

В круговороте углерода участвуют разные группы бактерий; в перемещении, концентрации химических элементов в месторождениях полезных ископаемых (таких, как сера или сульфидные руды) основное значение имеют автотрофные бактерии; большую роль в образовании сульфидов на нефтяных месторождениях играют сульфатредуцирующие бактерии.[ . ]

Тионовые бактерии принимают также активное участие в круговороте серы (рис. 142).[ . ]

Прокариоты (бактерии, архебактерии, цианобактерии) — одноклеточные организмы, не имеют ядра. Благодаря такому разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до С02, Н20, Н28, 1ЧН3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфикси-рующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.[ . ]

Совокупности популяций различных видов в экосистемах создают устойчивые биогеохимические циклы, благодаря которым поддерживается постоянство современных сред жизни - почвенной, наземной и водной. Экосистемы способны к саморегуляции, восстановлению равновесия численности популяций многих видов, взаимодействующих между собой в биоценозах. Особое значение для гомеостаза экосистем имеют трофические отношения между видами. В природе закономерно сочетаются численности видов, представляющих основные экологические группы организмов: продуцентов (растений), консументов (животных) и редуцентов (бактерий и грибов). Чем более разнообразными видами представлена каждая группа, тем устойчивее экосистема в целом, благодаря взаимозаменяемости видов. В биогеоценозах многообразие биологических видов поддерживает устойчивые круговороты биогенов, химических элементов, входящих в состав живых организмов (кислорода, углерода, водорода, азота, фосфора, кальция, серы и др.), благодаря которым осуществляется усвоение и трансформация солнечной энергии в биосфере, получение ресурсов и переработка отходов.[ . ]

Примерно такие же отношения наблюдаются в глобальном круговороте серы (рис. 3.20), в котором кроме бактерий, грибов и растений, использующих сульфат природных вод и почвы для синтеза серосодержащих аминокислот, работают еще несколько групп специализированных бактерий, осуществляющих превращения в реакциях НгБ оБо Б04 и НгБ о 804.[ . ]

Микроорганизмы, окисляющие неорганические соединения серы, играют весьма существенную роль в процессах их превращения в природе (рис. 5). Особенно важное значение в круговороте серы, видимо, имеют тионовые бактерии, широко распространенные в различных водоемах, почве и в разрушающихся горных породах.[ . ]

Кроме того, П. С. Коссовичу принадлежат не потерявшие и до настоящего времени значения исследования круговорота в природе и хозяйстве серы и хлора, а также доказательство положения, что клубеньковые бактерии связывают азот атмосферы, поступивший через корни, а не через листья бобовых растений. Он с успехом изучал и корневые выделения культур, особенно выделение углекислого газа, связывая его с усвояющей способностью корней.[ . ]

Благодаря трудам С. И. Виноградского, М. Бейеринка, А. Клюй-вера, Ван-Нил я, Б. Л. Исаченко была выяснена роль бактерий в круговороте азота, серы и некоторых других элементов.[ . ]

Другой формой распада органического вещества до простейших соединений являются микробиологические процессы в почвах и водах, в результате чего образуется гумус почвы и различные донные отложения полуразложившейся органики (сапропель и др.). Основные из этих процессов - биологическое разложение сапро-фитами органических веществ, содержащих азот и углерод, что является составной частью круговоротов этих элементов в природных циклах. Бактерии-аммонификаторы минерализуют белки растительных и животных остатков, а также других микроорганизмов (в том числе и азотфиксаторов), мочевину, хитин, нуклеиновые кислоты, в результате чего образуется аммиак (NH3). Разлагаются и содержащие серу белки растений и животных, в результате чего образуется сероводород (Hß). Продуктом жизнедеятельности микроорганизмов являются и индольные соединения, которые выполняют роль стимуляторов роста. Индольные вещества образуются из аминокислоты триптофана.[ . ]

Природа — целостная система с множеством сбалансированных связен. Нарушение этих связей приводит к изменениям в установившихся в природе круговоротах веществ и энергии. Развитие промышленности вызвало серьезные нарушения в круговороте ряда веществ, например диоксидов углерода, серы, азота и др. В настоящее время в результате большого количества отходов промышленного, сельскохозяйственного и бытового происхождения нарушаются условия, позволявшие природе в прошлом успешно справляться с утилизацией отходов с помощью бактерий, воды, воздуха, воздействия солнечного света.[ . ]

БАКТЕРИАЛЬНЫЕ УДОБРЕНИЯ — удобрения, содержащие полезные для с.-х. растений почвенные микроорганизмы (напр., нитрагин). БАКТЕРИИ [гр. bakleria — палочка] — группа микроскопических одноклеточных микроорганизмов, обладающих клеточной стенкой, но не имеющих оформленного ядра, лишенных хлорофилла и пластид, размножающихся делением. Б. широко распространены в природе (вызывают гниение, брожение и т. д.), участвуют в биоге-охимическом круговороте всех биологически важных химических элементов, выполняя функцию редуцентов. Многие ключевые процессы круговорота осуществляются только с помощью Б. (напр., нитрификация, денитрификация, азотфиксация, окисление и восстановление соединений серы и др.). Б. — возбудители многих болезней человека, животных и растений (тиф, холера, туберкулез). БАКТЕРИОЛОГИЧЕСКОЕ ЗАГРЯЗНЕНИЕ — см. в ст. Загрязнение биологическое, а также Коли-индекс и Микробное число.[ . ]

Классификация микроорганизмов по физиологическим признакам основана на их способности усваивать различные вещества из водной среды в аэробных или анаэробных условиях. Микроорганизмы различных физиологических групп вступают между собой в сложные метабиотические или антагонистические отношения. Основная роль в биоценозах отводится группам микроорганизмов, участвующих в круговороте важнейших биогенных элементов — углерода, азота, серы, фосфора. Среди этих многочисленных форм есть и облигатные аэробы, например нитрификаторы, и анаэробные микроорганизмы.[ . ]

Сера – составная часть некоторых белков. Одним из конечных продуктов гниения белков является H2S. Сероводород не усваивается высшими растениями. Биохимические превращения серы восстановительного и окислительного порядка осуществляются серобактериями. Для них H2S является источником энергии. Серобактерии окисляют H2S с выделением свободной серы, которая отлагается у них в цитоплазме в виде капель:

Участие микроорганизмов в круговороте серы, фосфора и железа

В клетках бактерий сера окисляется далее до серной кислоты:

Участие микроорганизмов в круговороте серы, фосфора и железа

Образующиеся сульфаты (соли H2SO4) служат прекрасным питательным веществом для высших растений. H2S в серную кислоту окисляют различные виды пурпурных серобактерий:

Участие микроорганизмов в круговороте серы, фосфора и железа

Наряду с такими сульфурирующими бактериями в природе не менее широко распространены и десульфурирующие микробы (аналоги денитрифицирующих бактерий), они восстанавливают сульфаты, вызывая образование H2S. Выделение H2S десульфурирующими бактериями происходит в глубинах морей, поэтому в Черном море на глубине 2500 м содержание H2S доходит до 6,5 мл в 1 л воды. Значительное накопление H2S в результате биологического восстановления серы наблюдается в целебных грязях, в лиманах и других водоемах. В санитарном отношении серобактерии являются важными агентами начальной стадии биологического очищения сточных вод и разложения органических отбросов, содержащих серу. Большинство серобактерий принадлежит к родам Thiobacillus, Sulfolobus и Thiospira. Общая схема круговорота серы представлена на рис. 54. Кроме биологического круговорота серы в атмосфере происходят небиологические превращения ее газообразных форм. Согласно некоторым подсчетам, в атмосферу ежегодно выделяется около 90 млн тонн серы в виде H2S, образующегося биологическим путем. Кроме того, еще 50 млн тонн поступает в атмосферу в виде SO2, образующейся при сжигании топлива, и около 0,7 млн тонн в форме H2S и SO2, возникающих в результате действия вулканов. В атмосфере H2S быстро окисляется до SO2 атомарным (О) и молекулярным (О2) кислородом или озоном (О3). SO2 может растворяться в воде с образованием H2SO3 или окисляться медленно до SO3, которая при растворении в воде превращается в H2SO4. Основная масса H2SO4 вместе с неокисленной H2SO3 возвращается на землю в форме кислоты, которая становится причиной разрушения различных каменных строений, в том числе многих каменных скульптур.

С химической стороны круговорот фосфора достаточно прост, поскольку он встречается в живых организмах только в пятивалентном состоянии в виде свободных фосфатных ионов (РО4 3 — ) или в составе органических фосфатных компонентов клетки. Бактерии не способны поглощать большинство органических фосфорсодержащих соединений, свои потребности в фосфоре они удовлетворяют путем поглощения фосфатных ионов, из которых затем синтезируют органические фосфатные соединения. При разложении гнилостными бактериями белковых веществ одновременно с минерализацией азота происходит превращение органического фосфора в фосфатные ионы. Поскольку большая часть фосфатов, несмотря на быстрый круговорот фосфора, находится в виде нерастворимых солей кальция, железа или алюминия, фосфаты также служат

Рис. 54

Рис. 54

. Круговорот серы (по Р. Стейнеру [и др.])

Окисление атома серы показано сплошными стрелками; восстановление – точечными стрелками; реакции без изменения валентности – пунктирными стрелками

фактором, ограничивающим рост растений. Растворимые фосфаты постоянно переносятся из почвы в море вследствие выщелачивания. Этот перенос имеет однонаправленный характер. Лишь небольшая часть фосфатов возвращается на сушу, главным образом в виде отложений гуано морскими птицами. Поэтому доступность фосфатов для растений зависит от непрерывного перевода в раствор нерастворимых фосфатных отложений – процесса, в котором важную роль играют микроорганизмы. Образуемые ими кислые продукты метаболизма (органические кислоты, а также азотная и серная) растворяют фосфат кальция, а образуемый ими H2S способствует растворению фосфата железа. В круговороте в природе железа большую роль играют железобактерии, для которых железо служит источником окислительного дыхания (донором электронов). Железобактерии окисляют закисные соединения в окисные, а освобождающуюся энергию используют для усвоения углерода из СО2 или карбонатов. Окисление протекает по формуле:

Участие микроорганизмов в круговороте серы, фосфора и железа

Из железобактерий лучше других изучена не образующая спор подвижная палочка Thiobacillus ferroxidans, которая окисляет и серу. К железобактериям относятся некоторые нитчатые бактерии из рода Leptothrix, а также Gallionella, состоящая из спиральных, закрученных в виде пучков тонких (0,01 – 0,3 мкм) нитей, образующих стебелек, на поверхности которого откладывается гидрат окиси железа. Нитчатые железобактерии в водоемах прикрепляются к различным подводным предметам. Нити бактерий одеты слизистым влагалищем, которое пропитывается гидратом окиси железа. Размножаясь в некоторых озерах в огромных количествах, железобактерии образуют накопления железной руды (например, в Карелии). При размножении в водопроводах железобактерии могут вызывать закупорку просвета труб.

Этапы круговорота различных элементов осуществляются микроорганизмами разных групп. Непрерывное существование каждой отдельной их группы зависит от химических превращений элементов, осуществляемых другими группами микроорганизмов. Разрыв цикла в какой-либо одной точке привел бы к прекращению жизни на Земле. Жизнь непрерывна на Земле потому, что все основные элементы, необходимые для ее проявления (C, N, H, O, P, S), подвергаются циклическим превращениям, во многом благодаря деятельности микроорганизмов.

Цикл круговорота серы распространяется на воду, почву, атмосферу. Ключевые звенья круговорота - это процесс окисления сероводорода до сульфата, а также процесс восстановления сульфата до сероводорода. Вышеуказанные реакции осуществляются аэробными и анаэробными группами бактерий. Особое положение в круговороте серы занимают тионовые бактерии, распространенные в почке, в водоёмах, в горных породах. Как источник окисления эти бактерии используют сероводород, тионовые кислоты, сульфиды либо молекулярную серу.

Круговорот серы также тесно связан с живым веществом (Рисунок 13.9). Сера в виде диоксида, триоксида, сероводорода и главным образом элементарной серы выбрасывается вулканами. Кроме того, в природе имеются в большом количестве различные сульфиды металлов: железа, свинца, цинка и др. Сульфиды окисляется в биосфере при участии многочисленных микроорганизмов до сульфатов, которые поглощаются растениями. На планете существуют организмы, которые, создавая органические вещества пищи, обходятся без солнечной энергии. Вероятно, первыми легкодоступными источниками энергии для древних анаэробных бактерий были окислительно-восстановительные процессы с участием соединений серы. Экзотический процесс, например, катализируют серобактерии, получая энергию при восстановлении сульфатов с помощью водорода:


Рисунок 13.9 Круговорот серы в биосфере

Так образуются различные минералы, содержащие серу. Процесс восстановления сульфатов в сероводород протекает в меньшей степени. Залежи сульфатов в результате геологических смещений могут попасть в более глубокие слои земли, где при высокой температуре реагируют с органическими веществами:
CH4 + CaSO4 = CaCO3 + H2S + H2O.

Первичное накопление сероводорода протекало в рамках анаэробных процессов. В атмосфере кислорода сероводород легко окисляется до свободной серы или оксида серы (IV).
H2S + O2 S + H2O + 527кдж

В вулканических газах: H2S + SO2 S + H2O.

Избытком кислорода воздуха в водоёмах сера переводиться в серную кислоту:
S + O2 + H2O H2SO4 + 1051кдж.

В воздухе среднее время жизни сероводорода около 2 суток. Cероводород - сильный восстановитель, поэтому он не накапливается в воздухе. Образующийся при окислении оксид серы (IV) H2S + O2 SO2 + H2O, приводит к образованию аэрозолей и кислотных дождей. Время жизни SO2 в атмосфере составляет 4 суток. Основной вред окружающей среде наносит не столько сам оксид серы (IV), сколько продукт его окисления – оксид серы (VI) SO3. Он растворяется в капельках воды с образованием серной кислоты:




В целом все вещество литосферы интенсивно подвергается превращениям, участвуя в малом и большом круговороте. Под влиянием лучей Солнца, кислорода, углекислого газа, воды, живого вещества происходит разрушение вещества поверхности Земли. Продукты разрушения уносятся водой и ветром или, будучи растворены в воде, сбрасываются в моря и океаны, где они осаждаются, откладываются на дне, уплотняются, цементируются, образуют слоистые осадочные породы.

Так, ежегодно выносится реками около 2.7·10 9 вещества.

Осадочные породы в результате дальнейшего погружения попадают в магматическую область Земли, под­ергаются действию давления и высокой температуры, переплавляются и в виде изверженных магматических пород могут быть вновь вынесены на поверхность Земли. Изучение круговорота веществ на Земле имеет не только познавательное значение, но и представляет глубокийпрактический интерес. Воздействие человека на природные процессы становится все значительнее. Последствия этого воздействия стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции вещества и энергии, появляются тысячи химических соединений, прежде ей не свойственных.

В руках человека концентрируются огромные запасы металлов, фосфатов, серы, синтезируются колоссальные количества азотсодержащих веществ для удобрения полей и т. д. Меняется обычный ход геохимических процессов. Глубокое изучение всех природных превращений веществ на Земле - необходимое условие рационального воздействия человека на среду его обитания и изменения природных условий в желаемом для него направлении.

Круговорот серы также тесно связан с живым веществом (Рисунок 13.9). Сера в виде диоксида, триоксида, сероводорода и главным образом элементарной серы выбрасывается вулканами. Кроме того, в природе имеются в большом количестве различные сульфиды металлов: железа, свинца, цинка и др. Сульфиды окисляется в биосфере при участии многочисленных микроорганизмов до сульфатов, которые поглощаются растениями. На планете существуют организмы, которые, создавая органические вещества пищи, обходятся без солнечной энергии. Вероятно, первыми легкодоступными источниками энергии для древних анаэробных бактерий были окислительно-восстановительные процессы с участием соединений серы. Экзотический процесс, например, катализируют серобактерии, получая энергию при восстановлении сульфатов с помощью водорода:


Рисунок 13.9 Круговорот серы в биосфере

Так образуются различные минералы, содержащие серу. Процесс восстановления сульфатов в сероводород протекает в меньшей степени. Залежи сульфатов в результате геологических смещений могут попасть в более глубокие слои земли, где при высокой температуре реагируют с органическими веществами:
CH4 + CaSO4 = CaCO3 + H2S + H2O.

Первичное накопление сероводорода протекало в рамках анаэробных процессов. В атмосфере кислорода сероводород легко окисляется до свободной серы или оксида серы (IV).
H2S + O2 S + H2O + 527кдж

В вулканических газах: H2S + SO2 S + H2O.

Избытком кислорода воздуха в водоёмах сера переводиться в серную кислоту:
S + O2 + H2O H2SO4 + 1051кдж.

В воздухе среднее время жизни сероводорода около 2 суток. Cероводород - сильный восстановитель, поэтому он не накапливается в воздухе. Образующийся при окислении оксид серы (IV) H2S + O2 SO2 + H2O, приводит к образованию аэрозолей и кислотных дождей. Время жизни SO2 в атмосфере составляет 4 суток. Основной вред окружающей среде наносит не столько сам оксид серы (IV), сколько продукт его окисления – оксид серы (VI) SO3. Он растворяется в капельках воды с образованием серной кислоты:

В целом все вещество литосферы интенсивно подвергается превращениям, участвуя в малом и большом круговороте. Под влиянием лучей Солнца, кислорода, углекислого газа, воды, живого вещества происходит разрушение вещества поверхности Земли. Продукты разрушения уносятся водой и ветром или, будучи растворены в воде, сбрасываются в моря и океаны, где они осаждаются, откладываются на дне, уплотняются, цементируются, образуют слоистые осадочные породы.

Так, ежегодно выносится реками около 2.7·10 9 вещества.

Осадочные породы в результате дальнейшего погружения попадают в магматическую область Земли, под­ергаются действию давления и высокой температуры, переплавляются и в виде изверженных магматических пород могут быть вновь вынесены на поверхность Земли. Изучение круговорота веществ на Земле имеет не только познавательное значение, но и представляет глубокийпрактический интерес. Воздействие человека на природные процессы становится все значительнее. Последствия этого воздействия стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции вещества и энергии, появляются тысячи химических соединений, прежде ей не свойственных.

В руках человека концентрируются огромные запасы металлов, фосфатов, серы, синтезируются колоссальные количества азотсодержащих веществ для удобрения полей и т. д. Меняется обычный ход геохимических процессов. Глубокое изучение всех природных превращений веществ на Земле - необходимое условие рационального воздействия человека на среду его обитания и изменения природных условий в желаемом для него направлении.

Читайте также: