Трудности исследования земли кратко

Обновлено: 05.07.2024

Открытие крупных месторождений многих полезных ископаемых во второй половине XIX и в XX веке во многом было обеспечено правильным теоретическим прогнозом преимущественно на основе достаточно разработанной теории геосинклиналей и понимания значения исторической последовательности геологических процессов. Геология становится многопрофильной наукой в составе которой выделяются: литология, стратиграфия, минералогия, петрография, историческая геология, тектоника и другие дисциплины. Позже, с развитием новых технологий получили развитие геохимия, геофизика, металлогения и целый ряд других направлений, в том числе исследования из космоса.

К настоящему времени геология вышла на достаточно высокий уровень развития и охватила широкий круг проблем.

Приоритетным направлением научных и практических исследований является изучение проблем глобальных изменений в течение геологической истории Земли. Эти изменения выражаются через тектонику, магматизм, метаморфизм, вулканизм, атмосферные и гидросферные переносы и т.п., а также через процессы связанные с активной деятельностью человека.

Иными словами космогенные, эндогенные, экзогенные и антропогенные факторы, связанные с внутрилитосферными процессами и во взаимодействии с влияниями атмосферы, гидросферы и техногенными процессами являются причиной глобальных изменений.

Для понимания закономерностей большинства природных глобальных процессов и в связи с сокращением, несмотря на технический прогресс, новых открытий месторождений полезных ископаемых, стали необходимы поиски новых научных подходов и, как следствие, возникают новые проблемы. Прежде всего это касается развития нового системно-исторического подхода в фундаментальной геологии.

Не вдаваясь в историю вопроса, констатируем, что одни исследователи оценивают состояние современной теоретической геологии как кризис, другие – как революцию. Причины таких альтернативных оценок видятся в обилии новых факторов, полученных при исследованиях океанического дна, глубоком бурении и изучении планет и космоса.

Научную революцию часто связывают со сменой парадигмы, которая предполагает полную замену старых знаний новыми, что придает революции в науке разрушительный характер. Не с этим ли пониманием смены парадигмы в геологии связано стремление некоторых геологов целиком отбросить “старое” учение о геосинклиналях и сразу утвердить во всем новое – например ТЛП /тектонику литосферных плит/. Такая тенденция наносит вред и неоправданна с методологических позиций. Главное требование при построении новых теорий заключаются как раз в учете и обязательном включении в ее объем предшествующих научных знаний.

Научная революция – процесс созидательный. Как писал В.И. Вернадский “…обычно выясняется, неожиданно для современников, что в старом давно уже таились и подготавливались элементы нового“ далее он продолжает “… основным и решающим в созидании является открытие новых явлений, новых областей наблюдений и опыта, сопровождающиеся новыми фактами ранее неведомого облика”. Итак в, чем главная проблема современной геологии? Что она сейчас переживает кризис или революцию?

Геология – сложнейший комплекс наук, сильно различающихся своей разработанностью. Резкая неоднородность геонаук исключает возможность единых законов и теорий. Земля развивается сложно, “электично” и не знание ее истории всегда будет вероятностным, при этом важное место занимает интуиция, гипотеза и эмпирические обобщения.

К рубежу тысячелетий геология подошла с огромными успехами в познании Земли, в поисках минеральных ресурсов и столкнулась с проблемами экологии.

Источник новых проблем, прежде всего, связан с успехами геологии нескольких последних десятилетий в познании Мирового океана и геодезических исследований глубин нашей планеты. Геология усложняется, дифференцируется и углубляется в прямом и переносном смысле. Возникают проблемы взаимопонимания геологов.

К настоящему времени по одной из главнейших проблем эволюции Земли оформились две противоборствующие концепции по-разному трактующие причины и механизмы глубинных процессов, сформировавших тектонические структуры на континентах и в океане. Одна из них, называющаяся фиксизм , отводит ведущую роль в вертикальном движении земной коры и рассматривает океанические впадины как области крупных погружений на месте бывших континентов. Вторая – любилизм, объясняет геодинамические процессы на основе преимущественно горизотальных движений путем раскола и раздвижения континентов с новообразованием молодой коры в зонах спреденга.

Это “противостояние” вызвало немало путаницы в умах геологов.

В.Е. Ханн в одной из своих работ рассматривая “классику” фиконстов – учение о геосиклиналях и теорию тектоники плит, показал, что их противопоставления неверно в принципе. Он считает, что тектоника плит органически включила в рамки своей концепции основные представления геосинклинального учения о строении геосинклинальных поясов, стадийности и направленности их развития.

“Учение о геосинклиналях благодаря плодотворному контакту с тектоникой плит вступило в новый этап развития, а тектоника плит с включением в нее основных элементов геосинклинального учения наполнилась более конкретным содержанием, т.е. произошло их взаимообогащение” пишет В.Е. Ханн.

Такая постановка вопроса, без сомнения, приносит геологии больше пользы, чем затянувшиеся споры о том, какие движения важней: вертикальные или горизонтальные. Мобилистская концепция, стала в последнее десятилетние не столь проблемной как при ее зарождении. Согласно этой концепции конвекция в мантии приводит к горизонтальным движениям литосферных плит – к их раздвижению /спредингу/ над восходящими конвективными потоками с образованиями новой океанской литосферы, которая субдуцируется /прогибается/ в мантию над нисходящими конвективными потоками в глубинных подводных желобах.

Концепция геосинклинальных процессов рассматривает почти исключительно континентальную кору. Согласно этой концепции континентальная кора разделяется на квазитационарные области и платформы /эпикратоны/ и располагающиеся между ними подвижные пояса – геосинклинали, имеющие в ширину сотни км, длину в тысячи км и испытывающие вертикальные движения порядка 0.02-10 см в год, что дает амплитуду в несколько км.

Современный термин “геосинклиналь” надо трактовать как зону сжатия между сдвигающимися литосферными плитами. Так геосинклиналь Тетис от Средизеного моря до Гимолаев образовалась в результате сдвижения Африкано-Аравийской и Индийской плит с Евразийской плитой, Западно-Тихоокеаническая геосинклиналь, протягивающаяся от Новой Зеландии до Камчатки и состоящая из цепочки структур: желоб – островная дуга – окраинное море, появилась вследствии подвига Тихоокеанской плиты под Австралию и Азию. При таком понимании геосинклиналей первичными по отношению к ним являются процесс горизонтальных движений литосферных плит. Принимая такой расширенный вариант геосинклинальной концепции можно говорить о состыковке взглядов мобилистов и фиксистов.

Основную информацию о внутреннем строении Земли дают геофизические методы:

• сейсмические, основанные на регистрации упругих колебаний,

вызванных землетрясениями или искусственными взрывами;

• гравиметрические, основанные на изучении поля силы тяжести;

• магнитометрические — изучающие магнитное поле Земли;

• геотермические, изучающие тепловое поле планеты и плотность

теплового потока на ее поверхности;

• электрометрические методы, изучающие электропроводность земных

Важнейшим из таких методов является сейсмический, использующий кратковременно возникающее при землетрясениях поле упругих сейсмических волн, в течение 10-20 минут пронизывающих практически всю нашу планету. Возникнув в очаге землетрясения, сейсмические волны распространяются с определенной скоростью по всем направлениям путем упругих перемещений частиц среды. По характеру распространения волны делятся на продольные и поперечные.

Продольные волны характеризуются упругим объемным типом передачи возмущения, при котором перемещение частиц среды соответствует направлению распространения волны. Поперечные волны обладают сдвиговым упругим механизмом передачи возмущения, обеспечивающим распространение волны в направлении, перпендикулярном к перемещению частиц.

Науки геологического цикла: кристаллография, минералогия, петрография, литология, структурная геология, геотектоника, петрология, вулканология, седиментология, геодинамика, сейсмология, геология полезных ископаемых, гидрогеологи и инженерная геология.

Кристаллография - наука о кристаллах, их структуре, возникновении и свойствах. Задачей кристаллографии является изучение строения, физических свойств кристаллов, условий их образования, разработка методов исследования и определения вещества по кристаллической форме, физическим особенностям и т.п.

Минералогия - наука о минералах — природных химических соединениях. Минералогия принадлежит к числу геологических наук, изучающий минералы, вопросы их генезиса, квалификации. Минералогия изучает состав, свойства, структуры и условия образования минералов.

Петрография (петрология) - учение о горных породах. Наука, описывающая горные породы и составляющие их минералы. Изучает закономерности минерального состава и строения рыхлых и твёрдых (каменных) горных пород, слагающих земную кору, формы их залегания, их геологическое и географическое распространение.

Литология - важная часть петрографии изучающая состав, структуру, происхождение и изменение осадочных пород. Она изучает закономерности и условия образования геологических осадков, процессы консолидации и литификации.

· Выявление особенностей и закономерностей распределения осадочных горных пород

· Поиски месторождений полезных ископаемых, связанных с осадочными горными породами

Структурная геология - раздел геотектоники, изучающий формы залегания горных пород в земной коре. Формы залегания горных пород или структурные формы делятся на первичные, то есть возникшие вместе с формированием самой породы, и вторичные, образовавшиеся в результате тектонических деформаций первичных форм.

Геотектоника - раздел геологии, наука о строении, движениях и деформациях литосферы, о её развитии в связи с развитием Земли в целом. Геотектоника составляет теоретическую сердцевину всей геологии.

Вулканология - наука, изучающая процессы и причины образования вулканов, их развитие, строение и состав продуктов извержения, изменение характера их деятельности, а также закономерности размещения вулканов на поверхности Земли. Практическая цель вулканологии — разработка методов предсказания извержений и использование вулканического тепла горячих вод и пара для нужд народного хозяйства.

Седиментология — раздел геологии по изучению закономерностей формирования современных осадочных пород.

Геодинамика — наука о природе глубинных сил и процессов, возникающих в результате планетарной эволюции Земли, как планеты и обуславливающих движение вещества внутри Земли.

Геодинамика является синтезирующей дисциплиной. Она использует данные геологии, геохимии и геофизики, а также широко применяет математическое и физическое моделирование глубинных процессов. Современная геодинамика — это наука, получающая количественные оценки сил, действующих в недрах Земли.

Сейсмология - наука о распространении сейсмических волн в недрах Земли. Также сейсмология занимается землетрясениями, движениями платформ, мониторингом разработок рудных месторождений и пр. Сейсмология – это наука, занимающаяся измерениями и анализом всех движений, которые регистрируются сейсмографами на поверхности твёрдой Земли.

Гидрогеология - наука, изучающая происхождение, условия залегания, состав и закономерности движений подземных вод. Также изучается взаимодействие подземных вод с горными породами, поверхностными водами и атмосферой.

Инженерная геология — наука геологического цикла, ветвь геологии, изучающая морфологию, динамику и региональные особенности верхних горизонтов земной коры (литосферы) и их взаимодействие с инженерными сооружениями (элементами техносферы) в связи с осуществленной, текущей или планируемой хозяйственной, прежде всего инженерно-строительной деятельностью человека.

Речь идет о родной планете, поэтому давайте посмотрим, как проходило исследование Земли. Большую часть земной поверхности успели изучить к началу 20-го века, включая внутреннее строение и географию. Загадочными оставались Арктика и Антарктика. Сегодня практически все участки удалось запечатлеть и нанести на карту благодаря фотографическому картированию и радиолокаторам. Одной из последних исследованных областей был полуостров Дариен, расположенный между Панамским Каналом и Колумбией. Ранее выполнить обзор было сложно из-за постоянных дождей, густой растительности и плотного облачного покрова.

Спутниковое изображение Скоресби-Санд (Гренландия)

Спутниковое изображение Скоресби-Санд (Гренландия)

Изучение глубинных особенностей планеты долгое время не проводили. До этого занимались исследованием поверхностных формирований. Но после Второй мировой войны принялись за геофизические исследования. Для этого использовали специальные датчики. Но так можно было рассмотреть ограниченную часть подповерхностного слоя. Получалось пробраться лишь под верхнюю кору. Максимальная глубина скважины – 10 км.

Основные цели и достижения при исследовании Земли

В исследовании Земли учеными движет научное любопытство, а также экономическая выгода. Население увеличивается, поэтому растет спрос на ископаемые, а также воду и прочие важные материалы. Многие подземные операции проводят для поиска:

  • нефти, угля и природного газа;
  • коммерческих (железо, медь, уран) и строительных (песок, гравий) материалов;
  • подземных вод;
  • пород для инженерного планирования;
  • геотермальных запасов для электричества и отопления;
  • археологии;

Также возникла необходимость в создании безопасности через туннели, хранилища, ядерные реакции и плотины. А это приводит к необходимости уметь предсказать силу и время землетрясения или уровень подповерхностной воды. Активнее всего землетрясениями и вулканами занимается Япония и США, потому что эти страны чаще всего переносят подобные бедствия. Периодически скважины бурят для профилактики.

Методология и инструменты исследовании Земли

Следует знать, какие существуют методы исследования планеты Земля. В геофизике используют магнетизм, гравитацию, отражательные способности, упругие или акустические волны, тепловой поток, электромагнетизм и радиоактивность. Большая часть замеров осуществляется на поверхности, но есть спутниковые и подземные.

Важно понимать, что находится внизу. Иногда не удается добыть нефть только из-за блока другим материалом. Выбор метода основывается на физических свойствах.

Дистанционное зондирование

Используется ЭМ-излучение от земли и отраженная энергия в разнообразных спектральных диапазонах, добытых самолетами и спутниками. Методы основываются на использовании комбинаций изображений. Для этого участки фиксируют с разных траекторий и создают трехмерные модели. Их также выполняют с интервалами, что позволяет проследить изменение (рост урожая за сезон или перемены от шторма и ливня).

Радарные лучи пробиваются сквозь облака. Боковой видимый радиолокатор отличается чувствительностью к перемене поверхностного наклона и шероховатости. Оптико-механический сканер регистрирует теплую ИК-энергию.

Чаще всего используют технику Landsat. Эти сведения добываются мультиспектральными сканерами, размещенными на некоторых американских спутниках, расположенных на высоте в 900 км. Кадры охватывают площадь 185 км. Используется видимый, ИК, спектральный, зеленый и красный диапазоны.

Часть долины Магдалена (Колумбия)

Часть долины Магдалена (Колумбия)

В геологии эту технику применяют для вычисления рельефа, обнажения горных порог и литологии. Также удается фиксировать перемены в растительности, породах, находить подземные воды и распределение микроэлементов.

Магнитные методы

Не будем забывать о том, что исследования Земли проводят из космоса, предоставляя не только фото планеты, но и важные научные данные. Можно вычислить полное земное магнитное поле или же конкретных компонентов. Наиболее старый метод – магнитный компас. Сейчас используют магнитные балансы и магнитометры. Протонный магнитометр вычисляет радиочастотное напряжение, а оптико-накачивающий отслеживает наименьшие магнитные флуктуации.

Перед вами засушливая территория Сахары, а более темные места – растительность влажного и полузасушливого леса Сахель. На заднем плане отмечены темно-зеленые болота острова Чад. Простирается на 200 км и представлены небольшим остатком гигантского леса. Озерный бассейн охватывает 1000 км от переднего плана до подножия тибетских гор.

Перед вами засушливая территория Сахары, а более темные места – растительность влажного и полузасушливого леса Сахель. На заднем плане отмечены темно-зеленые болота острова Чад. Простирается на 200 км и представлены небольшим остатком гигантского леса. Озерный бассейн охватывает 1000 км от переднего плана до подножия тибетских гор.

Магнитные съемки проводят магнитометрами, летающими на параллельных линиях с удаленностью в 2-4 км и на высоте в 500 м. Наземные исследования рассматривают магнитные аномалии, произошедшие в воздухе. Могут размещаться на специальных станциях или перемещающихся кораблях.

Магнитные эффекты формируются из-за намагниченности, созданной осадочными породами. Скалы не способны удерживать магнетизм, если температура превышает 500°C, а это ограничение для глубины в 40 км. Источник должен располагаться глубже и ученые полагают, что именно конвекционные токи генерируют поле.

Методы гравитации

Космические исследования Земли включают различные направления. Гравитационное поле можно определить через падение любого объекта в условиях вакуума, вычисление периода маятника или другими способами. Ученые используют гравиметры – вес на пружине, способной растягиваться и сжиматься. Они действуют с точностью до 0.01 миллиграмма.

Слева видите вулкан Килауэа с вытянутыми завихрениями вулканических газов (сверху), простирающихся на запад от формирования. Члены экипажа специально обучаются снимать подобные дымки под наклоном, чтобы улучшить качество обзора. Галогеновый туман (сочетание тумана, вулкана и смога) – привычное дело для гавайцев и относится к разновидности воздушного загрязнения. Появляется, когда двуокись серы и прочие газы от вулканической активности смешиваются с кислородом, влагой и солнечными лучами.

Слева видите вулкан Килауэа с вытянутыми завихрениями вулканических газов (сверху), простирающихся на запад от формирования. Члены экипажа специально обучаются снимать подобные дымки под наклоном, чтобы улучшить качество обзора. Галогеновый туман (сочетание тумана, вулкана и смога) – привычное дело для гавайцев и относится к разновидности воздушного загрязнения. Появляется, когда двуокись серы и прочие газы от вулканической активности смешиваются с кислородом, влагой и солнечными лучами.

Отличия в гравитации происходят из-за локальной плоскости. На определение данных уходит несколько минут, но вычисление позиции и высоты занимает больше времени. Чаще всего, плотность осадочных пород возрастает с глубиной, потому что давление повышается и теряется пористость. Когда подъемники переносят скалы ближе к поверхности, то формируют аномальные тяжести. Отрицательные аномалии вызывают и полезные ископаемые, поэтому понимание гравитации может указать на источник нефти, а также на расположение пещер и прочих подземных полостей.

Методы сейсмической рефракции

Научный метод исследования Земли основывается на вычислении временного интервала между началом волны и ее прибытием. Волна может создаться взрывом, упавшим весом, воздушным пузырьком и т.д. Для ее поиска используют геофон (суша) и гидрофон (вода).

Сейсмическая энергия прибывает к детектору различными путями. Сначала, пока волна близка к источнику, она выбирает самые короткие дорожки, но с увеличением дистанции начинает вилять. Сквозь тело могут проходить две разновидности волн: Р (первичные) и S (вторичные). Первые выступают волнами сжатия и перемещаются на максимальном ускорении. Вторые – сдвиговые, движущиеся с небольшой скоростью и не способны пройти сквозь жидкости.

Вершины колумбийского массива Санта-Марта. Наивысший (5700 м) именуется в честь Христофора Колумба. Он настолько высокий, что удерживает небольшую, но стабильную ледяную шапку (сверху слева). Расположен на 10 градусов севернее экваториальной линии. Массивы обладают настолько большими высотами, что там не могут расти деревья и пейзаж кажется серым. Лишь трава и кустарники выдерживают низкие температуры.

Вершины колумбийского массива Санта-Марта. Наивысший (5700 м) именуется в честь Христофора Колумба. Он настолько высокий, что удерживает небольшую, но стабильную ледяную шапку (сверху слева). Расположен на 10 градусов севернее экваториальной линии. Массивы обладают настолько большими высотами, что там не могут расти деревья и пейзаж кажется серым. Лишь трава и кустарники выдерживают низкие температуры.

Главная разновидность поверхностного типа – волны Рэлея, где частичка перемещается по эллиптическому пути в вертикальной плоскости от источника. Горизонтальная часть выступает главной причиной землетрясений.

Большая часть информации о земной структуре основывается на анализе землетрясений, так как они генерируют сразу несколько волновых режимов. Все они отличаются по компонентам движения и направлению. В инженерных исследованиях задействуют мелкую сейсмическую рефракцию. Иногда достаточно простого удара кувалдой. Также их применяют для обнаружения неисправностей.

Электрические и ЭМ-методы

При поиске полезных ископаемых методы зависят от электрохимической активности, изменения удельного сопротивления и эффектов диэлектрической проницаемости. Сам потенциал основывается на окислении верхней поверхности металлических сульфидных минералов.

Великолепная дельта и зеленые болота реки Параны (слева), расположенной на атлантическом побережье Аргентины. Стоит на втором месте по величине среди южноамериканских рек, уступая первенство Амазонке. В широкое устье, именуемое Речной плитой (в центре справа), поступает коричневая мутная вода. Серая масса в Буэнос-Айресе не так сильно заметна на такой высоте (вверху слева), но астронавты учатся более точно отображать подобные городские особенности.

Великолепная дельта и зеленые болота реки Параны (слева), расположенной на атлантическом побережье Аргентины. Стоит на втором месте по величине среди южноамериканских рек, уступая первенство Амазонке. В широкое устье, именуемое Речной плитой (в центре справа), поступает коричневая мутная вода. Серая масса в Буэнос-Айресе не так сильно заметна на такой высоте (вверху слева), но астронавты учатся более точно отображать подобные городские особенности.

Резистивность использует передачу тока от генератора к другому источнику и определяет разность потенциалов. Удельное сопротивление породы зависит от пористости, солености и прочих факторов. Скалы с глиной наделены низким удельным сопротивлением. Этим методом можно изучать подводные воды.

Зондирование точно вычисляет, как удельное сопротивление меняется с глубиной. Токи с диапазоном в 500-5000 Гц проникают глубоко. Частота помогает определить уровень глубины. Естественные токи индуцируются из-за возмущений в атмосфере или атаке верхнего слоя солнечным ветром. Они охватывают широкий диапазон, поэтому позволяют исследовать различные глубины эффективнее.

Но электрические методы не способны проникнуть слишком глубоко, поэтому не дают полноценных сведений о нижних слоях. Но с их помощью можно изучить металлические руды.

Радиоактивные методы

Территория Гималаев возле границы с Китаем и Индией. Пики отбрасывают длинные вечерние тени на снегу. Миллионы лет вода уничтожала горную скалу и оставляла осадок. Снежный покров отображает удивительную поверхностную гладкость, а сеть оврагов прорезает местность извилистыми тенями. Крупнейшая река делит каньон с глубиной в 500 м (справа).

Территория Гималаев возле границы с Китаем и Индией. Пики отбрасывают длинные вечерние тени на снегу. Миллионы лет вода уничтожала горную скалу и оставляла осадок. Снежный покров отображает удивительную поверхностную гладкость, а сеть оврагов прорезает местность извилистыми тенями. Крупнейшая река делит каньон с глубиной в 500 м (справа).

Этим способом можно выявить руды или горные породы. Наиболее естественная радиоактивность поступает от урана, тория и радиоизотопа калия. Сцинтиллометр помогает обнаружить гамма-лучи. Главный эмиттер – калий-40. Иногда скалу специально облучают, чтобы измерить воздействие и ответную реакцию.

Геотермические методы

Вычисление температурного градиента приводит к определению аномалии теплового потока. Земля наполнена различными жидкостями, химический состав и перемещение которых определяются чувствительными детекторами. Элементы трассировки иногда связаны с углеводородами. Геохимические карты помогают отыскать промышленные отходы и загрязненные участки.

Раскопки и выборка

Боливийские Анды выделяются уникальным и ярким явлением – Лагуна-Колорадо. При отсутствии атмосферной дымки удалось зафиксировать озеро, расположенное на высоте 4300 м над уровнем моря, что повышает уровень яркости. Отчетливый красно-коричневый окрас 10-километрового озера создается водорослями, живущими в соленых водах. Но иногда есть и зеленые участки, потому что водоросли отличаются по цвету и могут располагаться по уровню солености и температурному показателю.

Боливийские Анды выделяются уникальным и ярким явлением – Лагуна-Колорадо. При отсутствии атмосферной дымки удалось зафиксировать озеро, расположенное на высоте 4300 м над уровнем моря, что повышает уровень яркости. Отчетливый красно-коричневый окрас 10-километрового озера создается водорослями, живущими в соленых водах. Но иногда есть и зеленые участки, потому что водоросли отличаются по цвету и могут располагаться по уровню солености и температурному показателю.

Чтобы идентифицировать различные виды топлива, нужно добыть образец. Многие скважины создаются вращательным способ, где жидкость циркулирует через долото для смазки и охлаждение. Иногда используют перкуссию, где тяжелое сверло опускают и поднимают, чтобы срезать куски скал.

Выводы о земных глубинах

О форме узнали в 1742-1743 гг., а среднюю плотность и массу вычислил Генри Кавендиш в 1797 году. Позже выяснили, что плотность горных пород на поверхности ниже показателя средней плотности, а значит данные внутри планеты должны быть выше.

В конце 1500-х гг. Уильям Гилберт изучил магнитное поле. С того момента узнали о дипольном характере и перемене геомагнитного поля. Волны землетрясений наблюдали в 1900-х гг. Черта между корой и мантией характеризуется крупным ростом скорости на разрыве Мохоровича с глубиной в 24-40 км. Граница мантии и ядра – разрыв Гутенберга (глубина – 2800 км). Внешнее ядро жидкое, потому что не пропускает поперечные волны.

Небольшой островок с огромной концентрацией зон вокруг. Это темный центральный участок, представленный серией пляжных хребтов, созданных песками, которые вынесло с берега штормами. Наивысшая точка поднимается на 12 футов над уровнем моря. Маяк с солнечной батареей кажется крошечной белой точкой (стрелка). Здесь размножаются различные редкие птицы, среди которых фрегаты.

Небольшой островок с огромной концентрацией зон вокруг. Это темный центральный участок, представленный серией пляжных хребтов, созданных песками, которые вынесло с берега штормами. Наивысшая точка поднимается на 12 футов над уровнем моря. Маяк с солнечной батареей кажется крошечной белой точкой (стрелка). Здесь размножаются различные редкие птицы, среди которых фрегаты.

В 1950-х гг. случилась революция в понимании нашей планеты. Теории континентального дрейфа перешли в тектонику плит, то есть литосфера плавает на астеносфере. Пластины смещаются и формируется новая океаническая кора. Также литосферы могут сближаться, удаляться и врезаться. Многие землетрясения возникают на местах субдукции.

Об океанической коре узнали благодаря серии буровых скважин. В рифтовых участках материал из мантийных колодцев охлаждается и затвердевает. Постепенно осадки накапливаются и создается базальтовый фундамент. Кора тонкая (5-8 км в толщину) и практически вся молодая (меньше 200 000 000 лет). Но реликты достигают возраста в 3.8 млрд. лет.

Для побережья Индийского океана прибережные лагуны с округленными островами – типичное явление. Подобные формы выделяются на фоне белых угловых прудов соледобывающей промышленности. Бурые воды (справа и внизу слева) постоянно пополняются дождями, но дамбы не дают темной воде смешаться с более прозрачной.

Для побережья Индийского океана прибережные лагуны с округленными островами – типичное явление. Подобные формы выделяются на фоне белых угловых прудов соледобывающей промышленности. Бурые воды (справа и внизу слева) постоянно пополняются дождями, но дамбы не дают темной воде смешаться с более прозрачной.

Континентальная кора намного старше и формировалась сложнее, поэтому ее тяжелее изучать. В 1975 году команда ученых использовала сейсмические методы, чтобы найти залежи нефти. В итоге им удалось обнаружить несколько низкоугловых тяговых листов под горами Аппалачи. Это сильно отразилось на теории формирования континентов.

После Второй мировой войны энтузиасты со всего мира пытались найти места ядерных взрывов. Это помогло провести огромное количество измерений землетрясений и стало главным источником для определения земной структуры.

Современные исследования планетарных глубин строятся на вычислении поперечных волн. Сейсмический томографический анализ фиксирует отличия в скорости земной поверхности и помогает найти мантийные струи. Ниже представлены знаменательные даты изучения планеты Земля и космические аппараты, которые использовали для этих целей.

Изучение внутреннего строения Земли постоянно занимало умы ученых.

Представления о Земле

Наша планета имела тогда несколько иную форму, и, надо полагать, в этот период от неё и отделился её вечный спутник – Луна. Во всяком случае, Луна отделилась от Земли раньше, чем образовалась земная кора, – примерно никак не менее четырёх миллиардов лет тому назад. О результатах взаимного притяжения между Землей и Луной читайте подробнее: Морские приливы и отливы.

Преобразования Земли

Прошли миллионы лет, прежде чем пошли преобразования Земли. За это время наша планета покрылась достаточно толстым слоем коры. Потребовалось много времени, чтобы на ней образовались большие скопления воды и выделились окончательно материки, моря и океаны, а вокруг Земли образовалась атмосфера – воздушная оболочка, которая простирается во все стороны на расстояние до 1 000 километров.

Трудности в изучении внутреннего строения Земли

Изучение внутреннего строения Земли с помощью рудника

Следует сказать, что изучение внутреннего строения Земли сопряжено с большими трудностями. Рудники, тоннели и буровые скважины позволяют судить о внутреннем строении Земли только на глубину до 4–4,5 километров. Геология, исследуя различные напластования, предоставляет возможность судить о строении Земли на глубине только до 10–20 километров. Изучение внутреннего строения Земли с помощью рудника

О внутреннем её строении на глубине остальных 6 330–6 350 километров можно делать заключение лишь на основании данных, получаемых в результате тщательного и всестороннего исследования землетрясений и изучения величины напряжения силы тяжести в различных точках земной поверхности. За последние годы гравиметрические работы получили широкое развитие.

Гравиметрия – наука об измерении силы тяжести; она имеет большое значение для определения масс внутри Земли и широко применяется в геодезической разведке. Исследование силы тяжести проводилось не только на суше, но и на морях.

Так, например, было проведено исследование силы тяжести на Черном, Японском и Охотском морях на подводных лодках, при помощи специальных маятниковых приборов.

Выводы о внутреннем строении Земли

Новейшие исследования внутреннего строения Земли привели к следующим выводам.

Наличие высокой температуры в центре нашей планеты доказывает хотя бы то обстоятельство, что с углублением в недра Земли на каждые 33 метра температура повышается почти в точности на один градус. Раньше на этом основании делали заключение, что в центре Земли температура достигает около 200 тысяч градусов и что центральное ядро нашей планеты находится в огненно-жидком состоянии.

Внутреннее строение Земли

Затем, на основании исследования землетрясений (во время землетрясения волны внутри Земли распространяются как в твердом, упругом теле), высказывали прдположение, что никакого огненно-жидкого и тем более газообразного ядра в центре Земли нет (хотя температура и достигает там более трех тысяч градусов) и что основная масса земного шара находится в твёрдом состоянии, а центральное его ядро даже твёрже стали. Внутреннее строение Земли

Повышение температуры с углублением внутрь Земля действительно существует, но теперь нам известно, что высказанное выше предположение о степени этого повышения справедливо только для небольшого слоя верхней оболочки нашей планеты и объясняется главным образом наличием в этом слое радиоактивных элементов (торий, радий, уран и др.).

Вулканические извержения

Наиболее ярким доказательством наличия в глубоких недрах нашей планеты высоких температур являются вулканические извержения. Иногда из кратеров вулканов с громадной силой выбрасываются наружу сильно раскалённые и расплавленные массы различного вещества (газы, пары, пепел, застывшие куски лавы), а также большие глыбы тех пород, через которые проходят продукты извержения.

Вулканические извержения как доказательство наличия в глубоких недрах планеты Земля высоких температур

Иногда (очень редко) вулканические извержения бывают настолько сильны и обильны, что затопляют раскалённой лавой целые города.Вулканические извержения

Вулканические извержения как доказательство наличия в глубоких недрах планеты Земля высоких температур.

Твёрдая оболочка нашей Земли имеет толщину немного более тысячи километров и почти в три раза плотнее воды. На глубине почти до 10 километров земная кора, как ни странно, наполовину состоит из кислорода. Большое место в составе земной коры занимают кремний, алюминий и железо, (подробнее: Черные и цветные и металлы и их руды).

Понемногу в её состав входят и другие вещества. Между центральным ядром нашей планеты и её твёрдой оболочкой находится промежуточный слой – туговязкая масса, называемая магмой или симой (благодаря присутствию в ней силиция и магния наряду с другими химическими элементами). Этот промежуточный слой имеет толщину около тысячи километров.


ПРОБЛЕМЫ ПРОИСХОЖДЕНИЯ И РАЗВИТИЯ ЗЕМЛИ. ОСНОВНЫЕ ПОЛОЖЕНИЯ ГЛОБАЛЬНОЙ ТЕКТОНИКИ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

2. Происхождение Земли

2.1 Модель расширяющейся Вселенной

2.2 Модель Большого Взрыва

2.3 Космическая пыль

3. Развитие Земли

4. Основные положения глобальной тектоники

5. Список использованной литературы

1. Введение

С появлением науки в её современном понимании на смену мифологическим и религиозным приходят научные представления о происхождении мира. Наука отличается от мифологии тем, что стремится не к объяснению мира в целом, а к формулированию законов развития природы, допускающих эмпирическую проверку. Разум и опора на чувственную реальность имеют в науке большее значение, чем вера. Наука – это, в определенной степени, синтез философии и религии, представляющее собой теоретическое освоение действительности.

2. Происхождение Земли

Мы живем во Вселенной, а наша планета Земля является ее мельчайшим звеном. Поэтому, история возникновения Земли тесно связана с историей возникновения Вселенной. Кстати, а как она возникла? Какие силы повлияли на процесс становления Вселенной и, соответственно, нашей планеты? В наше время существует множество различных теорий и гипотез относительно этой проблемы. Величайшие умы человечества дают свои взгляды по этому поводу.

2.1. Модель расширяющейся Вселенной

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году. В основе этой модели лежат два предположения: 1) свойства Вселенной одинаковы во всех ее точках (однородность) и направлениях (изотропность); 2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - релятивистская.

Важным пунктом данной модели является ее нестационарность. Это определяется двумя постулатами теории относительности:

1) принципом относительности, гласящим, что во всех инерциальных системах все законы сохраняются вне зависимости от того, с какими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга;

2) экспериментально подтвержденным постоянством скорости света.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, то есть о расширении Мегагалактики – видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами порядка нескольких миллиардов парсек на протяжении, по меньшей мере, нескольких миллиардов лет. В то же время кривизна пространства не может быть измерена, оставаясь теоретической гипотезой.

2.2. Модель Большого Взрыва

Наблюдаемая нами Вселенная, по данным современной науки, возникла в результате Большого взрыва около 13,7 млрд лет назад. Представление о Большом Взрыве является составной частью модели расширяющейся Вселенной.

Что же было после Большого взрыва? Образовался сгусток плазмы – состояния, в котором находятся элементарные частицы – нечто среднее между твердым и жидким состоянием, который и начал расширяться все больше и больше под действием взрывной волны. Через 0,01 сек после начала Большого Взрыва во Вселенной появилась смесь лёгких ядер. Так появились не только материя и многие химические элементы, но и пространство и время.

2.3. Космическая пыль

Возраст нашей планеты Земля составляет 4,6 млрд лет. Общепринята гипотеза, по которой Земля и все планеты сконденсировались из космической пыли, расположенной в окрестностях Солнца. Предполагается, что частицы пыли состояли из железа с примесью никеля, либо из силикатов, в состав которых входит кремний. Газы тоже присутствовали, и они конденсировались, образуя органические соединения, в состав которых входит углерод. Затем образовались углеводороды (соединения углерода с водородом) и соединения азота.

Из гипотез происхождения солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альвена, усовершенствованная Ф. Хойлом. Альвен исходил из предположения, что некогда Солнце обладало очень сильным электромагнитным полем. Туманность, окружавшая светило, состояла из нейтральных атомов. Под действием излучений и столкновений атомы ионизировались. Ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.

Слабость предложенной гипотезы заключалась в том, что атомы наиболее легких элементов должны были ионизироваться ближе к Солнцу, атомы тяжелых элементов – дальше. Значит, ближайшие к Солнцу планеты должны были бы состоять из наилегчайших элементов – водорода и гелия, а более отдаленные – из железа и никеля. Наблюдения говорят об обратном.

Чтобы преодолеть эту трудность, английский астроном Ф. Хойл предложил новый вариант гипотезы. Солнце зародилось в недрах туманности. Оно быстро вращалось, и туманность становилась все более плоской, превращаясь в диск. Постепенно диск начинал тоже разгоняться, а Солнце тормозилось. Момент количества движения переходил к диску. Затем в нем образовались планеты. Если предположить, что первоначальная туманность уже обладала магнитным полем, то вполне могло произойти перераспределение углового момента.

Известна также гипотеза образования планет Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским учёным Отто Юльевичем Шмидтом.

3. Развитие Земли

Древнейшая Земля весьма мало напоминала планету, на которой мы сейчас живем. Её атмосфера состояла из водяных паров, углекислого газа и, по одним, - из азота, по другим – из метана и аммиака. Кислорода в воздухе безжизненной планеты не было, в атмосфере древней Земли гремели грозы, её пронизывало жёсткое ультрафиолетовое излучение Солнца, на планете извергались вулканы. Исследования показывают, что полюса на Земле менялись, и когда-то Антарктида была вечнозеленой. Вечная мерзлота образовалась 100 тыс. лет назад после великого оледенения.

В XIX веке в геологии сформировались две концепции развития Земли:

Успехи физики XX века способствовали существенному продвижению в познании истории Земли. В 1908 году ирландский ученый Д. Джоли сделал сенсационный доклад о геологическом значении радиоактивности: количество тепла, испущенного радиоактивными элементами, вполне достаточно, чтобы объяснить существование расплавленной магмы и извержение вулканов, а также смещение континентов и горообразование. С его точки зрения, элемент материи – атом – имеет строго определенную длительность существования и неизбежно распадается. В следующем 1909 г. русский учёный В.И. Вернадский основывает геохимию – науку об истории атомов Земли и её химико-физической эволюции.

В соответствии с современными взглядами температура ядра Земли может быть низкой, а процессы в земной коре имеют радиоактивную природу. Сначала Земля была холодной. Атомы радиоактивных элементов, распадаясь, выделяли тепло, и недра разогревались. Это повлекло за собой выделение газов и водяных паров, которые, выходя на поверхность, положили начало воздушной оболочке и океанам.

Решающим аргументом в пользу принятия данной концепции А. Вегенера стало эмпирическое обнаружение в конце 50-х годов расширения дна океанов, что послужило отправной точкой создания тектоники литосферных плит. В настоящее время считается, что континенты расходятся под влиянием глубинных конвективных течений, направленных вверх и в стороны и тянущих за собой плиты, на которых плавают континенты. Эту теорию подтверждают и биологические данные о распространении животных на нашей планете. Теория дрейфа континентов, основанная на тектонике литосферных плит, ныне общепринята в геологии.

4. Основные положения глобальной тектоники

Много лет назад отец-геолог подвел своего маленького сына к карте мира и спросил, что будет, если береговую линию Америки придвинуть к побережью Европы и Африки? Мальчик не поленился и, вырезав соответствующие части из физико-географического атласа, с удивлением обнаружил, что западное побережье

Атлантики совпало с восточным в пределах, так сказать, ошибки

Эта история не прошла для мальчика бесследно, он стал геологом и поклонником Альфреда Вегенера, отставного офицера германской армии, а также метеоролога, полярника, и геолога, который в 1915 году создал концепцию дрейфа

Свою лепту в возрождение концепции дрейфа внесли и высокие технологии: именно компьютерное моделирование в середине 1960-х годов показало хорошее совпадение границ континентальных масс не только для Циркум-Атлантики, но и для ряда остальных материков – Восточной Африки и Индостана, Австралии и Антарктиды.

В результате в конце 60-х появилась концепция тектоники плит, или новой глобальной тектоники.

Предложенная сначала чисто умозрительно для решения частной задачи –распределения землетрясений различной глубинности на поверхности Земли, – она сомкнулась с представлениями о дрейфе континентов и мгновенно получила всеобщее признание. К 1980 году – столетию со дня рождения Альфреда Вегенера – стало принято говорить о формировании новой парадигмы в геологии. И даже о научной революции, сопоставляемой с революцией в физике начала XX века…

Согласно этой концепции, земная кора разбита на несколько огромных литосферных плит, которые постоянно двигаются и продуцируют землетрясения. Первоначально было выделено несколько литосферных плит: Евразийская, Африканская, Северо – и Южноамериканская, Австралийская, Антарктическая, Тихоокеанская. Все они, кроме Тихоокеанской, чисто океанической, включают в себя части как с континентальной, так и океанической корой. И дрейф континентов в рамках этой концепции – не более чем их пассивное перемещение вместе с литосферными плитами.

В основе глобальной тектоники лежит представление о литосферных плитах, фрагментах земной поверхности, рассматриваемых, как абсолютно жесткие тела, перемещающиеся словно по воздушной подушке по слою разуплотненной мантии -

Учёным совершенно не ясно, куда движутся и движутся ли материки вообще, а если движутся, то за счёт действия каких сил и источников энергии. Широко распространённое предположение о том, что причиной движения земной коры служит тепловая конвекция, по сути, неубедительно, ибо оказалось, что такого рода предположения идут вразрез с основными положениями многих физических законов, экспериментальных данных и многочисленных наблюдений, включая данные космических исследований о тектонике и строении других планет. Реальных схем тепловой конвекции, не противоречащих законам физики, и единого логически обоснованного механизма движения вещества, одинаково приемлемых для условий недр звёзд, планет и их спутников, до сих пор не найдено.

В срединно-океанических хребтах образуется новая разогретая океаническая кора, которая, остывая, снова погружается в недра мантии и рассеивает тепловую энергию, идущую на перемещение плит земной коры.

Гигантские геологические процессы, такие как вздымание горных хребтов, мощные землетрясения, образование глубоководных впадин, извержение вулканов, – все они, в конце концов, порождаются движением плит земной коры, при котором происходит постепенное охлаждение мантии нашей планеты.

5. Список использованной литературы

1. Азимов Айзек. Земля и космос. От реальности к гипотезе / Пер. с англ. Л.А. Игоревского. – М.: ЗАО Центрполиграф, 2004. – 286 с.

2. Астрономия. / Клищенко А.П., Щупляк В.И. – 2004. – 222 с.

3. Брашнов Д.Г. Удивительная астрономия. – 2013.

4. Дубнищева Т.Я. Концепции современного естествознания. – М.: Academia – 2013. – 352 с.

6. Новиков И.Д. Эволюция Вселенной. – М., 1990.

7. Панасюк М.И. Странники Вселенной или эхо Большого взрыва. – 2005.

8. Сурдин В. Г. Динамика звёздных систем. – М.: Изд-во Московского центра непрерывного образования, 2001.

9. Френкель Е.Н. Концепции современного естествознания. Физические, химические и биологические концепции. – Ростов н/Д: Феникс, 2014. – 246 с.

Читайте также: