Треугольник сопротивлений это кратко

Обновлено: 05.07.2024

Из (3.34) следует, что модуль комплексного сопротивления

Следовательно, z можно представить как гипотенузу прямоугольного треугольника (рис. 3.10) — треугольника сопротивлений, один катет которого равен R, другой — X. При этом

Аналогичным образом модуль комплексной проводимости в соответствии с Следовательно, у есть гипотенуза прямоугольного треугольника (рис. 3.11), катетами которого являются активная g и реактивная b проводимости:

Треугольник сопротивлений дает графическую интерпретацию связи между модулем полного сопротивления z и активным и реактивным сопротивлениями цепи; треугольник проводимостей — интерпретацию связи между модулем полной проводимости у и ее активной и реактивной составляющими.

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

Активное и реактивное сопротивление

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.

Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.

Активное сопротивление

В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, пропорционально активному сопротивлению.

При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.

Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:

R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.

На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.

Реактивное сопротивление

Тип сопротивления, определяющий соотношение напряжения и тока на емкостной и индуктивной нагрузке, не обусловленное количеством израсходованной электроэнергии, называется реактивным сопротивлением. Оно имеет место только при переменном токе, и может иметь отрицательное и положительное значение, в зависимости от направления сдвига фаз тока и напряжения. При отставании тока от напряжения величина реактивной составляющей сопротивления имеет положительное значение, а если отстает напряжение от тока, то реактивное сопротивление имеет знак минус.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное. Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока. В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Треугольник сопротивлений

Схема цепи, подключенной к переменному току, имеет полное сопротивление, которое можно определить в виде суммы квадратов реактивного и активного сопротивлений.

Если изобразить это выражение в виде графика, то получится треугольник сопротивлений. Он образуется, если рассчитать последовательную цепь всех трех видов сопротивлений.

По этому треугольному графику можно увидеть, что катеты представляют собой активное и реактивное сопротивление, а гипотенуза является полным сопротивлением.

Из выражения Z=R+jX, вытекает, что модуль комплексного сопротивления равен z=(r^2+x^2)^0.5, следовательно z, можно представить, как гипотенузу прямоугольного треугольника, в котором один из катетов= r, а другой =x, а tg(ФИ)=x/r. Аналогично представляется треугольник проводимости, y=(g^2+b^2)^0.5, только в нем tg(ФИ)= b/g.

Треугольник сопротивлений и проводимостей дает графическую интерпретацию связи между полным сопротивление и активного и реактивного сопротивления, а также полной проводимость, и активной и реактивной проводимостью.

№ 16. Законы Кирхгофа в символической форме записи

Первый закон:

Алгебраическая сумма значений токов, сходящихся в любом узле схемы, равна нулю:

Второй закон:

Алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(Величины в уравнениях являются комплексными (с точками сверху))

№ 12, 17. Активная, реактивная и полная мощности. Коэффициент мощности

Активная мощность P – среднее значение мгновенной мощности p за период Т:

P = 1 / T * 0∫ T p dt, [P] = Вт

Реактивная мощность Q – произведение напряжения U на участке цепи на ток I по этому участку на синус угла φ между U и I:

Q = U * I * sin(φ), [Q] = ВАр (вольт-амперы реактивные)

Полная мощность:S = U * I, [S] = ВА

P^2 + Q^2 = S^2 – т.е. графически можно представить в виде прямоугольного треугольника мощности

Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения:

№ 18. Мгновенная мощность и колебание энергии в цепи синусоидального тока

Мгновенная мощность – произведение мгновенного значения напряжения u на участке цепи на мгновенное значение тока i, протекающего по этому участку:

Энергия магнитного поля катушки: Wм = L * i^2 / 2

Энергия электрического поля конденсатора: Wэ = C * uC^2 / 2

№ 19. Эквивалентные преобразования в электрических цепях

Теорема компенсации: в любой электрической цепи без изменения токораспределения сопротивление можно заменить ЭДС, численно равной падению напряжения на заменяемом сопротивлении и направленной встречно току в этом сопротивлении.

Несколько параллельно включённых ветвей, содержащих источники ЭДС и тока и сопротивления можно заменить одной эквивалентной ветвью со следующими параметрами:

Eэ = (Σ Ek * gk + Σ Ik) / Σgk

№ 20. Метод законов Кирхгофа

1. Произвольно выбрать положительные направления токов в ветвях и направления обхода контуров

2. Составить уравнения по первому закону Кирхгофа для всех узлов, кроме одного

3. Составить уравнения по второму закону Кирхгофа так, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, которая ещё не входила ни в одно из уравнений

№ 21. Метод контурных токов

Применяется для уменьшения числа уравнений в системе и теоретическом анализе схемы. За искомые токи принимают контурные токи и составляется система уравнений по второму закону Кирхгофа, число уравнений равно числу независимых контуров:

I11 * R11 + I22 * R12 + … = E11

I11 * R21 + I22 * R22 + … = E22

где I11, I22 – контурные токи; R11, R22 – суммы сопротивлений в контуре; R12, R21 – взаимные сопротивления контуров, взятых с минусом; E11, E22 – сумма ЭДС в контуре. После нахождения контурных токов вычисляют исходные токи

№ 22. Принцип наложения и метод наложения

Принцип наложения: ток в k-цепи равен алгебраической сумме токов, вызываемых каждой из ЭДС:

Ik = E1 * gk1 + E2 * gk2 + … + En * gkn

По методу наложения поочерёдно рассчитывают токи, возникающие от действия каждой из ЭДС, мысленно удаляя из схемы остальные, затем находят исходные токи в ветвях

Коэффициенты g (из предыдущего вопроса) имеют размерность проводимости. Коэффициенты с одинаковыми индексами (gmm) называют входными проводимостями ветвей (ветви m), коэффициенты с разными индексами (gkm) – взаимными проводимостями ветвей (ветвей k и m) (k – ветвь с ЭДС, m – текущая ветвь)

№ 24. Метод узловых потенциалов

За неизвестные принимают потенциалы узлов схемы и составляется система уравнений по первому закону Кирхгофа, число уравнений равно числу узлов минус 1:




φ1 * g11 + φ2 * g12 + … = I11

φ1 * g21 + φ2 * g22 + … = I22

где φ1, φ2 – потенциалы узлов; g11, g22 – суммы проводимостей всех ветвей, сходящихся в узле; g12, g21 – сумма проводимостей ветвей между узлами, взятых с минусом; I11, I22 – узловые токи, равные сумме токов, полученных от деления ЭДС, подходящих к узлу, на сопротивление данных ветвей. После решения системы определяют токи в ветвях по закону Ома для участка цепи, содержащего ЭДС

№ 25. Метод эквивалентного генератора

По отношению к выделенной цепи всю остальную часть схемы можно заменить эквивалентным генератором, состоящим из ЭДС E = Uxx и сопротивления Rвх

1. Ветвь, ток в которой необходимо определить, размыкают и находят напряжение на её зажимах

2. Определяют входное сопротивление Rвх всей схемы относительно зажимов при закороченных источниках ЭДС

3. Рассчитывают ток: I = Uxx / (R + Rвх)

Из выражения Z=R+jX, вытекает, что модуль комплексного сопротивления равен z=(r^2+x^2)^0.5, следовательно z, можно представить, как гипотенузу прямоугольного треугольника, в котором один из катетов= r, а другой =x, а tg(ФИ)=x/r. Аналогично представляется треугольник проводимости, y=(g^2+b^2)^0.5, только в нем tg(ФИ)= b/g.

Треугольник сопротивлений и проводимостей дает графическую интерпретацию связи между полным сопротивление и активного и реактивного сопротивления, а также полной проводимость, и активной и реактивной проводимостью.

№ 16. Законы Кирхгофа в символической форме записи

Первый закон:

Алгебраическая сумма значений токов, сходящихся в любом узле схемы, равна нулю:

Второй закон:

Алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

(Величины в уравнениях являются комплексными (с точками сверху))

№ 12, 17. Активная, реактивная и полная мощности. Коэффициент мощности

Активная мощность P – среднее значение мгновенной мощности p за период Т:

P = 1 / T * 0∫ T p dt, [P] = Вт

Реактивная мощность Q – произведение напряжения U на участке цепи на ток I по этому участку на синус угла φ между U и I:

Q = U * I * sin(φ), [Q] = ВАр (вольт-амперы реактивные)

Полная мощность:S = U * I, [S] = ВА

P^2 + Q^2 = S^2 – т.е. графически можно представить в виде прямоугольного треугольника мощности

Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения:

№ 18. Мгновенная мощность и колебание энергии в цепи синусоидального тока

Мгновенная мощность – произведение мгновенного значения напряжения u на участке цепи на мгновенное значение тока i, протекающего по этому участку:

Энергия магнитного поля катушки: Wм = L * i^2 / 2

Энергия электрического поля конденсатора: Wэ = C * uC^2 / 2

№ 19. Эквивалентные преобразования в электрических цепях

Теорема компенсации: в любой электрической цепи без изменения токораспределения сопротивление можно заменить ЭДС, численно равной падению напряжения на заменяемом сопротивлении и направленной встречно току в этом сопротивлении.

Несколько параллельно включённых ветвей, содержащих источники ЭДС и тока и сопротивления можно заменить одной эквивалентной ветвью со следующими параметрами:

Eэ = (Σ Ek * gk + Σ Ik) / Σgk

№ 20. Метод законов Кирхгофа

1. Произвольно выбрать положительные направления токов в ветвях и направления обхода контуров

2. Составить уравнения по первому закону Кирхгофа для всех узлов, кроме одного

3. Составить уравнения по второму закону Кирхгофа так, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, которая ещё не входила ни в одно из уравнений

№ 21. Метод контурных токов

Применяется для уменьшения числа уравнений в системе и теоретическом анализе схемы. За искомые токи принимают контурные токи и составляется система уравнений по второму закону Кирхгофа, число уравнений равно числу независимых контуров:

I11 * R11 + I22 * R12 + … = E11

I11 * R21 + I22 * R22 + … = E22

где I11, I22 – контурные токи; R11, R22 – суммы сопротивлений в контуре; R12, R21 – взаимные сопротивления контуров, взятых с минусом; E11, E22 – сумма ЭДС в контуре. После нахождения контурных токов вычисляют исходные токи

№ 22. Принцип наложения и метод наложения

Принцип наложения: ток в k-цепи равен алгебраической сумме токов, вызываемых каждой из ЭДС:

Ik = E1 * gk1 + E2 * gk2 + … + En * gkn

По методу наложения поочерёдно рассчитывают токи, возникающие от действия каждой из ЭДС, мысленно удаляя из схемы остальные, затем находят исходные токи в ветвях

Коэффициенты g (из предыдущего вопроса) имеют размерность проводимости. Коэффициенты с одинаковыми индексами (gmm) называют входными проводимостями ветвей (ветви m), коэффициенты с разными индексами (gkm) – взаимными проводимостями ветвей (ветвей k и m) (k – ветвь с ЭДС, m – текущая ветвь)

№ 24. Метод узловых потенциалов

За неизвестные принимают потенциалы узлов схемы и составляется система уравнений по первому закону Кирхгофа, число уравнений равно числу узлов минус 1:

φ1 * g11 + φ2 * g12 + … = I11

φ1 * g21 + φ2 * g22 + … = I22

где φ1, φ2 – потенциалы узлов; g11, g22 – суммы проводимостей всех ветвей, сходящихся в узле; g12, g21 – сумма проводимостей ветвей между узлами, взятых с минусом; I11, I22 – узловые токи, равные сумме токов, полученных от деления ЭДС, подходящих к узлу, на сопротивление данных ветвей. После решения системы определяют токи в ветвях по закону Ома для участка цепи, содержащего ЭДС

№ 25. Метод эквивалентного генератора

По отношению к выделенной цепи всю остальную часть схемы можно заменить эквивалентным генератором, состоящим из ЭДС E = Uxx и сопротивления Rвх

1. Ветвь, ток в которой необходимо определить, размыкают и находят напряжение на её зажимах

2. Определяют входное сопротивление Rвх всей схемы относительно зажимов при закороченных источниках ЭДС

Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов
Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов

Треугольники сопротивлений, проводимостей, мощностей, напряжений и токов

Сопротивление, проводимость, мощность, напряжение, ток треугольника. Общее сопротивление, проводимость, двухполюсник и их составляющие удовлетворяют соотношению и могут быть представлены треугольником (рисунок 2.3).

Комплексное напряжение и ток двухполюсной сети могут быть выражены в виде двух ортогональных компонентов.

В этом случае фаза напряжения соответствует текущей фазе, а фаза напряжения отличается от текущей фазы на ± π / 2. Аналогично, фаза совпадает с фазой, а фаза отличается от фазы на ± π / 2. Это связано с тем, что действующее напряжение и ток, а также их активные и реактивные компоненты также могут быть представлены в форме треугольника (рисунок 2.4). Если фазы тока и напряжения нескольких RLC-биполяр одинаковы, то есть биполяр имеет чисто активное сопротивление, его реактивная мощность равна нулю () и называется резонансной.

  • Резонанс может быть достигнут путем изменения параметров схемы R, L, C или угловой частоты ω внешнего напряжения (тока). Ток в последовательном контуре RLC наблюдается на частоте, называемой резонансной частотой.

Коэффициент качества схемы характеризует резонансные характеристики цепи и определяется уравнением. (2.5) Зависимость тока этой цепи от частоты ω приложенного внешнего напряжения с инвариантностью эффективного значения U = const имеет вид. (2.6) Зависимость (2.6) называется резонансной кривой, а I0 = U / R — текущее значение в резонансе.

Когда ω = ω0. Ширина полосы пропускания (ω1-ω2) определяется из соотношения: ω1 и ω2 — частоты, на которых эффективное значение тока в 1 раз превышает фактические элементы схемы (приемник, источник) при расчете резонансного тока I0 = U / AC электрическая схема Идеальная комбинация элементов схемы R, L, C Эквивалентная эквивалентная схема, состоящая из Приемники энергии, как правило, являются по существу активной индукцией (например, электродвигатели).

Такой приемник может быть представлен двумя простейшими эквивалентными цепями, состоящими из двух элементов схемы R и L: а) напряжение последовательно (рис. 53а) и б) параллельные стороны треугольника тока Разделите на U, чтобы получить новый треугольник, похожий на исходный треугольник.

Но его стороны являются проводящими: полный Y, активный-G, реакция-B (рисунок 55b).

Треугольники со сторонами Y, G, B называются треугольниками проводимости. Отношения продолжаются от треугольника проводимости. Любой, у кого есть идея векторной диаграммы, заметит, что треугольник напряжения прямоугольника, отражающий общее напряжение цепи, напряжение сопротивления и напряжение реактивного сопротивления, очень хорошо виден.

Решение задачЛекции
Расчёт найти определенияУчебник методические указания

Согласно теореме Пифагора о напряжении, связь между этими напряжениями (между общим напряжением цепи и напряжением этой секции) Напряжение Если следующий шаг делит эти значения напряжения на ток (один и тот же ток протекает через все части последовательной цепи), тогда значение сопротивления получается в соответствии с законом Ома.

  • То есть мы можем говорить о прямоугольном прямоугольнике сопротивления: согласно теореме Пифагора мы устанавливаем взаимосвязь между сопротивлением цепи и реактивным сопротивлением аналогичным образом (как в случае напряжения). Связь выражается как: Общее сопротивление цепи Затем подайте ток на сопротивление. Фактически, увеличивайте каждую сторону прямоугольного треугольника определенное количество раз.

В результате получается прямоугольный треугольник емкости: силовой треугольник Активная мощность, выделяемая активным сопротивлением цепи, связанной с необратимым преобразованием электрической энергии (преобразование в тепло, выполнение работ на оборудовании), составляет Электрическая мощность в катушке и конденсаторе явно связана с реактивной мощностью, участвующей в обратимом преобразовании энергии), и вся электрическая мощность подается в электрическую установку.

Активная мощность измеряется в ваттах (Вт), реактивная мощность измеряется в вар (VAR — реактивная мощность в вольт-амперах), а общая мощность измеряется в ВА (вольт-амперах). По теореме Пифагора мы имеем право написать: Обратите внимание, что силовой треугольник здесь имеет угол фи, и его косинус может быть легко определен в первую очередь по активной мощности и кажущейся мощности.

Косинус этого угла (косинус фи) называется коэффициентом мощности. Это указывает, какая часть общей мощности будет потеряна и не будет возвращена в сеть после завершения полезных работ по электромонтажу.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: