Ток смещения уравнения максвелла кратко

Обновлено: 04.07.2024

Ток смещения или абсорбционный ток — величина, которая прямо пропорциональна скорости изменения электрической индукции.

Каждому переменному магнитному полю свойственно вихревое электрическое поле. Проводя исследования разных электромагнитных процессов, Дж. К. Максвелл определил существование обратного явления, когда электрическое поле, изменяясь, приводит к появлению вихревого магнитного поля.

Данное утверждение является одним из основных в теории Максвелла. Известно, что магнитное поле является признаком любого тока. Основываясь на данном факте, ученый определил переменное электрическое поле, как ток смещения. При измерении он будет отличаться от тока проводимости, который представляет собой следствие движения заряженных частиц в виде электронов и ионов.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Токи смещения можно наблюдать только тогда, когда электрическое смещение \(\vec\) переменно, то есть наблюдают его колебания. Объемную плотность тока в этом случае можно измерить и рассчитать по формуле:

Вывод данного физического содержания теории Максвелла о токах смещения позволяет утверждать, что переменные электрические поля являются источниками переменных магнитных полей. Следует отметить, что для определения плотности тока смещения используют производную вектора \(\vec\)

Ток смещения в диэлектрике

Вектор электрической индукции измеряется по формуле:

Где \(\varepsilon _\) — электрическая постоянная, \(\vec\) — вектор напряженности, \(\vec\) — вектор поляризации.

Уравнение для тока смещения будет иметь следующий вид:

Где \(\frac>\) — плотность тока поляризации.

Токи поляризации являются следствием движения связанных заряженных частиц, которые не обладают принципиальными отличиями по сравнению со свободными зарядами. Основываясь на данном факте, можно объяснить порождение магнитного поля токами поляризации. Принципиальной новизной отличается вторая часть уравнения тока смещения:

Данная формула не обладает связью с перемещением заряженных частиц, но также формирует магнитное поле. Можно сделать вывод, что в вакуумной среде любое изменение электрического поля по времени является причиной образования магнитного поля.

Нужно обратить внимание на то, что определение тока смещения для диэлектриков имеет какое-то обоснование, так как в них действительно можно наблюдать смещение зарядов в атомах и молекулах. Но этот термин применяют и к вакууму, в котором отсутствуют заряды, а, следовательно, и их смещение.

Полный ток

При наличии в проводнике переменного тока, внутри него будет образовано переменное электрическое поле. Таким образом, проводник будет вмещать в себе ток проводимости (j) и ток смещения. Магнитное поле проводника рассчитывают, как сумму вышеуказанных токов, то есть полный ток:

Роль данных слагаемых определяется двумя факторами:

  • электропроводность вещества;
  • частота переменного тока.

В зависимости от перечисленных характеристик можно наблюдать следующие процессы:

  1. Вещества с хорошей проводимостью такие, как металлы, при низкой частоте переменного тока: плотность тока смещения обладает небольшой мощностью, в то время как ток проводимости достаточно велик. В данной ситуации током смещения целесообразно пренебречь по сравнению с током проводимости.
  2. В веществах, для которых характерно высокое сопротивление, то есть изоляторах, при токе с большой частотой ведущая роль отведена току смещения. В этом случае в уравнении для общего тока слагаемые могут обладать одинаковыми или противоположными знаками.

Поэтому величина полного тока может быть меньше, либо превышать ток проводимости, а также равняться нулю. Таким образом, в общем случае переменных токов полный ток определяет магнитное поле. При размыкании контура на концах проводника наблюдают обрыв только тока проводимости. В диэлектрике между концами проводника возникает ток смещения, замыкающий ток проводимости. В итоге, из понятия электрического тока, как полного тока, вытекает утверждение, что в природе все токи замкнуты.

Как найти плотность тока смещения, формула

С целью установить количественную связь между изменяющимся электрическим полем и магнитным полем, которое вызвано электрическим, Максвелл ввел в рассмотрение ток смещения. Определение справедливо в случае работы с диэлектриками. В данных веществах заряженные частицы меняют положение по причине воздействия на них электрического поля.

Исходя из данного пояснения, можно рассчитать ток смещения. Поверхностная плотность поляризационных зарядов и вектор электрического смещения равны:

\(\sigma =E\varepsilon \varepsilon _\)

\(\vec =E\varepsilon \varepsilon _\)

Величину полного заряда на поверхности диэлектрика, а также на пластинах конденсатора, можно рассчитать по формуле:

Где S — площадь обкладки конденсатора.

Тогда можно записать следующую формулу:

Таким образом, ток смещения является величиной, пропорциональной скорости, с которой изменяется вектор электрического смещения \(\vec\)

Отсюда вытекает определение тока смещения. Плотность тока смещения можно найти по формуле:

Вихревое магнитное поле \(\vec\) образуется в результате протекания тока смещения, связано с направлением вектора \(\frac>\) правилом правого винта. Относительная диэлектрическая проницаемость среды рассчитывается по формуле:

Система уравнений Максвелла для электромагнитного поля: смысл, способы решения

Уравнения Максвелла в электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм.

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Уравнения Максвелла неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.


Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Первое уравнение Максвелла

Современный вид первого уравнения Максвелла таков:


Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса.

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса, только уже не для электрического поля, но для магнитного.

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея. Его вид:

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое уравнение Максвелла

Четвертое - самое важное из всех уравнений Максвелла. Именно в нем ученый ввел понятие тока смещения.

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:


Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис. Подробное объяснение любого задания и отличная оценка гарантированы.

Мы установили, что изменяющееся магнитное поле порождает изменяющееся электрическое поле, которое в свою очередь порождает изменяющееся магнитное поле и т. д. В результате образуются сцепленные между собой электрическое и магнитное поля, составляющие электромагнитную волну. Она “отрывается” от зарядов и токов, которые ее породи­ли. Способ существования электромагнитной волны делает невозможным ее неподвижность в пространстве и постоянство напряженности во времени.

Постоянный ток не протекает в цепи с конденсатором, а в случае переменного напряжения в цепи ток протекает через конденсатор. Для постоянного тока конденсатор – разрыв в цепи, а для переменного этого разрыва нет. Поэтому необходимо заключить, что между обкладками конденсатора происходит некоторый процесс, который как бы замыкает ток проводимости. Этот процесс между обкладками конденсатора был назван током смещения. Напряженность поля между обкладками конденсатора . Из граничного условия для вектора следует, что диэлектрическое смещение между обкладками , а сила тока в цепи равна . Тогда


, (25.1)

А значит процессом, замыкающим ток проводимости в цепи, является изменение электрического смещения во времени. Плотность тока


. (25.2)

Существование тока смещения было постулировано Максвеллом в 1864 г. и затем экспериментально подтверждено другими учеными.

Почему скорость изменения вектора смещения называется плотностью тока? Само по себе математическое равенство величины , характеризующей процесс между обкладками конденсатора, т. е. равенство двух величин, относящихся к разным областям пространства и имеющим различную физическую природу, не содержит в себе, вообще говоря, какого-то физического закона. Поэтому называть ”током” можно только формально. Для того чтобы придать этому названию физический смысл, необходимо доказать, что обладает наиболее характерными свойствами тока, хотя и не представляет движения электрических зарядов, подобного току проводимости. Главным свойством тока проводимости является его способность порождать магнитное поле. Поэтому решающим является вопрос о том, порождает ли ток смещения магнитное поле так же, как его порождают ток проводимости, или, более точно, порождает ли величина (25.2) такое же магнитное поле, как равная ей объемная плотность тока проводимости? Максвелл дал утвердительный ответ на этот вопрос. Однако наиболее ярким подтверждением порождения магнитного поля током смещения является существование электромагнитных волн. Если бы ток смещения не создавал магнитного поля, то не могли бы существовать электромагнитные волны.

Уравнение Максвелла с током смещения.

Порождение магнитного поля токами проводимости описывается уравнением


(25.3)

Учитывая порождение поля током смещения, необходимо обобщить это уравнение в виде


(25.4)

Тогда, принимая во внимание (25.2), окончательно получаем уравнение


, (25.5)

Являющееся одним из уравнений Максвелла.

Система уравнений Максвелла.

Полученная в результате обобщения экспериментальных данных, эта система имеет вид:

, (25.6)

Эти уравнения называются полевыми и справедливы при описании всех макроскопических электромагнитных явлений. Учет свойств среды достигается уравнениями


, (25.7)

Называемыми обычно Материальными уравнениями среды. Среды линейны, если и нелинейны если . Материальные уравнения, как правило, имеют вид функционалов.

Рассмотрим физический смысл уравнений.

Уравнение I выражает закон, по которому магнитное поле порождается токами проводимости и смещения, являющимися двумя возможными источниками магнитного поля. Уравнение II выражает закон электромагнитной индукции и указывает на изменяющееся магнитное поле как на один из возможных источников, порождающих электрическое поле. Вторым источником электрического поля являются электрические заряды (уравнение IV). Уравнение III говорит о том, что в природе нет магнитных зарядов.

Полнота и совместность системы. Единственность решения.

В случае линейной среды можно исключить из полевых уравнений (25.6) величины в результате чего они становятся уравнениями относительно векторов и , т. е. относительно шести неизвестных (у каждого вектора по 3 проекции). С другой стороны число скалярных уравнений в (25.6) равно восьми. Получается, что система состоит из 8 уравнений для 6 неизвестных. Однако в действительности система не переполнена. Это обусловлено тем, что уравнения I и IV, а также II и III имеют одинаковые дифференциальные следствия и поэтому связаны между собой.


Чтобы в этом убедиться возьмем от уравнения II и производную по времени от уравнения III. Получим:

,


Т. е. получили одинаковые дифференциальные следствия. Аналогично возьмем от уравнения I:


.

С из уравнения непрерывности следует, что . Тогда

или . Из IV следует, что

Наличие двух дифференциальных связей и делает систему уравнений Максвелла совместной. Более подробный анализ показывает, что система является полной, а ее решение однозначно при заданных начальных и граничных условиях.

Доказательство единственности решения в общих чертах сводится к следующему. Если имеется два различных решения, то их разность вследствие линейности системы тоже является решением, но при нулевых зарядах и токах и нулевых начальных и граничных условиях. Отсюда, пользуясь выражением для энергии электромагнитного поля и законом сохранения энергии заключаем, что разность решений тождественно равна нулю, т. е. решения одинаковы. Тем самым единственность решения уравнений Максвелла доказана.

Основные законы электричества и магнетизма, которые мы рассматривали до сих пор, можно представить в дифференциальной форме следующими четырьмя уравнениями:

Эти уравнения записаны в макроскопической форме в гауссовой системе единиц. Напомним, что все эти законы, кроме закона Фарадея, получены при изучении постоянных полей. С логической точки зрения априори ниоткуда не следует, что статические уравнения должны остаться неизменными в случае полей, зависящих от времени. И действительно, система уравнений (6.22) в той форме, как она здесь написана, неприменима для переменных полей.

Потребовался гений Джемса Кларка Максвелла, который, опираясь на результаты экспериментов Фарадея, сумел обнаружить некорректность уравнений (6.22) и надлежащим образом изменить их, что в итоге привело к открытию новых физических явлений, не известных в то время, но впоследствии подтвержденных экспериментально во всех деталях. Такая блестящим образом дополненная Максвеллом в 1865 г. система уравнений заслуженно известна под названием уравнений Максвелла.

Некорректным уравнением в системе (6.22) является закон Ампера, который выведен для постоянных токов, когда Это требование к дивергенции J содержится непосредственно в уравнении Ампера. Действительно, беря дивергенцию от обеих

частей равенства, получаем

Однако уравнение справедливо только для стационарных явлений; общее соотношение дается уравнением непрерывности для заряда и тока

Максвелл заметил, что при учете закона Кулона [см. (6.22)] уравнение непрерывности можно представить в виде равенства нулю дивергенции некоторого вектора:

Соответственно Максвелл обобщил закон Ампера на случай переменных полей, произведя в нем замену

Обобщенный закон Ампера принимает при этом вид

Для стационарных процессов это соотношение дает прежний, экспериментально проверенный закон, но теперь оно стало математически совместимым с уравнением непрерывности (6.24) для переменных полей. Максвелл назвал добавочный член в (6.26) током смещения. Введенная модификация закона Ампера имеет решающее значение для быстро меняющихся полей. Без нее не было бы электромагнитных волн, и, собственно, все последующие главы настоящей книги не были бы написаны. Максвелл пришел к заключению, что свет представляет собой электромагнитные волны, и показал возможность генерации электромагнитных волн различных частот. Это привлекло внимание всех физиков и стимулировало множество теоретических и экспериментальных исследований в конце девятнадцатого столетия.

Система четырех уравнений

известных под названием уравнений Максвелла, составляет основу всей электродинамики. В сочетании с выражением для силы

Лоренца и вторым законом движения Ньютона эти уравнения дают полное описание динамики заряженных частиц, взаимодействующих с электромагнитными полями (см. § 9 настоящей главы и гл. 10 и 12). Для макроскопического описания динамических характеристик среды, состоящей из большого количества атомов, используются кроме того, материальные уравнения, связывающие D и J с Е, а Н с В (например, для изотропного магнитного диэлектрика с конечной проводимостью).

При написании уравнений Максвелла (6.28) использованы те же единицы, что и в предыдущих главах, а именно гауссова система единиц. Для читателя, привыкшего к другой системе единиц, например МКС, в табл. 2 в приложении приведены основные уравнения в наиболее употребительных системах. Табл. 3 в приложении позволяет перевести произвольное уравнение в гауссовых единицах в систему МКС, а табл. 4 дает соотношение между соответствующими единицами.

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

  1. Порождает электрическое поле (также если заряд изменяется со временем, то он вызывает появление электрического поля).
  2. В дальнейшем он вызывает появление магнитного поля.

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

  1. Электрический ток порождает магнитные поля, а эти магнитные поля (вокруг цепи) вызывают электрический ток.
  2. Изменяющееся во времени магнитное поле вызывает распространение электрического поля.
  3. Циркулирующее во времени электрическое поле вызывает изменение магнитного поля во времени.

Уравнение 3: Закон Гаусса для магнетизма

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

  1. Магнитных монополей не существует.
  2. Расхождение полей B или H всегда равно нулю в любом объёме.
  3. На расстоянии от магнитных диполей (это круговой ток) магнитные поля текут по замкнутому контуру.

Уравнение 4: Закон Ампера

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t)

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Первое уравнение Максвелла (в дифференциальной форме): div D = ρ

Это же уравнение в интегральной форме:

уравнение в интегральной форме:

Первое уравнение в интегральной форме: ∮DdS = ∫ρdV

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

Второе уравнение Максвелла (в дифференциальной форме): rot E = — ∂B/∂t

И это же уравнение в интегральной форме:

Второе уравнение Максвелла ∮Edl = -∫∂B/∂t dS

Второе уравнение Максвелла (в интегральной форме) ∮Edl = - ∫ ∂B/∂t dS

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

Третье уравнение Максвелла (в дифференциальной форме): div B = 0

И это же уравнение в интегральной форме:

Третье уравнение Максвелла в интегральной форме: ∮BdS = 0

Третье уравнение Максвелла в интегральной форме: ∮BdS = 0

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

Четвёртое уравнение Максвелла (в дифференциальной форме): rot H = j + ∂D/∂t

И это же уравнение в интегральной форме:

Четвёртое уравнение Максвелла в интегральной форме: ∮Hdl = ∫ (j +∂D/∂t)dS

Четвёртое уравнение Максвелла в интегральной форме: ∮Hdl = ∫ (j +∂D/∂t)dS

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Читайте также: