Термоядерный синтез это кратко

Обновлено: 04.07.2024

ЯДЕРНЫЙ СИНТЕЗ, термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез – это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также ЯДЕР ДЕЛЕНИЕ; АТОМНАЯ ЭНЕРГЕТИКА.

Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью.

Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ~71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.

ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА

Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции.

Ядерные силы и реакции.

Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ~10 –13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга.

РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА
РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА
d + d ® 3 He + n + 3,25 МэВ *)
d + d ® t + p + 4,0 МэВ *)
t + d ® 4 He + n + 17,6 МэВ **)
3 He + d ® 4 He + p + 18,3 МэВ **)
6 Li + d ® 2 4 He + 22,4 МэВ
7 Li + p ® 2 4 He + g + 17,3 МэВ
*) Эти две реакции примерно равновероятны.
**) Изотопы 3 H и 3 He практически отсутствуют в природе, их можно получить искусственно.

Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна , где e – основание натуральных логарифмов, Z1 и Z2 – числа протонов во взаимодействующих ядрах, W – энергия их относительного сближения, а K – постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z1 и Z2 вероятность реакции уменьшается.

Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта – Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.

Термоядерные топлива.

Реакции с участием p, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий.

Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (DT-смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T1/2 ~ 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT – реакции синтеза, т.к. тритий можно производить, облучая изотоп 6 Li образующимися при синтезе нейтронами: n + 6 Li ® 4 He + t.

Если окружить термоядерную камеру слоем 6 Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два.

Принцип действия термоядерного реактора.

Реакция слияния легких ядер, цель которой – получение полезной энергии – называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.

Временне и температурные условия.

Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива).

В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P1 = knT, где k – численный коэффициент, n – плотность смеси (количество ядер в 1 см 3 ), T – требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени t. Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см 3 ) выражается следующим образом:

где f(T) – коэффициент, зависящий от температуры смеси и ее состава, R – энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P2 > P1 примет вид

В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие n либо t . Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором – с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму.

Магнитное удержание плазмы.

Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий – тритий при температуре 10 8 К выход определяется выражением

Если принять P равным 100 Вт/см 3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 10 15 ядер/см 3 , а соответствующее давление nT – примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 10 9 К

Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором – крайне медленно по сравнению с процессами в термоядерном реакторе.

Плазма.

При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T 3/2 . Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 10 8 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы.

Чтобы удержать плазму, например, при температуре 10 8 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме.

На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости.

Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию.

Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.

Системы с замкнутой магнитной конфигурацией.

Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня.

Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч.

Открытые магнитные конфигурации.

Инерциальное удержание.

Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 10 11 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ~10 –12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1–2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.

Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (10 6 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени.

УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ

Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем.

Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете (США) Л.Спитцером с сотрудниками.

Токамак.

Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования.

Большие токамаки созданы также в США – TFTR, в России – T15 и в Японии – JT60. Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии. См. также ТОКАМАК.

Пинч с обращенным полем (ПОП).

Конфигурация ПОП отличается от токамака тем, что в ней Bq ~ Bj, но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q 6 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.

Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля ~50 ё 100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии.

При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.

Реакторная технология.

Перспективы термоядерных исследований.

Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но несомненно и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.

Термоядерный синтез , называемый так же холодным синтезом - реакция, которая находится на слуху уже у трех поколений людей. Все знают, что это холодный синтез призван спасти мировую энергетику, но далеко не каждый, хоть примерно, понимает - как. В этой статье мы увидим, чем же так привлекательна термоядерная энергия, и с какими проблемами сталкиваются разработчики этой технологии.

Идея получения энергии из термоядерных реакций изначально заключена в следующем: реагенты - дейтерий (атомы водорода с двумя нейтронами в ядре) и тритий (те же водородинки, но уже с тремя нейтронами) сталкиваются друг с другом в камере с высокой температурой. Всё чудо метода кроется в том, что столкновения дейтерия и трития вызывают ядерную реакцию, которая на выходе выдает гораздо больше энергии, чем было вложено в ее поддержание. Наверняка многие слышали заявление: "стакан воды сможет обеспечивать энергией небольшой городок целый год!" - отчасти оно правдиво, но каждый атом водорода в этой воде должен превратиться в дейтерий и тритий, что само по себе - сложная задача.

Кстати, несмотря на то, что реакция проходит при температурах в миллионы градусов - синтез все равно считается холодным. Всё дело в том, что термоядерные реакции гораздо менее энергозатратные, чем остальные ядерные реакции. Именно за счет термоядерной реакции живет наше солнце - в его ядре постоянно "сгорает" топливо, состоящее из изотопов водорода, а колоссальные давление и масса внутри звезды поддерживают достаточную температуру. Таким образом, внутри солнца выделяется колоссальная энергия, а из продуктов реакции получаются все известные нам химические элементы из таблицы Менделеева!

Две главные проблемы на пути к покорению термоядерного синтеза - дорогое топливо и технические трудности. Дейтерий и тритий - редкие изотопы водорода, индустриальное производство которых все еще не налажено. А стабилизация реакции требует поддержания плазмы, температура которой может достигать десятков миллионов градусов! Одно из предложенных решений - удерживать ее в подвешенном состоянии с помощью мощного магнитного поля.

Вы так же можете ознакомиться со следующими статьями о физике и энергетике:

Оставляйте свои вопросы в комментариях, редакция всегда рада ответить на них :)


Управляемый термоядерный синтез — чудо, которое давно ждут и которое всё никак не станет реальностью. Ничего эффективнее построенной на термоядерном синтезе энергетики быть не может. После изобретения термоядерных электростанций энергии станет столько, что хватит всем, притом почти даром. Но титанические усилия учёных до сих пор не увенчались успехом, хотя бьются над этой проблемой уже больше полувека. Так достижимо ли термоядерное совершенство?

Термоядерный синтез гелия из водорода — самая распространённая реакция во Вселенной. И самая эффективная в плане выхода энергии по отношению к массе использованного горючего. А ещё, вероятно, самая экономичная, поскольку во Вселенной вообще мало что есть, кроме водорода.

Если мы получаем энергию не путём термоядерного синтеза, то мы получаем её неоптимальным способом. Любой другой источник заведомо менее производителен, потребляет топливо, запасы которого (по сравнению с запасами водорода) ограничены, а зачастую оно ещё и отравляет окружающую среду отходами. У термоядерного реактора в этом отношении всё идеально, гелий-то не отход, а безвредный газ для воздушных шариков.

И всё же идея термоядерной энергетики не особо популярна у фантастов. Откуда берётся электроэнергия в процветающих мирах будущего, обычно не говорят вообще или упоминают какой-нибудь люксоген с дробной пространственной размерностью. Писатели интуитивно чуяли связанный с термоядерным синтезом подвох. Учёные же, напротив, долгое время принципиальных затруднений не предвидели.

Термоядерный синтез: энергия будущего?

Первыми спровоцировать термоядерные реакции пытались ещё учёные нацистской Германии. Немцы наивно надеялись вызвать детонацию тяжёлого водорода химической взрывчаткой и помещали дейтерий внутрь кумулятивной воронки (на фото — немецкий ядерный объект в 1945 году)

Ни в 1970-е, ни в 1980-е водородные электростанции не появились. Но учёные не сомневались: промышленный синтез возможен даже с доступными технологиями, если их правильно применить.

К 1990-м стало ясно, что без принципиально новых технологий и углубления теоретических знаний по ядерной физике термоядерное пламя приручить не удастся. Прогноз ухудшили до двадцати пяти лет. А в начале XXI столетия — до пятидесяти. Теоретические знания углубились настолько, что стало непонятно, с какой стороны подступиться к задаче.

Термоядерный синтез: энергия будущего? 10

Казалось бы, мелочь. Ну порог, ну и что? С точки зрения физики высоких энергий это не порог, а курам на смех! Мощный ускоритель частиц не просто столкнёт протоны лбами, он расплющит их друг о друга в кварк-глюонную плазму! Но кварки нам не нужны. Так что берём синхротрон попроще и направляем пучок протонов на мишень из содержащего водород материала. Порог реакции будет преодолеваться, и в мишени начнётся синтез.

Термоядерный синтез: энергия будущего? 2

Термоядерный реактор ZETA, 1957 год

Термоядерный синтез окажется экономически целесообразным, только если реакция станет цепной: чтобы необходимая для преодоления барьера температура в камере сгорания достигалась за счёт самого синтеза ядер.

Вторая часть проблемы в том, что проводить протон-протонный синтез не только сложно, но и бессмысленно. При столкновении двух протонов рождается дейтрон — состоящее из протона и нейтрона ядро тяжёлого водорода, плюс позитрон и нейтрино. Львиную долю энергии уносит нейтрино, проходящее сквозь нашу планету, как свет сквозь стекло, и, как следствие, малопригодное для кипячения воды.

Термоядерный синтез: энергия будущего? 3

Итак, имитация природных процессов — не наш путь. Разогретый до миллионов градусов металлический водород нельзя получить в лабораторных условиях. А если б и было можно, то миллиард лет выколачивать из него энергию по искре — идея сомнительная. Термоядерный реактор должен воспроизводить не будничное тление светил, а условия взрыва сверхновой, когда реакции идут при температуре, обеспечивающей преодоление кулоновского барьера при каждом столкновении.

Конечно, удерживать разогретое до температуры 100 миллионов кельвинов вещество можно только в плазменной форме. Причём речь тут о плазме в том смысле, какой вкладывают в этот термин физики. Физическая плазма — не ионизированный газ, а четвёртое агрегатное состояние вещества, наблюдающееся при разрежении столь высоком, что взаимодействием частиц можно пренебречь. Плазма не подчиняется обычным для газа законам. В ней нет давления, она не нагревается при сжатии и, что особенно приятно, не стремится занять весь доступный объём. Ценой минимальных затрат её можно удерживать в магнитной ловушке в форме кольца. Независимо от температуры, ядра послушно будут бегать по кругу вблизи центральной оси откачанной трубы.

Термоядерный синтез: энергия будущего? 4

Тороидальная магнитная ловушка

Ситуация как будто парадоксальная. Нет взаимодействия — не может быть и столкновений, реакций синтеза и разогрева вещества. Но грань между плазмой и газом тонка. Скажем, хотя каждый кубический километр космической туманности представляет собой плазму, облако в целом живёт по законам газа. Туманность настолько велика, что молекула не может покинуть её пределы без взаимодействий с другими. Так и в магнитной ловушке при любой плотности вещество будет газом, ведь пробег бесконечен, и одна частица непременно столкнётся с другой. Притом с ростом температуры (а значит, и скорости, и расстояния, преодолеваемого частицей за единицу времени) будет расти и давление. В плоскости же поперечной линии движения частицы будут существовать по законам плазмы.

Идею пылающего кольца, плотного в одном измерении и представляющего собой высокий вакуум в прочих, уже в 1950-х успешно воплотили в советских установках ТОКАМАК и американских стеллараторах, различающихся способами предварительного разогрева топлива. И в СССР, и в США в качестве термоядерного горючего использовали смесь дейтерия и трития, так как реакции с участием тяжёлого и сверхтяжёлого водорода возможны при меньшей, чем у других элементов, температуре.

Термоядерный синтез: энергия будущего? 5

Новый ТОКАМАК (Казахстан)

Но нет, положительный выход достигнут не был. А в конце прошлого века даже у оптимистов возникло подозрение, что это и к лучшему. Проблема термоядерного синтеза заключалась в тритии. В случае синтеза с участием тяжёлого и сверхтяжёлого водорода 80% выделившейся энергии уносил рождающийся в реакции нейтрон.

Эти не имеющие заряда частицы сочетают высокую проникающую способность с исключительной зловредностью. С электронными оболочками атомов нейтроны не взаимодействуют, что позволяет им преодолевать десятки метров бетона и свинца. Попадая же в атомное ядро, нейтрон или разрушает его, или поглощается им, превращаясь в радиоактивный изотоп. А образующиеся в материале пузырьки газа приводят к потере прочности, деформации и разрушению стальных деталей. В лучшем случае после множества рикошетов нейтрон просто распадается и становится атомом водорода.

Персонал электростанции может укрыться от нейтронного излучения за бассейнами с водой (они в любом случае понадобятся для охлаждения), но защитить сам реактор от нейтронов не выйдет. А энергетическая установка, расходующая 80% выделяющейся энергии на саморазрушение, прослужит недолго.

Термоядерный синтез: энергия будущего? 1

Тритий радиоактивен, но при распаде его ядра выделяются лишь нейтрино и электрон. Последний так слаб, что вредит только если тяжёлый водород включился в состав тканей организма. Брелок с тритиевой подсветкой — это безопасно. Даже если его проглотить

Поскольку тритий как термоядерное горючее не выдерживает критики, надежды связывают с изотопом гелий-3. Порог его реакции с дейтерием существенно выше, поскольку два протона гелиевого ядра отталкивают третий со вдвое большей силой. Но продуктами синтеза оказываются ядро обычного гелия (альфа-частица) и протон, что уже даёт выигрыш впятеро благодаря отсутствию нейтронных потерь.

Кроме того, гелий-3, в отличие от трития, стабилен и встречается в природе. Его много на Луне. Ещё в 1980-х годах подсчитали, что доставка гелия с Луны на Землю экономически оправдана. Для покрытия годичных потребностей человечества в энергии потребуется всего сотня тонн этого газа. Другой вопрос, что добыча такого количества гелия-3 предполагает переработку миллиардов тонн лунного грунта. Так что пока выгоднее производить гелий-3 искусственно. Из трития. И это ставит под вопрос осмысленность разработки даже экспериментальных установок для термоядерных реакций с участием гелия.

Термоядерный синтез: энергия будущего? 11

По разным причинам изотопы первых двух химических элементов в любых комбинациях для энергетики будущего бесполезны. Как и при создании водородной бомбы, исследователи убедились, что только на третий элемент периодической таблицы — литий — можно положиться. Он безопасен, не производит нейтроны при синтезе и, в отличие от реакторных изотопов водорода и гелия, ничего не стоит.

Но в случае с литием уже три протона будут объединёнными силами отталкивать четвёртый! И эта разница — решающая. В тороидальном (в форме бублика) плазменном реакторе изотопы водорода горят на практике. Гелий… должен в теории. Литий же не должен вообще! При температуре детонации его ядер плазма не может иметь необходимую для цепной реакции плотность.

Термоядерный ракетный двигатель

Термоядерный синтез: энергия будущего? 6

Самый мощный и качественно лучший среди всех, что мы можем вообразить. В современном ионном двигателе ядерная энергия преобразуется в электрическую, а электрическая — в кинетическую энергию ускоренного полем ионизированного газа. В сопле термоядерной ракеты энергия синтеза превращается в кинетическую сразу. Рабочим телом служит продукт реакции — гелий, ускоренный термоядерным жаром до 40 000 км/с (13% от скорости света).

Термоядерный синтез: энергия будущего? 7

Литий — ещё один кандидат в спасители термоядерного синтеза

То, что порог вступления лития в термоядерные реакции хоть и высок, но преодолим, экспериментально установлено больше полувека назад. Нужно только с умом взяться за дело. Если капсулу с дейтеридом лития сперва обжать близким ядерным взрывом, а потом, в момент, когда её объём сократится вдесятеро, подорвать внутри капсулы второй ядерный заряд, то на фронте столкновения ударных волн всё получится. И прежде чем брошенные навстречу друг другу атомы поймут, куда им разлетаться, термоядерный заряд успеет выгореть.

Поскольку выделившейся энергии не так-то просто покинуть зону реакции, синтез, невозможный в плазме, в сжатом веществе даже при относительно низкой температуре разгорается по цепному принципу. Не использовать такое преимущество глупо. Импульсные реакторы, в которых термоядерная энергия выделяется в процессе микровзрывов, начали разрабатывать одновременно с плазменными — ещё в 1950-х годах.

Долгое время, впрочем, было больше разговоров, чем реальных дел. Несмотря на примитивность общего замысла, сложность установки не отвечала технологиям прошлого века. Детонацию ведра лития, допустим, можно вызвать встречным взрывом пары атомных бомб. Но чем с достаточной силой ударить по весящей одну сотую грамма крупице термоядерного горючего?!

Термоядерный синтез: энергия будущего? 13

Целевая камера на National Ignition Facility (NIF)

Праздновать победу тем не менее рано. Дело не только в том, что в качестве топливных таблеток NIF использовали стеклянные шарики с дейтерий-тритиевым льдом, а потому превысившая затраты на лазерный импульс энергия выделилась в форме быстрых нейтронов, не имеющих ценности. Добившись успеха с водородом, можно будет перейти к экспериментам с гелием, а затем и с литием, заменив лазеры на более эффективные циклические ускорители…

Термоядерный синтез: энергия будущего? 8

Уголь будущего: сподумен — прозрачный минерал, содержащий литий

А хочется очень! Только термоядерная энергия позволит колонизировать Солнечную систему, переправляя грузы на Марс не тоннами, а миллионами тонн, перегоняя на околоземную орбиту железоникелевые астероиды и добираясь до спутников Нептуна за три-четыре месяца.

Термоядерный синтез: энергия будущего? 12

Энергия синтеза, которую можно получать без ограничений (лития не так много, как водорода, но достаточно), полностью изменит и Землю. Станут возможными глобальные проекты, скажем, по очистке атмосферы от избытка парниковых газов, накопившихся в эпоху углеводородной энергетики.

Углекислый газ из атмосферы в любом случае придётся изымать, одновременно повышая плотность отражающей солнечный свет облачности. Ведь неограниченное производство электроэнергии, большей частью переходящей в тепло, обязательно приведёт к перегреву планеты. Но новые, немыслимые сейчас, возможности термоядерной эры наверняка позволят сгладить остроту проблем, ими же порождённых.

Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Тема действительно важная, ведь этот процесс является одним из ключевых источников энергии в современной Вселенной (благодаря нему, например, светит наше Солнце) и, возможно, в будущем станет почти неисчерпаемым источником энергии для Человечества, то есть для нас с вами.


Самая знаменитая формула на свете

Если вы интересуетесь физикой, то, думаю, хоть раз в жизни видели эту формулу:


Например, при столкновении частицы с её античастицей (скажем, электрона и позитрона) они взаимно уничтожаются с выделением энергии. То есть, их масса полностью переходит в энергию, и величина выделившейся энергии в точности определяется вышеупомянутой формулой, где под массой имеется в виду суммарная масса позитрона и электрона.

Но верно и обратное: не только масса способна превращаться в энергию, но и энергия способна превращаться в массу – или по крайней мере всё будет выглядеть так, что тело приобрело дополнительную массу в результате наделения его энергией.

Например, если мы разгоним частицу в ускорителе, то с точки зрения внешнего наблюдателя она начнёт вести себя так, как будто её масса выросла. Более яркий пример – фотоны, или кванты, т.е. мельчайшие порции, электромагнитного излучения. Согласно современным представлениям (с существенной точностью подтверждённым экспериментами) они вообще не имеют массы. Однако они обладают энергией, и поэтому в реальности ведут себя так, как будто масса у них есть.

И более того: в подавляющем большинстве случаев, когда мы говорим о массе, на самом деле мы имеем в виду выглядящую как массу энергию. Объясню, что я имею в виду.

Несуществующая масса

Окружающие нас тела состоят из молекул, молекулы состоят из атомов, а почти вся масса атомов сосредоточена в атомных ядрах. Атомные ядра, в свою очередь, состоят из протонов и нейтронов, то есть, получается, что масса окружающих нас тел в значительной степени определяется исключительно тем, какую массу имеют составляющие их протоны и нейтроны (с некоторыми оговорками, о которых речь пойдёт ниже).


Протоны и нейтроны, в свою очередь, состоят из кварков: в каждом из них их по три. Так вот: если мы просуммируем массу кварков, составляющих, например, протон, то окажется, что их суммарная масса составляет лишь около 1/10 от массы протона. Откуда же берутся остальные 9/10, ведь внутри протона кроме кварков других массивных, т.е. имеющих массу, частиц нет?

Структура протона: два u-кварка и один d-кварк

Структура протона: два u-кварка и один d-кварк

Всё дело в том, что кварки внутри протона или нейтрона находятся в поле ядерного взаимодействия, которое называется сильным взаимодействием. Это одна из фундаментальных физических сил, известных нам на сегодняшний день, наряду с силой тяжести, электромагнитной силой и ещё одним видом взаимодействия, именуемого слабым: в повседневной жизни мы с ним не сталкиваемся, в нашем тексте о нём речи также не будет, так что пока отложим его в сторону.

Мы знаем, что тело, помещённое в некоторое поле, в результате получает определённую энергию. Например, камень, поднятый над землёй, начинает обладать потенциальной энергией, пропорциональной его массе, ускорению свободного падения (то есть характеристике гравитационного поля Земли) и высоте. Будет обладать потенциальной энергией и заряженное тело, помещённое в электрическое поле.

Точно также и кварки внутри протона и нейтрона обладают определённой (и весьма значительной!) энергией, обусловленной их участием в сильном взаимодействии друг с другом.

2+2=?

Пойдём дальше, и соединим протоны и нейтроны в более сложные структуры – атомные ядра. Например, одно из простейших сложных ядер – это ядро атома дейтерия, состоящее из одного протона и одного нейтрона. Дейтерий – старший брат обычного водорода, ядро которого по сути представляет собой одиночный протон.


Так вот, масса протона составляет примерно 1,0073 т.н. атомной единицы массы, или а.е.м (1/12 массы атома углерода). Масса протона составляет 1,0087 а.е.м. Чему же будет равна масса ядра дейтерия? По идее, 1,0073 + 1,0087 = 2,016 а.е.м, не так ли?

А вот и не угадали. На самом деле масса ядра дейтерия – 2,0136 а.е.м, то есть примерно на 0,0024 меньше, чем должна быть.

Классическим примером является поведение мелких капель воды на оконном стекле или капель жира на поверхности супа. Вы, думаю, видели, как такие мелкие капельки сливаются в более крупные. В целом любые жидкие капли проявляют склонность к такому слиянию. Причина – более крупные капли обладают меньшей энергией, а точнее, меньшей энергией поверхностного натяжения.

При этом надо помнить, что энергия поверхностного натяжения – это, в конечном счёте, энергия взаимодействия молекул внутри жидкости (которая, кстати, имеет электрическую природу, но об этом тоже в другой раз). И вот оказывается, что объект с большим числом частиц (большим объёмом, т.е. в данном случае большей массой) обладает меньшей энергией.

В русскоязычной физической литературе эту разницу принято называть дефектом массы (имея в виду, что масса итогового ядра меньше суммы масс компонентов), в англоязычной же говорят об избытке массы (mass excess), имея в виду, что исходные компоненты по сумме тяжелее, чем получившееся из них ядро.

Больше – значит… легче?


Эта тенденция характера для всех лёгких атомов: чем больше количество протонов и нейтронов в атоме, тем меньшая масса приходится на каждый протон и нейтрон. А значит, при слиянии более простых атомов в более сложные будет выделяться энергия. Именно этот процесс называется ядерным (термоядерным) синтезом.


Последний вариант превращения массы в энергию мы уже освоили и используем в атомных реакторах, радиоизотопных электрогенераторах и других устройствах. Однако эта технология обладает рядом недостатков: для реакторов необходимо достаточно редкое и дорогое топливо, запасы которого к тому же ограничены; кроме того, побочным продуктом реакции являются высокорадиоактивные отходы, обращение с которыми представляет известную трудность.

Ядерный синтез перспективнее, однако освоить его сложнее: если тяжёлые радиоактивные ядра в принципе распадаются сами по себе, и нам остаётся лишь собирать выделившуюся энергию. Но для того, чтобы заставить склеиться лёгкие ядра, надо приложить немало сложностей.

Вопреки кулону

Вернёмся к нашему примеру с каплями на стекле (или, скажем, на поверхности супа): мы видим, что они достаточно легко сливаются без всяких усилий с нашей стороны, так как природа склонна переводить системы в состояние с минимальной энергией. Но если мы придадим нашим каплям некий одноимённый электрический заряд, то мы увидим, что сливаться капли перестали. Причина понятна: сила электростатического отталкивания препятствует их достаточному сближению.

Физики говорят, что электрические силы создают между атомами потенциальный барьер, который ещё называют кулоновским. Для того, чтобы атомы могли преодолеть этот барьер и столкнуться, запустив процесс ядерного синтеза, они, во-первых, должны находиться достаточно близко друг к другу, а во-вторых иметь достаточную скорость. На языке параметров вещества это означает, что для запуска термоядерного синтеза вещество должно находиться под большим давлением и иметь высокую температуру.

Причём высокую – это мягко сказано: речь идёт о миллионах и даже десятках миллионов градусов. Для сравнения, самый жаростойкий материал, сегодня известный человечеству, а именно особый вид карбонитрида гафния (Hf-CN) имеет температуру плавления порядка 4000 градусов. Увы, это примерно в две тысячи раз меньше, чем нужно.

В принципе, мы уже умеем запускать термоядерные реакции в земных условиях – собственно, именно это происходит в термоядерных бомбах. Но там экстремальные давления и температуры возникают в эпицентре ядерного взрыва: огромная энергия выделяется за доли секунды, что отлично подходит для произведения чудовищных разрушений.


Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой.

Устойчивые термоядерные реакции вполне прекрасно идут, например, в недрах звёзд, в том числе нашего Солнца – именно благодаря выделяющейся в результате этих реакций энергии оно и светит. Однако там экстремальные условия (температура и давление) возникли в результате гравитационного сжатия колоссальных масс вещества. Гравитация системы также обеспечивает устойчивость реакции.

Солнечная топка

В Солнце основым видом термоядерной реакции является многоступенчатое превращение водорода в гелий.

Сначала два атома водорода – по сути, обычные протоны – сливаются в нестабильную систему под названием дипротон, т.е. пару протонов, он же изотоп гелий-2. Этот изотоп крайне нестабилен и распадается в среднем через миллиардную долю секунды. Но иногда за это время один из протонов может спонтанно превратиться в нейтрон, и тогда дипротон превратится в стабильный тяжёлый водород – дейтерий (1 протон, 1 нейтрон).


На каждом из этих этапов выделяется энергия, благодаря которой, повторимся, и светит Солнце.

Однако на Земле осуществить подобный цикл невозможно по ряду причин.

Превращение дипротона в дейтерий – процесс вероятностный, причём вероятность того, что это случится, на самом деле невелика с учётом малого времени жизни дипротона. Для того, чтобы такая реакция шла и давала выход энергии, нужны колоссальные массы вещества. Но это полбеды, можно было бы работать, скажем, с уже готовым дейтерием (он в достаточных количествах содержится в любом количестве водорода, например, того, который можно получить из простой воды). К сожалению, это не единственная сложность.

Для того, чтобы в реакторе существовало гравитационное поле, способное создать и поддерживать условия для термоядерной реакции, масса реактора должна быть сравнимой с массой Солнца - строго говоря, быть не меньше 0,078 его массы, или примерно в 26 тысяч раз тяжелее Земли. По понятным причинам, создать нечто подобное нам пока не под силу. Нужно идти другим путём.


Например, можно вместо гравитации использовать для обжатия и нагрева термоядерного топлива электромагнитные поля.

Например, можно поместить топливо в специальную конструкцию в виде полого тора (проще говоря, бублика) покрытую проводящей обмоткой. Если через эту обмотку пропускать электрический ток, то возникнет магнитное поле, которое сдавливать плазму, обжимая её от краёв канала к центру и удерживая в своеобразной магнитной ловушке без непосредственного контакта материалов реактора с раскалённым веществом.

Схема устройства

Схема устройства

Вид изнутри.

Вид изнутри.

. и снаружи

. и снаружи


На практике же реализовать всё это достаточно сложно, ведь находящееся в столь экстремальном состоянии вещество обладает особенностями поведения, в которых мы пока что недостаточно хорошо разбираемся. И сейчас тысячи учёных по всему миру усиленно работают над тем, чтобы приручить электромагнитные поля и раскалённое вещество, заставив их подчиняться нашей воле.

На пути к искусственному Солнцу


Во-первых, с собой этот нейтрон уносит значительную (80 %) часть энергии, вырабатываемой при реакции синтеза, что сильно уменьшает её КПД.

Например, если бы удалось создать условия, в которых сможет протекать более требовательная к ним реакция между атомами только дейтерия (без трития), то это уже вывело бы перспективы термоядерной энергетики на совершенно новый уровень. Увы, пока мы их запускать не умеем.

Термоядерные реакции в дейтериевом (D) монотопливе: p — протон, n — нейтрон, T — тритий, He — гелий, в конце указана выделяющаяся энергия

Термоядерные реакции в дейтериевом (D) монотопливе: p — протон, n — нейтрон, T — тритий, He — гелий, в конце указана выделяющаяся энергия

Безнейтронные реакции синтеза

Безнейтронные реакции синтеза

К сожалению, гелий-3 на Земле практически не встречается, и его надо либо получать искусственно (возможно, но дорого, хотя и дешевле трития), либо можно привезти с Луны, где его по идее много. Какой путь окажется дешевле –пока неясно (космические технологии тоже не стоят на месте!), но сначала нужно научиться нормально работать с раскалённой плазмой.



Читайте также: