Термическая обработка алюминиевых сплавов кратко

Обновлено: 25.06.2024

СОДЕРЖАНИЕ

Введение

Для упрочнения алюминиевых сплавов применяют закалку и старение. Для устранения неравновесных структур и деформационных дефектов строения, снижающих пластичность сплава, применяют отжиг.

Закалка алюминиевых сплавов

Закалка заключается в нагреве сплавов до температуры, при которой, избыточные интерметаллидные фазы полностью или большей частью растворяются в алюминии, выдержке при этой температуре и быстром охлаждении до комнатной температуры для получения пересыщенного твердого раствора. Например, температура закалки сплавов системы Аl–Сu (рис.1) определится линией abc, проходящей выше линии предельной растворимости для сплавов, содержащих меньше 5,7 % Сu, и ниже эвтектической линии (548 °С) для сплавов, содержащих большее количество Сu. При нагреве под закалку сплавов, содержащих до ~ 5 % Сu, избыточная фаза СuА12 полностью растворяется, и при последующем быстром охлаждении фиксируется только пересыщенный α -твердый раствор, содержащий столько меди, сколько ее находится в сплаве (рис.2в). При содержании более 5 % Си в структуре сплавов после закалки будет пересыщенный α -твердый раствор состава, отвечающего точке b, и нерастворенные при нагреве кристаллы соединения СuАl2. Время выдержки при температуре закалки, необходимое для растворения интермегаллидных фаз, зависит от структурного состояния сплава, типа печи и толщины изделия. Листы, плиты, прутки, полосы толщиной 0,5–150 мм выдерживают нагрев в селитровых ваннах 10–80 мин, а в наиболее широко применяемых для этой цели электропечах с принудительной циркуляцией воздуха – 30–210 мин. Выдержка фасонных отливок при температуре закалки более длительная (2–15 ч). За это время растворяются грубые выделения иитерметаллидных фаз (рис.2а). Охлаждение деформированных сплавов при закалке производят в холодной воде, а фасонных отливок – в подогретой воде (50–100 °С) во избежание их коробления и образования трещин. После закалки сплавы имеют сравнительно невысокую прочность σ в, σ 0,2 и высокую пластичность ( delta; , ψ ).


Рис.1. Диаграмма состояния Al–Cu
Микроструктура сплавов алюминия

Рис.2. Микроструктура сплавов алюминия:
а – литой сплав Al + 12 % Cu ( α -раствор и кристаллы эвтектики α + CuAl2 и CuAl2); б – литой сплав Д16 ( α -раствор и кристаллы CuAl2 и Al2MgCu); в – сплав Д16 после закалки ( α -фаза); г – сплав Д16 после закалки и старения

Старение закаленных сплавов

После закалки следует старение, при котором сплав выдерживают при нормальной температуре несколько суток (естественное старение) или в течение 10–24 ч при повышенной температуре (искусственное старение). В процессе старения происходит распад пересыщенного твердого раствора, что сопровождается упрочнением сплава. Распад пересыщенного твердого раствора происходит в несколько стадий в зависимости от температуры и продолжительности старения. При естественном (при 20 °С) или низкотемпературном искусственном старении (ниже 100–150 °С) не наблюдается распада твердого раствора с выделением избыточной фазы; при этих температурах атомы меди перемещаются только внутри кристаллической решетки α -твердого раствора на весьма малые расстояния и собираются по плоскостям (100) в двумерные пластинчатые образования (рис.3а) или диски – зоны Гинье-Престона (ГП–1). Эти зоны ГП–1 протяжностью в несколько десятков ангстрем (30–60 Å) и толщиной 5–10 Å более или менее равномерно распределены в пределах каждого кристалла. Концентрация меди в зонах ГП–1 меньше, чем в СuАl2 (54 %).


Рис.3. Схема выделения избыточных фаз из твердого раствора при старении:
а) – зоны ГП–1; б) – зоны ГП-2; в) – θ ′-фаза; г) - θ -фаза (СuАl2)

Если сплав после естественного старения кратковременно (несколько секунд или минут) нагреть до 230–270 °С и затем быстро охладить, то упрочнение полностью снимается, и свойства сплава будут соответствовать свежезакаленному состоянию. Это явление получило название возврат. Разупрочнение при возврате связано с тем, что зоны ГП–1 при этих температурах оказываются нестабильными и поэтому растворяются в твердом растворе, а атомы меди вновь более или менее равномерно распределяются в пределах объема каждого кристалла твердого раствора, как и после закалки. При последующем вылеживаний сплава при комнатной температуре вновь происходит образование зон ГП–1 и упрочнение сплава. Однако после возврата и последующего старения ухудшаются коррозионные свойства сплава, что затрудняет использование возврата для практических целей. Длительная выдержка при 100 °С или несколько часов при 150 °С приводит к образованию зон ГП–2 большей величины (толщина 10–40 Å и диаметр 200–300 Å) с упорядоченной структурой, отличной от α -твердого раствора (рис.3б). Концентрация меди в них соответствует содержанию ее в СuАl2. С повышением температуры старения процессы диффузии, а следовательно, и процессы структурных превращений, и самоупрочнение протекают быстрее. Выдержка в течение нескольких часов при 150–200 °С приводит к образованию в местах, где располагались зоны ГП–2, дисперсных (тонкопластинчатых) частиц промежуточной θ ′-фазы, не отличающейся по химическому составу от стабильной фазы θ (СuАl2), но имеющей отличную кристаллическую решетку; θ ′-фаза когерентно связана с твердым раствором (рис.3в). Повышение температуры до 200–250 °С приводит к коагуляций метастабильной фазы и к образованию стабильной θ -фазы (рис.3г).

Таким образом, при естественном старении образуются лишь зоны ГП–1. При искусственном старении последовательность структурных Изменений можно представить в виде следующей схемы: ГП–1 → ГП–2 → θ ′ → θ (СuAl2).

Это общая схема распада пересыщенного твердого раствора в сплавах Аl–Сu справедлива и для других сплавов. Различие сводится лишь к тому, что в разных сплавах неодинаков состав и строение зон, а также образующихся фаз.

Для стареющих алюминиевых сплавов разных составов существуют и свои температурно-временные области зонного (образование ГП–1 и ГП–2) и фазового ( θ ′- и θ -фаз) старения.

После зонного старения сплавы чаще имеют повышенный предел текучести и относительно невысокое отношение σ 0,2/ σ в ≤ 0,6÷0,7, повышенную пластичность, хорошую коррозионную стойкость и низкую чувствительность к хрупкому разрушению.

После фазового старения отношение σ 0,2/ σ в повышается до 0,9–0,95, а пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

Структурное упрочнение

Температура рекристаллизации некоторых сплавов алюминия с марганцем, хромом, никелем, цирконием, титаном и другими переходными металлами превышает обычно назначаемую температуру нагрева под деформацию или закалку, поэтому после закалки и старения таких сплавов в них сохраняется перекристаллизованная (полигонизованная) структура с высокой плотностью дислокаций, что повышает ее прочность по сравнению с рекристаллизованной структурой. Это явление получило название структурного упрочнения.

В результате структурного упрочнения значения σ в, σ 0,2 повышаются до 30–40 %. Наиболее сильно структурное упрочнение проявляется в прессованных полуфабрикатах (прутки, профили, трубы), поэтому это явление применительно к ним называют пресс-эффектом.

Гомогенизационный отжиг

Этому виду отжига подвергают слитки перед обработкой давлением, для устранения дендритной ликвации, которая приводит к получению неоднородного твердого раствора и выделению по границам зерен и между ветвями дендритов хрупких неравновесных эв-тектических включений СuAl2, Al2CuMg (S-фаза), Mg2Si, Al3Mg2Zn2 (Т-фаза и др.). В процессе гомогенизации состав кристаллитов твердого раствора выравнивается, а интерметаллиды растворяются. В процессе последующего охлаждения интерметаллиды выделяются в виде равномерно распределенных мелких вторичных включений. Вследствие этого пластичность литого сплава повышается, что позволяет увеличить степень обжатия при горячей обработке давлением, скорость прессования и уменьшить технологические отходы. Гомогенизация способствует получению мелкозернистой структуры в отожженных листах и уменьшает склонность к коррозии под напряжением. Температура гомогенизации в пределах 450–520 °С, а выдержка от 4 до 40 ч. Охлаждение проводят на воздухе или вместе с печью.

Рекристаллизационный отжиг

Такой отжиг заключается в нагреве деформированного сплава до температур выше температуры окончания первичной рекристаллизации; применяется для снятия наклепа и получения мелкого зерна. Температура рекристаллизованного отжига в зависимости от состава сплава колеблется от 350 до 500 °С, выдержка 0,5–2,0 ч. После рекристаллизационного отжига сплавов, не упрочняемых термической обработкой, скорость охлаждения выбирают произвольно. Для сплавов, упрочняемых термической обработкой скорость охлаждения до 200–250 °С должна быть ≤ 30 °С/ч. Отжиг в качестве промежуточной операции применяют при холодной деформации или между горячей и холодной деформациями.

Отжиг для разупрочнения сплавов, прошедших закалку и старение

Этот вид отжиги проводят при 350–450 °С с выдержкой 1–2 ч. При этих температурах происходит полный распад пересыщенного твердого раствора и коагуляция упрочняющих фаз. Скорость охлаждения не должна превышать 30 °С/ч. После отжига сплав имеет низкий предел прочности, удовлетворительную пластичность и высокую сопротивляемость коррозии под напряжением.

Она позволяет получить большое разнообразие структур. В этом случае можно добиться значи­тельного упрочнения, что и обеспечило самое широкое применениетермообработки алюминиевых сплавов. Физический смысл термообработки сплавов алюминия состоит в том, что при этом изменяется и концентрация твердого раствора легирующих элементов в алюминии, При этом меняется фазовый состав, что повышает прочность сплайн при сохранении достаточной пластичности. Рассмотрим этоположение на конкретном примере. В сплаве системы Аl - Си образуется интерметаллическое соединение CuAI2. Если этот сплав нагреть до 500 - 540°С, то частицы СuАl2растворятся в алюминии. При быстром охлаждении фаза СuАl2 не успевает выделиться из твердого раствора и остается в нем, в результате чего получается упрочнение сплава (закалка). Фазовые изменения в алюминиевых сплавах могут происходить не только при нагреве, но и при комнатной температуре. Для алюминиевых сплавов наиболее широкое распространение получили следующие виды термообработки: отжиг, закалка и старение.

Отжиг применяют для улучшения пластичности. При этом полу­чается более равновесное фазовое состояние. В зависимости от поставленной цели отжиг разделяют на три вида: гомогенизирую­щий, рекристаллизационный, а также для разупрочнения.

Гомогенизирующий отжиг проводят, как правило, для устранения неоднородностей структуры сплава. Температура нагрева при этом 450 - 520°С. Время выдержки при этой температуре 4 - 40 ч. После этого сплав охлаждают.

Рекристаллизационный отжиг выполняют для обеспечения высо­кой пластичности и снижения прочности деталей после пластической деформации. Алюминиевые сплавы нагревают до 300 - 500°С, соот­ветствующих температуре окончания первичной рекристаллизации. Длительность такого отжига 0,5 - 2 ч.

Отжиг для разупрочнения применяют для снижения прочности перед последующей обработкой давлением, например штамповкой.

Закалка может быть применена только для тех сплавов, которые в твердом состоянии могут претерпевать фазовые превращения. Цель закалки - получить в сплаве предельно неравномерную структуру - пресыщенный твердый раствор с максимальным содержанием леги­рующих элементов. Такая структура обеспечивает возможностьдаль­нейшего упрочнения старением. Сразу после закалки алюминиевые сплавы не становятся более прочными. Они приобретают заданные характеристики прочности после завершения процесса старения, т.е. после окончания фазовых превращений в твердом состоянии.

Таким образом, если в сплаве находятся только компоненты, не растворимые в твердом алюминии, его закалка невозможна.

Закалка алюминиевых сплавов заключается в нагреве их до температуры, при которой легирующие элементы частично или пол­ностью растворяются в алюминии. При этой температуре сплав выдер­живают, а затем быстро охлаждают до весьма низкой температуры (10 - 20 °С). Выдержка нужна для прохождения процесса растворения. Кик правило, охлаждение алюминиевых сплавов производят в воде.

Алюминиевые сплавы могут подвергаться процессам старения при нагреве (обычно 100 - 200 °С) или при комнатной температуре. Старение с нагревом называют искусственным старением. Старение при комнатной температуре называют естественным старением.

Состояние алюминиевых сплавов сразу после закалки называют свежезакаленным. Поскольку при этом существенное повышение прочности еще не началось, деталь или заготовку можно легко обра­батывать (например, гнуть) в течение нескольких часов. Затем твердость и прочность возрастают. В самолетостроительном производстве это свойство используется очень широко.

Она позволяет получить большое разнообразие структур. В этом случае можно добиться значи­тельного упрочнения, что и обеспечило самое широкое применениетермообработки алюминиевых сплавов. Физический смысл термообработки сплавов алюминия состоит в том, что при этом изменяется и концентрация твердого раствора легирующих элементов в алюминии, При этом меняется фазовый состав, что повышает прочность сплайн при сохранении достаточной пластичности. Рассмотрим этоположение на конкретном примере. В сплаве системы Аl - Си образуется интерметаллическое соединение CuAI2. Если этот сплав нагреть до 500 - 540°С, то частицы СuАl2растворятся в алюминии. При быстром охлаждении фаза СuАl2 не успевает выделиться из твердого раствора и остается в нем, в результате чего получается упрочнение сплава (закалка). Фазовые изменения в алюминиевых сплавах могут происходить не только при нагреве, но и при комнатной температуре. Для алюминиевых сплавов наиболее широкое распространение получили следующие виды термообработки: отжиг, закалка и старение.




Отжиг применяют для улучшения пластичности. При этом полу­чается более равновесное фазовое состояние. В зависимости от поставленной цели отжиг разделяют на три вида: гомогенизирую­щий, рекристаллизационный, а также для разупрочнения.

Гомогенизирующий отжиг проводят, как правило, для устранения неоднородностей структуры сплава. Температура нагрева при этом 450 - 520°С. Время выдержки при этой температуре 4 - 40 ч. После этого сплав охлаждают.

Рекристаллизационный отжиг выполняют для обеспечения высо­кой пластичности и снижения прочности деталей после пластической деформации. Алюминиевые сплавы нагревают до 300 - 500°С, соот­ветствующих температуре окончания первичной рекристаллизации. Длительность такого отжига 0,5 - 2 ч.

Отжиг для разупрочнения применяют для снижения прочности перед последующей обработкой давлением, например штамповкой.

Закалка может быть применена только для тех сплавов, которые в твердом состоянии могут претерпевать фазовые превращения. Цель закалки - получить в сплаве предельно неравномерную структуру - пресыщенный твердый раствор с максимальным содержанием леги­рующих элементов. Такая структура обеспечивает возможностьдаль­нейшего упрочнения старением. Сразу после закалки алюминиевые сплавы не становятся более прочными. Они приобретают заданные характеристики прочности после завершения процесса старения, т.е. после окончания фазовых превращений в твердом состоянии.

Таким образом, если в сплаве находятся только компоненты, не растворимые в твердом алюминии, его закалка невозможна.

Закалка алюминиевых сплавов заключается в нагреве их до температуры, при которой легирующие элементы частично или пол­ностью растворяются в алюминии. При этой температуре сплав выдер­живают, а затем быстро охлаждают до весьма низкой температуры (10 - 20 °С). Выдержка нужна для прохождения процесса растворения. Кик правило, охлаждение алюминиевых сплавов производят в воде.

Алюминиевые сплавы могут подвергаться процессам старения при нагреве (обычно 100 - 200 °С) или при комнатной температуре. Старение с нагревом называют искусственным старением. Старение при комнатной температуре называют естественным старением.

Состояние алюминиевых сплавов сразу после закалки называют свежезакаленным. Поскольку при этом существенное повышение прочности еще не началось, деталь или заготовку можно легко обра­батывать (например, гнуть) в течение нескольких часов. Затем твердость и прочность возрастают. В самолетостроительном производстве это свойство используется очень широко.

Дальнейшее внедрение сварных алюминиевых конструкций в различные отрасли машиностроения во многом зависит от раз­работки новых способов сварки алюминиевых сплавов. Раньше алюминиевые сплавы сваривали в основном в нижнем положении из-за высокой жидкотекучести расплавленного алюминия.
В последнее время разработаны новые способы сварки, поз­воляющие сваривать алюминий во всех пространственных положе­ниях. Так в ИЭС им. Е. О. Патона разработан способ импульсной сварки плавящимся электродом.

В научно-исследовательском и конструкторском институте мон­тажной технологии (НИКИМТе) разработан метод сварки труб с применением формирующего давления в их внутренней поло­сти. За рубежом разработан способ механизированной сварки алюминиевых листов большой толщины в вертикальном положе­нии, обеспечивающий получение высококачественных стыковых и угловых швов. Разработка новых способов сварки, как правило, сопровождается созданием соответствующего сварочного оборудо­вания, позволяющего получить новый качественный эффект при изготовлении сварных конструкций.

Учитывая, что проблема очень широка, авторы не ставили себе задачу охватить все вопросы, связанные со сваркой кон­струкций из алюминиевых сплавов, и остановились на вопросах газоэлектрической сварки алюминиевых сплавов. Более детально осветили вопросы сварки трубных узлов и крупногабаритных деталей ответственных конструкций.

Сплавы алюминия в зависимости от назначения делят на дефор­мируемые и литейные. Деформируемые алюминиевые сплавы разделяют на две группы: неупрочняемые и упрочняемые терми­ческой обработкой. К неупрочняемым термической обработкой относятся сплавы типа магналия (AMrl, АМг2 АМгЗ, АМг5 и АМгб), сплавы АМц, АМцС, а также алюминий АДОО, АДО, АД1 и АД. К упрочняемым термической обработкой относятся сплавы АД31, АДЗЗ, АВ, Д1, Д16, Д18, АК4, АК4-1, АК6, АК8, Д20, В93, В94, В95 и др.

Из деформируемых сплавов изготовляют различные полуфа­брикаты в виде листов (толщиной до 10 мм), плит (толщиной свыше 10 мм), прессованных профилей, поковок, штампованных загото­вок, прутков, проволоки, фольги, труб.

Термически упрочняемые алюминиевые сплавы обладают более высокими прочностными свойствами, чем термически неупрочняе­мые. Однако прочность последних можно повысить путем нагартовки.

Разупрочнение алюминия при сварке

В сварных соединениях термически неупрочняемых сплавов системы А1—Mgнаименьшую прочность имеет металл шва, она составляет обычно 0,85—0,95 прочности основного металла. Во многих случаях этого достаточно, чтобы не предпринимать до­полнительных мер с целью повысить прочность металла шва. Если листы перед сваркой нагартованы, то разупрочнение происходит также и в околошовной зоне. Равнопрочность всех зон сварного соединения и основного металла можно достигнуть прокаткой ро­ликами металла шва и околошовной зоны, а также путем увеличе­ния содержания магния в присадочной проволоке.

Значительно больше проблем возникает в случае необходимо­сти получения сварных соединений, однородных по химическим свойствам с основным металлом термически упрочняемых сплавов. Металл зоны сплавления и околошовной зоны при сварке терми­чески упрочненных алюминиевых сплавов подвергается термиче­ской обработке различных видов: закалке, отжигу, возврату. На рис. 1 приведена зависимость механических свойств сплава типа авиаль (системы А1—Mg—Si) от температуры и продолжи­тельности выдержки. В зависимости от температуры и продолжи­тельности ее воздействия степень разупрочнения различна. В не­которых случаях прочность сварных соединений сплавов, типа авиаль, дуралюмин может составлять лишь 50% прочности основ­ного металла.


Рис. 1. Влияние различных термических циклов на механические свойства сплава САВ-1:

а, б — термические циклы; в — изменение механических свойств

На рис. 2 показаны изменения твердости в сварном соединении труб сплава типа авиаль в поперечном направлении. В зоне свар­ного шва, где температуры достаточно высоки, обычно происходит последующее естественное старение металла с повышением проч­ностных характеристик. В зоне отжига обычно не удается достиг­нуть повышения прочности до уровня основного металла без повторной закалки всего соединения. Однако закалка всего свар­ного соединения (конструкции) возможна далеко не всегда, так как такую операцию трудно выполнить на крупногабаритной конструкции, а также на любой конструкции, имеющей жестко заданные размеры и не имеющей припуска на механическую обра­ботку.


Рис. 2. Изменение твердости в сварном соединении труб из сплава типа авиаль (1-18 — номера точек измерения)

Следует отметить, что в тех многочисленных случаях (напри­мер, при сварке конструкций из сплавов авиаль, дуралюмин), когда для снижения склонности сварных швов к трещинообразонию приходится применять сварочную проволоку, отличающуюся по химическому составу от основного металла (например, значительно увеличивая в сварочной проволоке по сравнению с основ­ным металлом процент содержания кремния), получить металл шва, равнопрочный основному металлу, невозможно. Ожидаемое снижение прочности сварных соединений следует учитывать при назначении допустимых нагрузок на конструкцию.

В последнее время получили распространение самозакаливаю­щиеся алюминиевые сплавы. Эти сплавы стареют очень медленно и достигают нормальной прочности примерно через три месяца. Самозакаливающиеся сплавы относятся к системе А1—Zn—Mg. Для повышения предела текучести сплавы подвергают искусствен­ному старению при 100° С в течение 90—100 ч. Сплавы такого типа, например, содержащие 4,5% Zn, 1,5% Mg, до 3% Мп и 0,2% Cr, в состоянии после искусственного старения имеют предел текуче­сти 28—33 кГ/мм2, предел прочности при растяжении 36— 41 кГ/мм2. После сварки и искусственного старения при 100— 110° С в течение четырех суток предел прочности достиг 34— 39 кГ/мм2, при этом угол изгиба составил 130—160°. Однако при хороших прочностных показателях сплав обладает склонностью к образованию трещин в шве и зоне сплавления.

Положительное влияние на уменьшение склонности к обра­зованию трещин оказывает применение присадки типа СвАК5. Из самозакаливающихся сплавов наибольшей стойкостью против образования кристаллизационных трещин обладают сплавы си­стемы Аl—Zn—Mgс повышенным содержанием магния (6,5%) и небольшими добавками меди.

Повышения прочности сварных соединений сплава В95 дости­гают термической обработкой, однако не удается получить проч­ность сварных соединений выше 80% прочности основного металла при низком уровне пластичности.

Отжиг алюминия

Закалка на прессе алюминиевых профилей из сплавов АД31, 6060 и 6063

Все алюминиевые сплавы серии 6ххх могут получать закалку непосредственно на прессе. Для фиксирования растворенных фаз в твердом растворе алюминия необходимо охлаждение алюминиевых профилей на выходе из пресса со скоростью не ниже некоторой критической скорости. Эта скорость зависит от химического состава алюминиевого сплава. Обычно усиленного охлаждения вентиляторами бывает достаточно для большинства алюминиевых профилей, однако иногда бывает необходимым и охлаждение их водой или смесью воздуха и воды. Успешная закалка алюминиевых сплавов серии 6ххх зависит от толщины профиля, а также от типа сплава и его химического состава. В случае чрезмерно массивных алюминиевых профилей, например, из сплава АД33 (6061) и относительно медленной скорости прессования материал на выходе из матрицы может не достигать интервала температур, необходимого для закалки и часть частиц Mg2Si останется не растворенной. Поэтому при последующем воздушном, или даже водяном, охлаждении профилей их полной закалки не получится. В таких случаях применяют отдельный нагрев под закалку в специальных печах – обычно вертикальных с последующим охлаждением в вертикальных баках с водой. После закалки алюминиевых профилей производят их растяжение на 1,5 – 3 % для правки и снятия остаточных напряжений.

Старение алюминиевых профилей: искусственное и естественное

Заключительной операцией термической обработки алюминиевых профилей является старение, естественное или искусственное. Естественное старение происходит само собой в течение некоторого времени, разного для различных алюминиевых сплавов – от нескольких недель до нескольких месяцев. Искусственное старение производят в специальных печах старения.

Склонность к трещинообразованию

Существенным затруднением при сварке алюминиевых сплавов является склонность их к образованию трещин. Некоторые сплавы склонны к образованию горячих трещин, возникающих в период кристаллизации металла сварочной ванны, в других образуются холодные трещины, обнаруживаемые иногда спустя несколько месяцев после сварки.

Трещины всех типов чрезвы­чайно опасны для конструкций, так как могут привести к внезап­ному и полному их разрушению.

Горячие трещины выявлять несколько проще, так как все сварные швы при изготовлении конструкций подвергают различ­ным методам контроля. Холодные трещины особенно опасны тем, что возникают в конструкциях, эксплуатируемых или находя­щихся на хранении как бездефектные. Разрушения от холодных трещин наступают неожиданно. В некоторых случаях растрески­вание протекает в коррозионной среде. Поэтому все алюминиевые сплавы, прежде чем использовать для изготовления конструкций, необходимо тщательно исследовать на склонность к образованию горячих и холодных трещин.

Склонность алюминиевых сплавов к образованию трещин уве­личивается с увеличением количества в них легирующих элемен­тов, с повышением их прочности. Это относится к таким сплавам, как В95, В96, М40, 01915, 01911, 01063, ВАД23 и др.

Трещины при сварке возникают при достижении предельной деформации в металле шва или в зоне взаимной кристаллизации. В результате неравномерного распределения температур при сварке также в отдельных зонах металла возникают растягиваю­щие напряжения. При остывании шва растягивающие напряжения возникают в зоне, где при нагреве была максимальная температура. В высоколегированных сплавах по границам зерен образуются эвтектики, которые в момент кристаллизации зерен остаются жидкими, имеют низкую прочность и при приложении растягиваю­щих напряжений легко разрушаются.

Возникновение трещин

Возможность возникновения трещин помимо химического со­става сплава определяется также другими факторами, задающими величину и темп развития деформации в определенные промежутки времени. Величина и темп развития деформации металла на различных этапах нагрева и охлаждения зависят от режима сварки, условий охлаждения и жесткости закрепления.

Холодные трещины в алюминиевых сплавах могут быть не только металлургического происхождения, но и возникать от не­правильного применения некоторых технологических операций. Например, проковка сварных швов может приводить к образова­нию трещин, иногда не выходящих на поверхность металла. Выяв­ление таких дефектов затруднительно, поэтому в случае необхо­димости проведения подобных операций требуется тщательное предварительное исследование.

Чистый алюминий марок AB0000, АВ000, АВОО не склонен к образованию горячих трещин. Стойкость к образованию трещин снижается при увеличении содержания кремния, а также может снижаться или повышаться в зависимости от содержания железа. Алюминий других марок проявляет склонность к образованию трещин особенно при сварке листов и плит большой толщины. Подавление склонности к образованию горячих трещин в сплавах, содержащих до 0,35% Si, достигается таким содержа­нием железа, что выдерживается отношение Fe: Si>= 0,5. При более высоком содержании кремния соединение без трещин может быть получено при соотношении указанных элементов больше единицы.

Сплавы системы А1—Мп применяют только с содержанием 1,2—1,6% Мп (сплав АМц). Этот сплав относится к числу хорошо сваривающихся. Тонкие листы (до 3 мм) свариваются без трещин. При сварке листов большей толщины склонность к образованию горячих трещин зависит также от содержания железа и кремния. У сплавов типа АМц, содержащих более 0,2% Fe, при соотноше­нии Fe: Si> 1 склонность к образованию трещин близка к нулю. При содержании более 0,2% Siдолжно сохраняться соотношение Fe: Si> 1.

Сплавы системы А1—Mgобладают меньшей склонностью к об­разованию горячих трещин, чем сплавы систем А1—Си и А1—Si. Наибольшая склонность к образованию трещин наблюдается при сварке тавровых проб сплава, содержащего 1—2% и 2,5 — 3,9% Mgпри испытаниях на образцах крестовой пробы [17, 121]. Для предотвращения образования трещин необходимо применять при­садочный материал с большим содержанием магния.

К термически упрочняемым сплавам системы А1—Mg—Siотносятся применяемые в СССР сплавы АВ, АК6-1 и АКВ. Упроч­нение этих сплавов достигается за счет выделения фазы Mg2Siпри старении. Особенностями свариваемости таких сплавов яв­ляются повышенная склонность к образованию горячих трещин в процессе сварки и разупрочнение в околошовной зоне. Наиболь­шую склонность к образованию горячих трещин проявляют сплавы, содержащие 0,2—2% Siи 0,2—1,5% Mg. Склонность к образованию горячих трещин определяется наличием легкоплавкой трой­ной эвтектики А1—Mg—Mg2Si, а также двойных эвтектик А1—Mg2Siи А1—Si, расширяющих интервал твердожидкого состояния сплава.

Использование присадочных материалов

В сварных соединениях сплавов типа авиаль значительное уменьшение склонности к образованию горячих трещин может быть достигнуто при использовании присадочных материалов с со­держанием 4,5—6,0% Si. При этом склонность к образованию трещин, определяемая по крестовой пробе, уменьшается с 60% до 0. Таким присадочным материалом может быть проволока СвАК5.

Применение присадочных проволок, содержащих не­сколько процентов магния, например, АМг6, также исключает образование трещин в шве, но одновременно с этим интенсивно развиваются околошовные трещины. Это связано с более широким интервалом твердо-жидкого состояния и большей линейной усад­кой металла шва, выполненного таким присадочным материалом. При сварке сплава такого типа с применением присадочной про­волоки, содержащей 5% Si, получаются швы, пониженные меха­нические свойства которых не могут быть повышены термической обработкой.

При сварке деталей из сплава типа АВ хорошие результаты получены при использовании присадочного материала, содержа­щего 0,9% Mg, 2,3—3,5% Si, а также 0,25% Ті, 0,4% Мп или 0,2% Сг. Испытаниями на крестовой пробе трещины не обнару­жены. Швы, выполненные с помощью этой присадки, имеют один цвет с основным металлом после анодирования в отличие от швов, выполненных с присадкой СвАК5. Сплавы АК6 и АК8, со­держащие 2,2 и 4,3% Cu, склонны к образованию горячих трещин при сварке крестовой пробы. Эта склонность уменьшается при вве­дении в них 0,08—0,15% Ті.

К сплавам системы А1—Си относятся литейные АЛ7, АЛ 12 и деформируемый Д20. Сваривающийся сплав Д20 содержит 0,4— 0,8% Мп и 0,1—0,2% Ті. Последний значительно измель­чает зерно металла шва. Для повышения стойкости против трещин в сплаве должно быть не более 0,3% Fe, 0,2% Siи 0,05% Mg.

Дуралюмины относятся к системам Аl—Cu—Mg—Mn и Аl— Cu—Mg—Mn—Si. Основные марки дуралюмина Д1, Д6, Д16, 3125, АК8, ВД17. При сварке эти сплавы обладают повышенной склонностью к образованию трещин, а их сварные соединения имеют пониженные значения механических свойств в зоне сплавле­ния со швом.

Применением присадочных проволок типа СвАК5 и В61 можно снизить вероятность образования трещин при любом способе сварки. Существенное значение при этом имеет правильный подбор режимов сварки. Низкая пластичность шва и зоны сплавления обусловлена тем, что по границам оплавленных зерен распола­гаются хрупкие прослойки интерметаллидов.

Одним из наиболее распространенных сплавов системы Аl— Zn—Mg—Cu является сплав В95. Для повышения коррозионной стойкости листы из спла­вов В95 плакированы сплавом, содержащим 3,5% MgZn2.

Сплав В95 склонен к образованию горячих и холодных тре­щин. Последние наблюдаются только при газовой сварке. Для сварки сплава В95 применяют присадочный материал химического состава: 6% Mg, 3% Zn, 1,5% Cu, 0,2% Mn, 0,2% Ті, 0,25% Cr или 5% Mg, 0,2—1,5% Cu, 10% Zn, 0,2% Mn, 0,2% Ті, 0,25% Cr, остальное Аl. Можно также использовать сплавы, содержащие 3% Mg, 6% Zn, 0,5—1% Ті или 8—10% Mg, остальное Аl.

Закалка и старение алюминия и алюминиевых сплавов

Закалке и старению подвергаются как деформируемые, так и литейные сплавы, содержащие легирующие элементы, образующие при старении упрочняющие частицы. Нагрев под закалку производится до температур, обеспечивающих необходимое насыщение сплава легирующими элементами. Чрезмерное повышение температуры может привести к росту зерна и оплавлению неравновесных эвтектик на границах зерен и к снижению механических свойств. В то же время выдержка при температуре нагрева должна обеспечить наиболее полное растворение интерметаллидных фаз, она зависит от величины частиц ннтерметаллндных фаз и характера их распределения в исходном состоянии.

Для деформируемых сплавов выдержки при нагреве выбирают значительно меньшими, чем для литейных, так как в первом случае исходная структура состоит из более дисперсных включений вторичных фаз. Охлаждение при закалке проводят со скоростью выше критической. Критическая скорость охлаждения зависит от устойчивости переохлажденного твердого раствора. Например, закалка сплава Д16 осуществляется в воде, а тонкостенных деталей из А1 — Zn — Mg — на воздухе. Практически в большинстве случаев алюминиевые сплавы охлаждаются в воде.

Рис. 16.1. Структура сплава Д16 после закалки с температурой: a — 530° С, б — 560° С, в — закалка с 505° С, 4- старение при 300° С

После закалки образуется пересыщенный твердый раствор и различное количество первичных выделений (рис. 16.1, а).

Исправление дефектов

Газоэлектрическая сварка металлов является сложным технологическим процессом, в ходе которого возможно появление дефектов, не допустимых по условиям работы сварных конструкций. Необходимость исправлений дефектов определяют по результатам дефектоскопического контроля согласно техническим условиям на приемку сварных соединений.

Удаление дефектного участка шва следует производить в зависимости от размера сварного соединения пневматическим зубилом, шарошкой, шабером, но ни в коем случае не абразивным инструментом, так как абразив остается в металле шва и качество поверхности выборки получается неудовлетворительным.

Форма разделки дефектного места должна иметь плавный переход к окружающим участкам сварного соединения. Перед подваркой проводят дополнительный контроль дефектного места, чтобы подтвердить устранение дефекта. Подварку выполняют ручной или полуавтоматической сваркой с соблюдением всех требовачий подготовки деталей и материалов к сварке. После подварки производят окончательный контроль согласно техническим условиям на приемку сварных соединений. При сварке деталей из термически упрочняемых алюминиевых сплавов следует иметь в виду, что каждая подварка при исправлении дефектного участка шва приводит к снижению прочности сварного соединения из-за дополнительного разупрочнения металла в зоне термического влияния при повторных нагревах. Поэтому при сварке термически упрочняемых сплавов необходимо в каждом отдельном случае рассматривать вопрос о допустимости более чем однократной подварки или допустимости подварки вообще.

Старение алюминиевых сплавов


Алюминиевые сплавы подвергают трем видам термической обработки: отжигу, закалке и старению. Основными видами отжига являются: диффузионный (гомогенизация), рекристаллизацпонный и термически упрочненных сплавов.
Гомогенизацию применяют для выравнивания химической микронеоднородности зерен твердого раствора путем диффузии, т. е. уменьшения дендритной ликвации в слитках. Так как скорость диффузии увеличивается с повышением температуры, а количество продиффундировавшего вещества тем больше, чем длительнее выдержка, то для энергичного протекания диффузии необходимы высокая температура (близкая к температуре линии солидуса) и продолжительная выдержка.
Для выполнения гомогенизации алюминиевые сплавы (слитки) нагревают до 450-520В° С и выдерживают при этих температурах от 4 до 40 ч; после выдержки - охлаждение вместе с печью или на воздухе. В результате гомогенизации структура становится более однородной (гомогенной), повышается пластичность, что значительно улучшает последующую деформацию слитка горячей обработкой давлением. Поэтому гомогенизацию широко применяют для деформируемых алюминиевых сплавов.
Для алюминия и алюминиевых сплавов (а также для других цветных металлов и сплавов) рекристаллизационный отжиг применяют гораздо шире, чем для стали. Это объясняется тем, что такие металлы, как алюминий и медь (используемые в промышленности в чистом виде), а также многие сплавы на их основе, не упрочняются закалкой и повышение их механических свойств может быть достигнуто только холодной обработкой давлением, а промежуточной операцией при такой обработке (для восстановления пластичности) является рекристаллизационный отжиг. Кроме того, сплавы, упрочняемые закалкой, часто подвергают холодной обработке давлением с последующим рекристаллиза- ционным отжигом для придания требуемых свойств. Температура рекристаллизационного отжига алюминиевых сплавов 300-500В° С, выдержка 0,5-2 ч.
Отжиг термически упрочненных сплавов применяют для полного снятия упрочнения, полученного в результате закалки и старения; он проводится при температурах 350-450В° С с выдержкой 1-2 ч и последующим достаточно медленным охлаждением (со скоростью не более 30В° С/ч), чтобы обеспечить протекание диффузионных процессов распада твердого раствора и коагуляцию продуктов распада.


В современной технике применяют много сплавов на алюминиевой основе с различным количеством легирующих элементов. Одни из них, например Сu, Si, Mg, Zn, резко изменяют свойства алюминия и его сплавов. Другие, например Mn, Ni, Сг, дополнительно улучшают свойства и вводятся только при наличии перечисленных выше, одного или нескольких, основных легирующих элементов. Часть элементов вводят в качестве модификаторов, добавок, действующих различно, но улучшающих (главным образом измельчающих) структуру; к таким добавкам относятся Na, Be, Ti, Се, Nb. Некоторые элементы, входящие в алюминиевые сплавы, образуют с алюминием ограниченные твердые растворы переменной концентрации, в которых растворимость элементов с понижением температуры уменьшается. На этом и основывается закалка алюминиевых сплавов.


После закалки алюминиевые сплавы подвергают старению, при котором происходит распад пересыщенного твердого раствора. При старении в сплавах А1-Сu протекают следующие процессы.
1. При температуре 20В° С (естественное старение) и при температурах до 100В°С (искусственное старение) в пересыщенном твердом растворе возникают области (тонкопластинчатой, дискообразной формы), обогащенные атомами меди, названные зонами Гинье-Престона и обозначаемые Г. П., а для данного начального процесса Г. П. 1. Эти зоны имеют толщину 5-10 А и диаметр 40-100 А. Структура их неупорядоченная, как и твердого раствора. Образование зон Г. П. 1 сопровождается искажением кристаллической решетки (рис. 125), что приводит к повышению механических свойств сплава.
2. При температурах 100-150В° С происходит рост зон Г. П. 1 до толщины 10-40 А и диаметра 200-300 А, обогащение атомами меди до состава, близкого к составу стабильной фазы θ" (СuА12). Структура образующихся зон становится упорядоченной. Такие зоны называются зонами Г. П. 2 или фазой θ", и их наличие обусловливает максимальную прочность сплава.
3. При температурах 150-200В° С образуется метастабильная промежуточная фаза θ', имеющая такой же состав, как равновесная θ-фаза (СиА12). Но выделения θ'-фазы не имеют границ раздела с зернами твердого раствора, т. е. когерентно связаны с решеткой алюминия. Таким образом, появление зон Г. П. 1 и Г. П. 2 - это подготовительные стадии к началу распада твердого раствора (выделению избыточной фазы), а образование θ'-фазы - начало распада твердого раствора (выделение избыточной фазы).
4. При температурах 200-250В° С решетка О-фазы отрывается от решетки твердого раствора (когерентность полностью нарушается) и оформляется в решетку, соответствующую соединению СиАl8 (θ'-фаза).
5. Дальнейшее повышение температуры приводит к коагуляции выделившейся θ-фазы, резкому снижению прочности и повышению пластичности.
Таким образом, структура сплавов при старении изменяется в следующей последовательности: зоны Т.П. 1> зоны Г. П. 2 (фаза θ") > фаза θ' > фаза θ (CuA12).

В алюминиевомедных сплавах состояние, получившееся в результате естественного или низкотемпературного старения, является неустойчивым. Если такой сплав нагреть до 230- 250В° С с короткой (30-120 с) выдержкой, с последующим быстрым охлаждением (в воде), то упрочнение исчезает и сплав по своим свойствам возвращается к свежезакаленному состоянию. Однако после охлаждения естественное старение снова повторяется, и сплав опять упрочняется.
Возвращение (путем краткого нагрева) свойств естественно состаренного сплава к свойствам сплава в свежезакаленном состоянии и обратно называется явлением возврата . Это явление объясняется тем, что при кратковременном нагреве происходит рассасывание зон Гинье-Престона и атомы меди вновь распределяются равномерно в решетке твердого раствора. Строго определенное время выдержки для осуществления возврата необходимо по следующим причинам:
1) если времени недостаточно, то не будет полного возврата (не произойдет полного рассасывание зон Г.П.)
2) если времени выдержки больше, то за это время произойдет рассасывание зон Г.П., сплав возвратится в свежезакаленное состояние, и сразу начнется распад твердого раствора с образованием метастабильной фазы θ' с повышением твердости.
В сплавах А1-Сu при естественном или низкотемпературном старении образуются только зоны Г. П., а при искусственном старении фаза θ", при дальнейшем развитии процесса превращающаяся в фазу θ (CuA12).


Наличие в дуралюминах меди, магния, марганца и примесей (десятые доли процента) кремния и железа приводит к образованию ряда растворимых при нагреве (упрочняющих) фаз - СиА12, Mg2Si, Al2CuMg (так называемая фаза S) и практически не растворимых, например Al6 (Mn, Fe), AlFeSiMn. Микроструктура дуралюмина после отжига состоит из твердого а-раствора и включений различных фаз.
При нагреве приблизительно до 500В° С упрочняющие фазы растворяются в α-растворе, а быстрое охлаждение в воде (закалка) позволяет зафиксировать пересыщенный твердый раствор. Микроструктура дуралюмина после закалки состоит из зерен пересыщенного твердого α-раствора и включений, не растворимых в твердом растворе при нагреве фаз (железистых и марганцовистых соединений), микроструктура не изменяется после естественного старения. После искусственного старения по границам и внутри зерен α-твердого раствора выделяются включения СuА12 и фазы S.
В закаленном состоянии дуралюмины пластичны и легко деформируются. После закалки и естественного или искусственного старения прочность дуралюмина резко повышается. Максимум прочности получается после естественного старения. При искусственном старении сплав упрочняется тем быстрее, чем выше температура старения, но максимум прочности при этом получается более низким.
Обработка закаленного дуралюмина при низких температурах задерживает распад твердого α-раствора (-5В° С); при -50В° С распад не происходит. Обработка холодом дуралюмина дает результаты, противоположные результатам обработки холодом закаленной стали (низкотемпературная обработка которой способствует более полному распаду твердого раствора - аустенита).
Период, при котором после закалки дуралюмина упрочнение не наступает, сравнительно невелик и оставляет 1-6 ч. В это время и должны проделываться все операции холодной деформации (штамповка, высадка, расклепка и т. п.)
Особенностью термической обработки дуралюминов является узкий интервал температуры нагрева под закалку- +/- t5В°C (например, для дуралюминов Д16, Д18, ВД17 495-505В° С, для дуралюмина Д1 500-510В° С, для дуралюмина В65 - 515- 525В° С). Указанные температуры нагрева необходимо строго соблюдать при закалке дуралюминов, так как нагрев до температур выше или ниже рекомендованного интервала приводит к значительному снижению прочности и пластичности.
Снижение механических свойств дуралюмина при нагреве до температуры выше допустимых пределов связано с оплавлением эвтектики, сопровождающимся по границам зерен окислением металла, т. е. происходит пережог. При нагреве до температуры ниже допустимых пределов не произойдет максимального растворения упрочняющих фаз.
Вследствие узкого предела допустимых температур нагрева дуралюминов под закалку применяемые печи должны обеспечивать равномерность нагрева и перепад температур, не превышающий интервала температур закалки. Этим требованиям удовлетворяют соляные (селитряные) ванны и электрические печи с принудительной циркуляцией воздуха.
Нагретые алюминиевые сплавы (после выдержки при температуре закалки) охлаждают в холодной воде с температурой не выше 30-40В° С с быстрым их переносом из печи (ванны) в закалочный бак. Такие условия охлаждения необходимы для того, чтобы зафиксировать в сплаве твердый раствор и получить в дальнейшем (при старении) необходимое упрочнение, а также для предотвращения межкристаллитной коррозии, склонность к которой повышается даже при незначительном распаде твердого раствора с выделением избыточных фаз по границам зерен.

Литейные алюминиевые сплавы.


Для литейных алюминиевых сплавов используют различные виды термической обработки в зависимости от химического состава сплава и назначения литых деталей. Виды термической обработки имеют условные обозначения: Т1 - искусственное старение без предварительной закалки; Т2 - отжиг; ТЗ - закалка; Т4 - закалка и естественное старение; Т5 - закалка и частичное (неполное) искусственное старение; Т6 - закалка и полное искусственное старение; Т7 - закалка и стабилизирующий отпуск; Т8 - закалка и смягчающий отпуск.
Термическая обработка литейных алюминиевых сплавов по сравнению с термической обработкой деформированных сплавов имеет ряд особенностей, что объясняется различным химическим составом, а также тем, что у литейных сплавов структура более крупнозернистая, чем у деформированных. Температура нагрева под закалку у литейных сплавов несколько выше, чем у деформированных, и выдерживать отливки при этой температуре надо более длительное время. Это необходимо для того, чтобы растворить интерметаллические соединения, обычно выделяющиеся по границам зерен, и обеспечить уменьшение ликвации сплава. При закалке литейные сплавы выдерживают при температуре нагрева от 2 до 20 ч. Охлаждают литейные сплавы при закалке в холодной и нагретой (50-100В° С) воде, а также и в масле.
Для упрочнения литейные алюминиевые сплавы подвергают (так же как и деформируемые) закалке с получением пересыщенного твердого раствора и искусственному старению (по режимам Т5 и Т6) с выделением упрочняющих фаз, а также (в отличие от деформируемых сплавов) только закалке без старения с получением в закаленном состоянии устойчивого твердого раствора.

Термическая обработка алюминиевых сплавов
Термическая обработка алюминиевых сплавов
Термическая обработка алюминиевых сплавов
Термическая обработка алюминиевых сплавов
Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.jpg

Закалка включает нагрев сплава до температуры, при которой избыток интерметаллической фазы полностью или почти растворяется в алюминии, выдерживание его при этой температуре и быстрое охлаждение до комнатной температуры с получением пересыщенного твердого раствора. Например, температура закалки сплава на основе A1-Cu (рис.167) определяется линией abc и превышает верхний предел растворимости сплава, содержащего Cu, менее чем на 5,7% и

Закалка закаленного сплава, содержащего до 5% Cu, вызывает полное растворение избыточной фазы CuA12 с последующим быстрым охлаждением, фиксируется только пересыщенный α-твердый раствор, и в сплав входит медь (см. Рисунок, 166 с).При содержании более 5% Cu в структуре сплава после закалки происходит пересыщение твердого раствора с соответствующим составом в точке B. кристаллы соединения CuAl2 чрезмерно растворяются при нагревании. Время выдержки при температуре закалки, необходимой для растворения фазы интерметаллического соединения, зависит от структурного состояния сплава, типа печи и толщины изделия. Листы, плиты, прутки, полосы толщиной 0,5-150 мм выдерживают соляные ванны в течение 10-80 мин, а наиболее широко применяются электропечи с принудительной циркуляцией воздуха-нагрев в течение 30-210 мин.

Выдержка формованного изделия при температуре отверждения более длительная (2-15 часов).За это время крупный осадок интерметаллической фазы растворяется (см. рис. 166, а).Охлаждение деформированных сплавов при быстром охлаждении происходит в холодной воде, а отливки, сформированные в горячей воде (50-100°С), предотвращают коробление и растрескивание. После закалки сплав проявляет относительно низкую сверхпроводящую прочность, StO2 и высокую пластичность(6, f).

  • Дисперсионно твердеющий сплав. После закалки проводят старение, и сплав выдерживают в течение нескольких дней при комнатной температуре (естественное старение) или при высоких температурах в течение 10-24 часов (искусственное старение).В процессе старения происходит разложение пересыщенного твердого раствора, которое сопровождается упрочнением сплава. Распада пересыщенных твердых растворов происходит в несколько этапов, в зависимости от температуры и срока созревания. Естественная (20°C) или низкая температура искусственная Триста сорок Рисунок 167.Фазовая диаграмма разложение AI-Siyom при старении (ниже 100-150°С) твердого раствора не наблюдается с выделением избытка phase.

At при этих температурах атомы меди перемещаются в кристаллической решетке твердого раствора на очень короткое расстояние, и в плоскости (100) они собираются в 2-мерное пластинчатое образование(рис.168, а)1 или диск—гиниплеровскую зону(ГП-1).При длине в несколько десятков Ангстрем (30-60 А) и толщине в 5-10 а эти зоны ГП-1 распределены почти поровну внутри каждого кристалла. Концентрация меди в зоне GP-1 ниже, чем CuA12(54%). 1 в то же время (1938) эти 2-мерные структуры были открыты Гинье во Франции и Престоном в Англии. Зона Гвинея-Престо идентифицируется с помощью специальной рентгеновской дифракции. Анализ. Если сплав после короткого периода естественного старения (несколько секунд или минут) нагревают до 230-270°С, а затем быстро охлаждают, то упрочнение полностью исключается,

Это явление называется возвращением. Размягчение при возврате связано с тем, что при этих температурах зона ГП-1 становится неустойчивой и растворяется в твердом растворе, а атомы меди распределяются почти поровну, как и после закалки в объеме каждого кристалла твердого раствора. Затем, когда сплав выдерживается при комнатной температуре, снова образуется зона GP-1 и сплав затвердевает. Однако после возврата и последующего старения коррозионные свойства сплава снижаются, что затрудняет использование возврата в практических целях. Длительная выдержка при 100°С или часах при 150°С приводит к образованию крупных зон ГП-2 (толщина 10-40 а и диаметр 200-300 а) с упорядоченной структурой, отличной от структуры α-твердых растворов (рис.168, 6).Концентрация меди в них соответствует содержанию CuA12.

Да. О Да. О Да. Да. е. О, да. Рисунок 168.Схема выделения избыточной фазы из твердого раствора при старении: а-зона GP1; б-зона GP2. в-Б фазы; Р ^ 0 фазы(CuA12) При старении алюминиевых сплавов различного состава также наблюдается температурно-временная область зоны (образование ГП-1 и ГП-2) и старение фазы (фаза О ’и 0). После вызревания зоны, прочность выхода сплава высока, коэффициент st0> 2 / stv

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Читайте также: