Тепловая смерть вселенной кратко

Обновлено: 02.07.2024

Хочу порассуждать на старую тему, истоптанную и избитую, но всё ещё не закрытую. И которая вряд ли когда-нибудь будет до конца исследована. Хотя бы потому, что находится она на стыке физики и философии, и взгляд с разных сторон на одно и то же, с разных точек зрения и с разными мерками обязательно приводит к разным выводам. В качестве исходной посылки приведу цитату из Большой советской энциклопедии (1969-1978).

Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть этот вывод. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о тепловой смерти Вселенной, но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего тяготение. С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной — к тепловой смерти Вселенной. Вселенная всегда нестатична и непрерывно эволюционирует.

----------

Для описания системы из N-частиц можно ввести N-частичную функцию распределения, задающую вероятность обнаружить каждую частицу в соответствующем элементарном объёме 6N-мерного фазового пространства. Тогда все макровеличины можно вычислить как соответствующие интегралы по фазовому пространству от плотности вероятности, взятой с соответствующим весом. И таким образом попытаться формально вывести законы термодинамики из гамильтоновской механики. Однако в этом случае никакого второго начала термодинамики не получится. Получатся точные балансы частиц, импульса, энергии, и т.д. А следовательно, не получится и тепловой смерти. И где же истина? Что является более верным, законы термодинамики или законы механики?

Резюмируя, можно сказать следующее. Гамильтоновская механика идеально согласовывалась с идеей Верховного Разума, однажды создавшего этот мир и предопределившего его траэкторию во времени. Но подчеркну ещё раз важнейшую вещь: главное здесь – предположение о возможности полного знания системы хотя бы в один момент времени. При описании же макромира, т.е. объектов и сред, состоящего из бессчётного (хотя и конечного) числа микрочастиц, которые никак не проявляют себя по отдельности, мы оперируем совсем другими понятиями, и наш реальный мир является лишь отчасти гамильтоновским. И это, делая любое воздействие на природу и даже сам процесс познания её необратимым, делает и человека активным участником в определении будущего, уравнивая его, хотя бы отчасти, с Богом. Эта идея не всем нравилась, но реальность, воспринимаемая через эмпирические закономерности, заставляла принять её. Создатели кинетики и статистической физики как раз и пытались создать мостик между прекрасным гамильтоновским миром и реальностью.

Диссипация.
Начнём с того, что и определение теплового равновесия, и само понятие энтропии неявно предполагают диссипативность всех происходящих в природе процессов. И прямым следствием этого предположения является второе начало термодинамики, которое есть экспериментально подтверждённый закон природы. Однако, и это очень важно, подтверждён он только в открытой системе, потому что невозможно ни придумать, ни тем более провести эксперимент в замкнутой системе. Хотя бы потому, что даже сам факт любого эксперимента над замкнутой системой немедленно отменяет её замкнутость.

С другой стороны, законы сохранения энергии, импульса, и т.д., справедливы для всех систем. Ньютоновская механика, а затем и гамильтоновская, постулирует, что все известные нам силы, действующие в природе, приводят только к обратимым во времени процессам. И справедливость ньютоновской механики (включая релятивистское её расширение, никак не изменившее обратимость) тоже является экспериментально подтверждённым фактом. Т.е. с точки зрения ньютоновской механики никакой диссипации нет, и, как следствие, тепловой смерти тоже. Как совместить эти правильные идеологии?

Суть в том, что парадокс содержит несколько неявно принятых предположений, не относящихся к законам природы, но являющимися чисто антропными. В частности, это определение энтропии, стоящее на чисто человеческих понятиях простоты и сложности. В том смысле, что ни хаос, ни порядок не существуют в природе сами по себе. Природа вообще не знает таких понятий. Однако человек, в попытке понять мир, делит наблюдаемое вокруг на сложное и простое, на порядок и беспорядок, и т.д. Иными словами, порядок и хаос, являющиеся базовыми понятиями для перехода от микромира к макромиру в человеческом описании природы, также являются чисто человеческими. А следовательно, и все следствия этих привнесённых категорий также являются антропными. Иными словами, диссипация, с точки зрения человека, есть ни что иное, как констатация невозможности (или неприемлемо высокой сложности) описания происходящего на языке гамильтоновской механики. Значит ли это, что наша неспособность полностью описать природу меняет законы природы? И да, и нет. Нет — понятно почему (природе плевать, понимаем ли мы её законы). Да — потому что законы эти мы сами и формулируем. Они ограничены в своeй применимости, но других у нас нет. И потому не только такие понятия, как энтропия, но даже температура и тепло — это понятия антропные. И от того, как мы их определяем для себя, зависят и формулировки законов.

Законы термодинамики является эмпирическими, поскольку для получения их из обратимых законов микромира требуется использовать некие интуитивные допущения, которые согласуются с наблюдаемыми законами макрофизики, т.е. с эмпирикой, и используют чисто антропные понятия порядка и хаоса. Диссипативными системами мы называем те, которые невозможно описать точно, для описания которых нужна феноменология, никак не выводимая из первых принципов. Более того, если микромир обратим и не имеет стрелы времени (прошлое и будущее равноправны), то макромир эту стрелу времени имеет (из будущего невозможно в точности восстановить прошлое). И определяется эта стрела чисто человеческим восприятием мира. Можно даже сказать, что само время есть категория антропная. Потому что время есть мера изменений, а об изменениях мы вправе говорить лишь тогда, когда кто-то их может увидеть и осознать. Т.е. если есть мы — то есть и время. Обратное невозможно проверить, а потому бессмысленно и обсуждать.

Вселенная

Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.

Появление теории в 19 веке

В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.

В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.

Наглядно об энтропии

Наглядно об энтропии

В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).

Развитие теории в 20 веке

Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами).

Крупномасштабная структура Вселенной

Крупномасштабная структура Вселенной

Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.

Наглядная модель Вселенной

Наглядная модель Вселенной

Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.

Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.

Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).

Аргументы против гипотезы “тепловой смерти“ Вселенной

Иллюстрация теории Большого разрыва Вселенной

Иллюстрация теории Большого разрыва Вселенной

Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).

Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.

Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной

Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной

Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.

Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной

Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной

С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.

При охлаждении обычного вещества (переходе его в твердое состояние) его энтропия не увеличивается, а наоборот уменьшается:

Энтропия на примере воды

Энтропия на примере воды

Ключевыми моментами теории “тепловой смерти” Вселенной является возможность распада протона и существование “излучения Хокинга“, но эти гипотетические явления пока не доказаны экспериментально.

Информационный парадокс

Существует большая неопределенность в вопросе влияния жизни и разума на динамику энтропии Вселенной. В вопросе влияния неразумных жизненных форм на энтропию Вселенной мало сомнений, что жизнь уменьшает энтропию. В качестве доказательств этого можно привести факты более сложной природы живых организмов по сравнению с любыми неорганическими химическими веществами. Поверхность нашей планеты за счет биосферы выглядит куда более разнообразной по сравнению с “мертвой“ поверхностью Луны, Марса или Венеры. Кроме того простейшие живые организмы замечены в деятельности по обогащению земной атмосферы кислородом (биогенный кислород), а так же генерированию богатых месторождений полезных ископаемых (биогенез).

Сравнение поверхности Венеры, Земли, Луны, Марса и Титана (слева направо)

Сравнение поверхности Венеры, Земли, Луны, Марса и Титана (слева направо)

В то же время остаётся без ответа вопрос о том, увеличивает или уменьшает энтропию Вселенной разумная жизнь (то есть человек)? С одной стороны человеческий мозг является наиболее сложной формой из известных среди живых организмов, как и то, что научно-технический прогресс позволил людям достичь невиданных высот в познании и конструирование, в том числе в синтезировании химических элементов и элементарных частиц, которых не наблюдается в природе. Современная человеческая цивилизация способна предотвращать крупные природные катастрофы (лесные пожары, наводнения, массовые эпидемии и т.д.) и в шаге от возможности предотвращения катастроф планетарного масштаба (падения небольших астероидов и комет).

Ночная фотография поверхности Земли из космоса

Ночная фотография поверхности Земли из космоса

С другой стороны человеческая цивилизация выделяется и “энтропийными“ тенденциями. Растет разрушительная мощь оружейных арсеналов вместе с увеличением числа опасных химических и ядерных производств, горная промышленность всего за десятилетия способна опустошить месторождения полезных ископаемых, которые накапливались на планете многие сотни миллионов лет. Развитие сельского хозяйства привело к обезлесению большей части поверхности нашей планеты, а так же способствует деградации почв и опутыванию. Браконьерство, выбросы парниковых газов (возможное окисление океана) и т.д. быстро сокращают биоразнобразие нашей планеты, в связи, с чем экологи причисляют нынешнее время к новому массовому вымиранию. Кроме того в последние десятилетия отмечено сильное снижение рождаемости и в наиболее развитых странах, не исключено что эта демографическая ситуация стала следствием запредельного усложнения быта человеческой цивилизации.

Тепловая смерть Земли

Тепловая смерть Земли

В связи со всеми этими тенденциями, ближайшее будущее человеческой цивилизации представляет собой огромное количество возможных вариантов: начиная от эпической картины космической колонизации всей галактики вместе со строительством сфер Дайсона, расцветом искусственного интеллекта и установлением контакта с внеземными цивилизациями вплоть до отката в вечное средневековье на планете с подорванными минеральными и биологическими ресурсами. Парадокс Ферми (Великое молчание Вселенной) добавляет ещё больше неопределенности в вопросе влияния жизни и разума на динамику энтропии Вселенной, так как существует огромный диапазон для его объяснения: от огромной редкости биосфер и разумных цивилизаций во Вселенной до гипотезы, что наша Земля представляет собой некий “заповедник“ или “матрицу“ в мире разумных сверхцивилизаций.

Современное представление о “тепловой смерти“ Вселенной

В настоящее время физики рассматривают следующую последовательность эволюции Вселенной в будущем при условии её дальнейшего расширения с текущей скоростью:

  • 1-100 триллионов (1012) лет – завершение процессов образования звезд во Вселенной и угасание даже самых поздних красных карликов. После этого момента во Вселенной останутся только звездные остатки: черные дыры, нейтронные звезды и белые карлики.
  • 1 квадратиллионов (1015) лет – все планеты покинут свои орбиты вокруг звезд в связи с гравитационными возмущениями от близких пролетов других звезд.
  • 10-100 квинтиллионов (1018) лет – все планеты, коричневые карлики и звездные остатки покинут свои галактики по причине постоянных гравитационных возмущений друг от друга.
  • 100 квинтиллионов (1018) лет – приблизительное время падения Земли на Солнце по причине излучения гравитационных волн, в случае если бы Земля пережила стадию красного гиганта и осталась бы на своей орбите.
  • 2 анвигинтиллиона (1066) лет – приблизительное время полного испарения черной дыры массой с Солнце.
  • 17 септдециллиардов (10105) лет – приблизительное время полного испарения черной дыры массой в 10 триллионов масс Солнца. Это время окончания эпохи черных дыр.

В дальнейшем будущее Вселенной распадается на два возможных варианта в зависимости от того является ли протон стабильной элементарной частицей или нет:

  • А) Протон является нестабильной элементарной частицей;
  • А1) 10 дециллионов (1033) лет – наименьшее возможное время полураспада протона согласно экспериментам ядерных физиков на Земле;
  • А2) 2 ундециллиона (1036) лет – наименьшее возможное время распада всех протонов во Вселенной;
  • А3) 100 додециллионов (1039) лет – наибольшее возможное время полураспада протона, которое следует из гипотезы, что Большой взрыв объясняется инфляционными космологическими теориями, и что распад протона вызван тем же процессом, который ответственен за преобладание барионов над антибарионами в ранней Вселенной;
  • А4) 30 тредециллионов (1041) лет – максимальное возможное время распада всех барионов во Вселенной. После этого времени должна начаться эпоха черных дыр, так как они останутся единственными существующими небесными объектами во Вселенной;
  • А5) 17 септдециллиардов (10105) лет – примерное время полного испарения даже наиболее массивных черных дыр. Это время окончания эпохи черных дыр, и наступления эпохи вечной тьмы, в которой все объекты Вселенной распались до субатомных частиц и замедлились до наименьшего энергетического уровня.

Иллюстрация сценария будущего Вселенной где протон является нестабильной элементарной частицей

Иллюстрация сценария будущего Вселенной где протон является нестабильной элементарной частицей

Б) Протон стабильная элементарная частица;

Б1) 100 вигинтиллионов (1063) лет – время, за которое все тела в твердой форме даже при абсолютном нуле превратятся в “жидкообразное” состоянии, вызванное эффектом квантового туннелирования – миграцией в другие части кристаллической решетки;

Б2) 101500 лет – появление гипотетических железных звезд по причине процессов холодного нуклеосинтеза, идущего путём квантового туннелирования, в ходе которого легкие ядра преобразуются в наиболее стабильный изотоп – Fe56 (по другим сведениям самым стабильным изотопом является никель-62, который обладает наиболее высокой энергией связи.). Одновременно тяжелые ядра также превращаются в железо по причине радиоактивного распада;

Черные дыры

Б3) 10 в 1026 – 10 в 1076 лет – оценка диапазона времени в течение которого все вещество во Вселенной аккрецирует в черные дыры.

Эпоха черных дыр

Кадр из клипа группы Комплексные числа “Неизбежность”

Кадр из клипа группы Комплексные числа “Неизбежность”

И в заключение можно отметить предположение, что после 10 в 10120 лет все вещество во Вселенной достигнет минимального энергетического состояния. То есть это и будет гипотетическое наступление “тепловой смерти“ Вселенной. Кроме того у математиков существует понятие времени возврата Пуанкаре.

Это понятие означает вероятность того, что рано или поздно любая часть системы вернется в свое первоначальное состояние. Хорошей иллюстрацией этого понятия является вариант, когда в сосуде, разделенном на две части перегородкой, в одной из частей находится некий газ. Если убрать перегородку, то все равно рано или поздно наступит время, когда все молекулы газа окажутся в исходной половине сосуда. Для нашей Вселенной время возврата Пуанкаре оценивается фантастически большой величиной.

Теория “тепловой смерти“ Вселенной стала популярна и в массовой культуре. Хорошей иллюстрацией этой теории стал клип группы Комплексные числа: “Неизбежность”, а так же научно-фантастический рассказ Айзека Азимова “Последний вопрос”.

Второе начало термодинамики: вечный двигатель второго рода и тепловая смерть Вселенной

Пришла пора разобраться со вторым фундаментальным постулатом термодинамики, который именуется второе начало термодинамики. Второе начало не является доказуемым в рамках классической термодинамики. Его формулировки – результат обобщения опытов, наблюдений и экспериментов. Попытаемся рассказать о нем кратко и понятно.

В прошлой статье по термодинамике мы говорили о термодинамических системах, состоящих из большого числа частиц. Для описания подобных систем используются так называемые функции состояния.

Термодинамическая функция состояния (или термодинамический потенциал) – это функция, зависящая от нескольких независимых параметров, определяющих состояние системы. Чтобы было понятнее, приведем пример. Одна из функций состояния системы – это ее внутренняя энергия. Она не зависит от того, как именно система оказалось в данном состоянии

Энтропия

Еще одно понятие, с которым нужно познакомиться – это энтропия. Для понимания второго начала термодинамики энтропия очень важна. А еще это красивое слово, которое многих ставит в ступор и которым можно блеснуть в компании.

В самом общем случае, энтропия – мера хаотичности некоторой системы

Простой пример : представим, что у вас есть ящик с носками. Если все носки в ящике разбросаны и валяются вперемешку и по одному, энтропия такой системы максимальна. А если носки собраны по парам и лежат аккуратненько в рядок - минимальна.

В термодинамике, энтропия – это функция состояния термодинамической системы, которая определяет меру необратимого рассеивания энергии. Что это значит? Это значит, что какая-то часть внутренней энергии системы не может перейти в совершаемую системой механическую работу. Например, процесс преобразования теплоты в механическую работу всегда сопровождается потерями, в результате которых теплота трансформируется в другие виды энергии.

Энтропия при необратимых термодинамических процессах увеличивается, а при обратимых – остается постоянной. Математическая запись энтропии (S):

Здесь дельта Q – количество теплоты, подведенное или отведенное от системы, T – температура системы, dS – изменение энтропии.

Существует несколько различных формулировок второго начала термодинамики, и вот одна из них:

Энтропия замкнутой системы возрастает при любых необратимых процессах в этой системе

Так как нас интересует именно понимание сути вещей, приведем еще одно самое простое определение:

Невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от холодного тела к горячему

К слову, данная формулировка второго начала термодинамики принадлежит Рудольфу Клаузиусу, который и ввел в обиход понятие энтропии.

Невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от холодного тела к горячему

И снова вечный двигатель

После разочарования с идеей вечного двигателя первого рода люди и не думали сдаваться. Через какое-то время был придуман вечный двигатель второго рода, работа которого основывалась на передаче тепла и не перечила закону сохранения энергии. Такой двигатель преобразует все тепло, полученное от окружающих тел, в работу. Например, в качестве его реализации предполагалось путем охлаждения океана получить огромное количество теплоты. Но к счастью до охлаждения океана и заморозки рыб дело не дошло, т.к. данная идея противоречит второму началу динамики. КПД любой машины не может быть равен единице, также как тепло не может быть преобразовано в работу полностью. Так что сколько ни старайтесь, а вечный двигатель второго рода создать невозможно, так же как и вечный двигатель первого рода.

Тепловая смерть Вселенной

После введения Рудольфом Клаузиусом понятия энтропии в 1865 году возникло множество споров, домыслов и теорий, связанных с этим понятием. Одна из них – гипотеза о тепловой смерти Вселенной, сформулированная самим Клаузиусом на основе второго начала термодинамики.


Рудольф Клаузиус (1822-1888)


Где-то во Вселенной

При выводе своей теории Клаузиус прибегал в своих рассуждениях к следующим экстраполяциям (приближениям):

  1. Вселенная рассматривается как замкнутая система.
  2. Эволюция мира может быть описана как смена его состояний.

Опровержение теории тепловой смерти Вселенной

Как уже отмечалось выше Клаузиусом, при выводе его теории применялись определенные экстраполяции. Сегодня несмотря на некоторые сложности можно с уверенностью сказать, что подобные выводы являются антинаучными. Дело в том, что существуют определенные границы применимости второго начала термодинамики: нижняя и верхняя. Так, второе начало термодинамики не может быть применено для описания микросистем, размеры которых сравнимы с размерами молекул, и для макросистем, состоящих из бесконечного числа частиц, т.е. для Вселенной в целом.


Второе начало термодинамики не применимо ко Вселенной как замкнутой системе

Собственно первым ученым, установившим статистическую природу второго начала термодинамики и противопоставившим теории тепловой смерти Вселенной так называемую флуктуационную гипотезу, был выдающийся физик-материалист Больцман. Имеет место формула Больцмана, позволяющая дать статистическое истолкование второму началу термодинамики

Здесь S – энтропия системы, k – постоянная Больцмана, P – термодинамическая вероятность состояния, определяющая число микросостояний системы, соответствующих данному макросостоянию. Согласно формуле Больцмана,

То есть термодинамическая вероятность состояния изолированной системы при всех происходящих в ней процессах не может убывать. Однако т.к. для систем, состоящих из бесконечного числа частиц, все состояния будут равновероятными , вышеописанное соотношение неприменимо ко Вселенной. В подобных системах имеют место значительные флуктуации (флуктуация – отклонение истинного значения некоторой величины от ее среднего значения), представляющие собой отклонения от второго начала термодинамики. Согласно Больцману, состояние термодинамического равновесия представляет собой лишь наиболее часто встречающееся и наиболее вероятное; наряду с этим в равновесной системе могут самопроизвольно возникнуть сколь угодно большие флуктуации. То есть во Вселенной, находящейся в состоянии термодинамического равновесия, постоянно возникают флуктуации, причем одной такой флуктуацией является та область пространства, в которой находимся мы.


Людвиг Больцман (1844-1906)

Современный подход безусловно отвергает теорию тепловой смерти Вселенной. Учитывая огромный возраст Вселенной и тот факт, что она не находится в состояние тепловой смерти, можно сделать вывод о том, что во Вселенной протекают процессы, препятствующие росту энтропии, т.е. процессы с отрицательной энтропией. Однако выводам Больцмана о том, что во Вселенной преобладает состояние термодинамического равновесия, все более противоречит растущий экспериментальный материал астрономии. Материя обладает никогда не утрачиваемой способностью к концентрации энергии и превращения одних форм движения в другие. Так, например, процесс образования из рассеянной материи звезд подчиняется определенным закономерностям и не может быть сведен исключительно к случайным флуктуациям распределения энергии во Вселенной.

Дорогие друзья! Сегодня мы по возможности выяснили, какой смысл имеет понятие энтропии для второго начала термодинамики, узнали, что вечный двигатель второго рода невозможен, а также порадовались, что тепловой смерти Вселенной все-таки не случится. Мы как всегда надеемся на то, что вам понравилась наша статья, в которой мы старались рассказать о термодинамике просто, понятно и интересно. Желаем успехов в учебе и напоминаем – подсказать, помочь, проконсультировать и взять часть нагрузки на себя всегда готовы наши специалисты. Учитесь и живите в свое удовольствие!

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.

Второй закон (начало) термодинамики говорит о том, что внутренняя энергия тепла (теплота) не может самостоятельно переходить от менее нагретого объекта к более нагретому объекту.

Появление теории в 19 веке

В результате Второго закона термодинамики любая физическая система, не обменивающаяся энергией с другими системами, стремится к самому вероятному состоянию равновесия — к состоянию с наибольшей энтропией (величина характеризующая степень неупорядоченности и теплового состояния физической системы). Этот закон впервые был описан Сади Карно в 1824 году. Как следствие этого, уже в 1852 году Уильям Кельвин предложил гипотезу о грядущей в будущем “тепловой смерти Земли“ в ходе процесса остывания нашей планеты до безжизненного состояния. В 1865 году Рудольф Клаузиус распространил эту гипотезу уже на всю Вселенную.

В 1872 году австрийский физик Людвиг Больцман попытался количественно оценить энтропию с помощью формулы S = k * ln W (где, S — энтропия, k — константа Больцмана, W — количество микросостояний, реализующих макросостояние. Микросостояние — это состояние отдельной составляющей системы, а макросостояние — состояние системы в целом.

Наглядно об энтропии

В настоящее время энтропия видимой части нашей Вселенной оценивается примерно в 1088 или 10 октовигинтиллионов. Это значение примерно соответствует числу фотонов в нашей Вселенной, для сравнения число фотонов во Вселенной примерно в миллиард раз превышает число барионов (обычных элементарных частей состоящих из нескольких кварков – протонов, нейтронов, и т.д.).

Развитие теории в 20 веке

Открытие расширения Вселенной в 20 веке укрепило гипотезу будущей “тепловой смерти Вселенной“. Астрономические наблюдения наиболее удаленных частей наблюдаемой Вселенной показали, что наша Вселенная на масштабе в несколько сотен мегапарсек имеет неупорядоченный ячеистый вид, в котором сверхскопления галактик чередуются с огромными пустотами (войдами) .

Крупномасштабная структура Вселенной

Ещё большим свидетельством справедливости гипотезы стало открытие реликтового излучения – теплового излучения Вселенной, возникшего во время рекомбинации (соединения протонов и электронов в атомы) первичного водорода, которое случилось через 379 тысяч лет. Процесс рекомбинации происходит при температурах в 3 тысячи Кельвинов, в то же время текущая температура реликтового излучения, определенная по его максимуму составляет только 2.7 Кельвинов. Изучение реликтового излучения показало, что оно является изотропным (однородным) для любого направления на небе на уровне в 99.999%.

Наглядная модель Вселенной

Эта диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной

Изучение статистики квазаров (ядер активных галактик) позволяет независимо оценить темп звездообразования. Обзор 2DF, проведенный в 1997-2002 году на австралийском телескопе ААТ изучил около 10 тысяч квазаров на площади неба в 1.5 тысяч квадратных градусов в областях обоих галактических полюсов.

Другим доказательством верности теории будущей “тепловой смерти Вселенной“ стали исследования ядерной физики, которые показали, что энергия связи нуклонов (протонов и нейтронов) в ядре растет по мере увеличения их числа в ядре большинства химических элементов.

Диаграмма показывает, что пик звездообразования пришелся на 1-2 миллиард лет жизни нашей Вселенной

Следствием этой зависимости стало то, что термоядерные реакции слияния с участием более легких химических элементов (к примеру, водорода и гелия) приводят к выделению значительно большего количества энергии в недрах звезд, чем термоядерные реакции с участием более тяжелых химических элементов. Кроме того теоретические исследования в конце 20 века предположили, что и черные дыры не являются вечными, а постепенно испаряются под действием “излучения Хокинга“ (гипотетическое излучение черных дыр, которое преимущественно состоит из фотонов).

Аргументы против гипотезы “тепловой смерти“ Вселенной

Иллюстрация теории Большого разрыва Вселенной

Сомнения в справедливости гипотезы неизбежной “тепловой смерти Вселенной” в будущем можно разделить на несколько моментов (см. иллюстрацию теории Большого разрыва Вселенной).

Существует неопределенность в прогнозировании будущих изменений объема нашей Вселенной. Существует как теория Большого разрыва Вселенной (ускоренного расширения Вселенной до бесконечности), так и теория Большого сжатия Вселенной (в будущем Вселенная начнет сжиматься). Неопределенность между этими вариантами вызвана недавними открытиями загадочной темной материи и энергии.

Иллюстрация теории бесконечного цикла сжатия и расширения Вселенной

Существует неопределенностью в вопросе количества существующих Вселенных, и возможности связи между ними. С одной стороны фотометрический парадокс (парадокс Шезо — Ольберса) темного неба говорит о конечности размера и возраста нашей Вселенной, а так же об отсутствии её связи с другими Вселенными.

Слабое современное понимание влияния темной материи и энергии на эволюцию Вселенной

С другой стороны из принципа заурядности (принципа Коперника) следует, что наша Вселенная не уникальна, и должно существовать бесконечное множество других Вселенных с другим набором физических констант. Кроме того современная физика допускает существование пространственно-временных туннелей (кротовых нор) между разными Вселенными.

При охлаждении обычного вещества (переходе его в твердое состояние) его энтропия не увеличивается, а наоборот уменьшается:

Энтропия на примере воды

Ключевыми моментами теории “тепловой смерти” Вселенной является возможность распада протона и существование “излучения Хокинга“, но эти гипотетические явления пока не доказаны экспериментально.

Существует большая неопределенность в вопросе влияния жизни и разума на динамику энтропии Вселенной. В вопросе влияния неразумных жизненных форм на энтропию Вселенной мало сомнений, что жизнь уменьшает энтропию. В качестве доказательств этого можно привести факты более сложной природы живых организмов по сравнению с любыми неорганическими химическими веществами. Поверхность нашей планеты за счет биосферы выглядит куда более разнообразной по сравнению с “мертвой“ поверхностью Луны , Марса или Венеры . Кроме того простейшие живые организмы замечены в деятельности по обогащению земной атмосферы кислородом (биогенный кислород), а так же генерированию богатых месторождений полезных ископаемых (биогенез).

Сравнение поверхности Венеры, Земли, Луны, Марса и Титана (слева направо)

В то же время остаётся без ответа вопрос о том, увеличивает или уменьшает энтропию Вселенной разумная жизнь (то есть человек)? С одной стороны человеческий мозг является наиболее сложной формой из известных среди живых организмов, как и то, что научно-технический прогресс позволил людям достичь невиданных высот в познании и конструирование, в том числе в синтезировании химических элементов и элементарных частиц, которых не наблюдается в природе. Современная человеческая цивилизация способна предотвращать крупные природные катастрофы (лесные пожары, наводнения, массовые эпидемии и т.д.) и в шаге от возможности предотвращения катастроф планетарного масштаба (падения небольших астероидов и комет).

Ночная фотография поверхности Земли из космоса

С другой стороны человеческая цивилизация выделяется и “энтропийными“ тенденциями. Растет разрушительная мощь оружейных арсеналов вместе с увеличением числа опасных химических и ядерных производств, горная промышленность всего за десятилетия способна опустошить месторождения полезных ископаемых, которые накапливались на планете многие сотни миллионов лет. Развитие сельского хозяйства привело к обезлесению большей части поверхности нашей планеты, а так же способствует деградации почв и опутыванию. Браконьерство, выбросы парниковых газов (возможное окисление океана) и т.д. быстро сокращают биоразнобразие нашей планеты, в связи, с чем экологи причисляют нынешнее время к новому массовому вымиранию. Кроме того в последние десятилетия отмечено сильное снижение рождаемости и в наиболее развитых странах, не исключено что эта демографическая ситуация стала следствием запредельного усложнения быта человеческой цивилизации.

Тепловая смерть Земли

В связи со всеми этими тенденциями, ближайшее будущее человеческой цивилизации представляет собой огромное количество возможных вариантов: начиная от эпической картины космической колонизации всей галактики вместе со строительством сфер Дайсона, расцветом искусственного интеллекта и установлением контакта с внеземными цивилизациями вплоть до отката в вечное средневековье на планете с подорванными минеральными и биологическими ресурсами. Парадокс Ферми (Великое молчание Вселенной) добавляет ещё больше неопределенности в вопросе влияния жизни и разума на динамику энтропии Вселенной, так как существует огромный диапазон для его объяснения: от огромной редкости биосфер и разумных цивилизаций во Вселенной до гипотезы, что наша Земля представляет собой некий “заповедник“ или “матрицу“ в мире разумных сверхцивилизаций.

Современное представление о “тепловой смерти“ Вселенной

В настоящее время физики рассматривают следующую последовательность эволюции Вселенной в будущем при условии её дальнейшего расширения с текущей скоростью:

  • 1-100 триллионов (1012) лет – завершение процессов образования звезд во Вселенной и угасание даже самых поздних красных карликов. После этого момента во Вселенной останутся только звездные остатки: черные дыры, нейтронные звезды и белые карлики.
  • 1 квадратиллионов (1015) лет – все планеты покинут свои орбиты вокруг звезд в связи с гравитационными возмущениями от близких пролетов других звезд.
  • 10-100 квинтиллионов (1018) лет – все планеты, коричневые карлики и звездные остатки покинут свои галактики по причине постоянных гравитационных возмущений друг от друга.
  • 100 квинтиллионов (1018) лет – приблизительное время падения Земли на Солнце по причине излучения гравитационных волн, в случае если бы Земля пережила стадию красного гиганта и осталась бы на своей орбите.
  • 2 анвигинтиллиона (1066) лет – приблизительное время полного испарения черной дыры массой с Солнце.
  • 17 септдециллиардов (10105) лет – приблизительное время полного испарения черной дыры массой в 10 триллионов масс Солнца. Это время окончания эпохи черных дыр.

В дальнейшем будущее Вселенной распадается на два возможных варианта в зависимости от того является ли протон стабильной элементарной частицей или нет:

  • А) Протон является нестабильной элементарной частицей;
  • А1) 10 дециллионов (1033) лет – наименьшее возможное время полураспада протона согласно экспериментам ядерных физиков на Земле;
  • А2) 2 ундециллиона (1036) лет – наименьшее возможное время распада всех протонов во Вселенной;
  • А3) 100 додециллионов (1039) лет – наибольшее возможное время полураспада протона, которое следует из гипотезы, что Большой взрыв объясняется инфляционными космологическими теориями, и что распад протона вызван тем же процессом, который ответственен за преобладание барионов над антибарионами в ранней Вселенной;
  • А4) 30 тредециллионов (1041) лет – максимальное возможное время распада всех барионов во Вселенной. После этого времени должна начаться эпоха черных дыр, так как они останутся единственными существующими небесными объектами во Вселенной;
  • А5) 17 септдециллиардов (10105) лет – примерное время полного испарения даже наиболее массивных черных дыр. Это время окончания эпохи черных дыр, и наступления эпохи вечной тьмы, в которой все объекты Вселенной распались до субатомных частиц и замедлились до наименьшего энергетического уровня.

Иллюстрация сценария будущего Вселенной где протон является нестабильной элементарной частицей

Б) Протон стабильная элементарная частица;

Б1) 100 вигинтиллионов (1063) лет – время, за которое все тела в твердой форме даже при абсолютном нуле превратятся в “жидкообразное” состоянии, вызванное эффектом квантового туннелирования – миграцией в другие части кристаллической решетки;

Б2) 101500 лет – появление гипотетических железных звезд по причине процессов холодного нуклеосинтеза, идущего путём квантового туннелирования, в ходе которого легкие ядра преобразуются в наиболее стабильный изотоп – Fe56 (по другим сведениям самым стабильным изотопом является никель-62, который обладает наиболее высокой энергией связи.). Одновременно тяжелые ядра также превращаются в железо по причине радиоактивного распада;

Б3) 10 в 1026 – 10 в 1076 лет – оценка диапазона времени в течение которого все вещество во Вселенной аккрецирует в черные дыры.

Читайте также: