Теплоемкости идеального газа кратко

Обновлено: 05.07.2024

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: – молярная теплоемкость в изохорном процессе () и – молярная теплоемкость в изобарном процессе ().

Изменение внутренней энергии газа прямо пропорционально изменению его температуры.

Отношение может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

,
где – универсальная газовая постоянная. При

Таким образом, соотношение, выражающее связь между молярными теплоемкостями и , имеет вид ( формула Майера ):

= + .

Молярная теплоемкость газа в процессе с постоянным давлением всегда больше молярной теплоемкости в процессе с постоянным объемом (рис. 3.10.1).

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой .

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами и на диаграмме () возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры одинаково, следовательно, одинаково изменение внутренней энергии. Однако, совершенные при этом работы и полученные в результате теплообмена количества теплоты окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. и – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса , поэтому . В адиабатическом процессе , следовательно, .

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой :

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро :

При изменении температуры на внутренняя энергия изменяется на величину

Коэффициент пропорциональности между и равен теплоемкости при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа и и их отношение могут быть записаны в виде
где – число степеней свободы газа.

Для газа, состоящего из одноатомных молекул ()

Для газа, состоящего из двухатомных молекул ()

Для газа, состоящего из многоатомных молекул ()

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени свободы. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия , а на один атом – . Внутренняя энергия твердого вещества равна:

.

Это соотношение называется законом Дюлонга–Пти . Для твердых тел практически не существует различия между и из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к . Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением. Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

\[C=\frac<\Delta Q></p>
<p> \qquad (1)\]

называется теплоемкостью.

Теплоемкость – это количество тепла, которое затрачивается для того, чтобы повысить температуру тела на один кельвин. Теплоемкость зависит от массы вещества, условий при которых системе сообщают теплоту. Уравнение (1) – это определение теплоемкости через интегральные параметры. Иногда удобнее использовать следующее определение теплоемкости:

\[C=\frac<\delta Q></p>
<p> \qquad (2) \]

где – бесконечно мало количество плоты, которое получает тело; dT – приращение температуры тела.

c_<\mu></p>
<p>При единичной массе тела теплоемкость называют удельной. Обозначают ее обычно маленькой буквой c. Еще используют молярную теплоемкость (
) – это теплоемкость одного моля вещества.

Теплоемкость и первое начало термодинамики

Используя первое начало термодинамики в интегральной записи, теплоёмкость можно найти как:

\[C=\frac<\Delta U+A></p>
<p> \qquad (3) \]

где – изменение внутренней энергии термодинамической системы; A – работа системы над внешними силами. Для идеального газа имеем:

\[C=\frac<\frac<i></p>
<p>\frac<\mu>R\Delta T+A> \qquad (4) \]

где m – масса газа; – молярная масса газа; R – универсальная газовая постоянная.

В дифференциальном виде:

\[C=\frac<dU+pdV></p>
<p> \qquad (5) \]

Для идеального газа теплоемкость равна:

\[C=\frac<\frac</p>
<p>\frac<\mu>RdT+pdV>=\frac\frac<\mu>R+p\frac \qquad (6) \]

Теплоемкость для процессов, проводимых в идеальном газе

Теплоемкость связана с характером процесса. Она может изменяться от бесконечных отрицательных величин до бесконечных положительных.

Рассмотрим изохорный процесс . При проведении изохорного процесса газ работы не совершает, поэтому теплоемкость газа в изохорном процессе ( ) равна:

\[C_V=\frac<\Delta U></p>
<p>\qquad (7);\ \ C_V=\frac \qquad (8) \]

\[C_V=\frac</p>
<p>\frac<\mu>R=\fracR\ \nu \qquad (9) \]

При изобарном процессе ( ) теплоемкость обозначают как . Она равна:

\[C_p=\frac<\Delta U+p\Delta V></p>
<p>\qquad \left(10\right);\ \ C_p=\frac \qquad (11)\]

\[C_p=\frac<i+2></p>
<p>R \nu \qquad (12)\]

Теплоемкости, при постоянных давлении и объеме, являются функциями состояний. Надо отметить, что независимость теплоемкости от температуры не подтвердили эксперименты.

В изотермическом процессе теплоемкость идеального газа считают бесконечной:

В адиабатном процессе теплоемкость равна нулю.

Примеры решения задач

Теплоемкость идеального газа, пример 1

\[C_V=\frac<i></p>
<p>\frac<\mu>R \qquad (1.1) \]

Для постоянной массы одного и того же газа она величина постоянная.

По условию задачи с газом проводят изотермический процесс. В изотермическом процессе теплоемкость бесконечна. Получается, что в процессе АВ теплоёмкость больше.

Задание Каким будет знак молярной теплоемкости идеального газа в процессе: m=const;\ \ T^2V=const
, если молекулы этого газа жесткие и являются трехатомными.
Решение У трехатомных жестких молекул число степеней свободы равно шести ( ). Для нахождения теплоемкости воспользуемся выражением:

\[C=\frac<i></p>
<p>\frac<\mu>R+p\frac \qquad (2.1) \]

\frac<dV></p>
<p>Уравнение процесса  потребуется нам для нахождения производной
. Выразим объем из уравнения процесса:

\[V=\frac<const></p>
<p> \qquad (2.2) \]

\[\frac<dV></p>
<p>=-2\frac \qquad (2.3) \]

Давление выразим из уравнения состояния идеального газа:

\[pV=\frac</p>
<p><\mu>RT\to p=\frac<\mu>\frac \qquad (2.4) \]

Подставим (2.3) и (2.4) в (2.1), имеем:

\[C=\frac</p>
<p>\frac<\mu>R+\frac<\mu>\frac\left(-2\frac\right)=\frac\frac<\mu>R-2\frac<\mu>\frac=\frac\frac<\mu>R-2\frac<\mu>\frac=\frac<\mu>R\left(\frac-2\right)\]

В случае, если результатом теплообмена становится передача телу некоего количества теплоты Q , то его температура и внутренняя энергия претерпевают изменения.

Необходимое для нагревания 1 к г вещества на 1 К количество теплоты Q носит название удельной теплоемкости вещества c , а ее формула выглядит следующим образом:

В большом количестве ситуаций удобной для использования является молярная теплоемкость C :

C = M · c , где M представляет собой молярную массу вещества.

Теплоемкость, полученная таким способом, не является однозначной характеристикой вещества. Исходя из первого закона термодинамики, можно сказать, что изменение внутренней энергии тела зависимо не только от количества полученной теплоты, но и от величины совершенной телом работы. В разных условиях осуществления процесса теплопередачи тело может совершать различную работу. Таким образом, переданное телу одинаковое количество теплоты способно провоцировать изменения его внутренней энергии и, соответственно, температуры.

Подобной неоднозначностью при определении теплоемкости характеризуются только газообразные вещества. Объем в процессе нагрева практически не меняет своей величины, что сводит работу расширения к нулю. По этой причине вся полученная телом теплота уходит на изменение его внутренней энергии. Газ в процессе теплопередачи может значительно менять свой объем и совершать работу, чем отличается от твердых тел и жидкостей. Таким образом, теплоемкость газообразного вещества имеет зависимость от характера термодинамического процесса.

Изопроцессы в газах

Чаще всего рассматриваются два значения теплоемкости газов:

  • C V являющаяся молярной теплоемкостью в изохорном процессе ( V = c o n s t ) ;
  • C p представляющая собой молярную теплоемкость в изобарном процессе ( p = c o n s t ) .

При условии постоянного объема газ не совершает работы: A = 0 . Исходя из первого закона термодинамики для 1 м о л я газа, можно сказать, что справедливым является следующее выражение:

Q V = C V ∆ T = ∆ U .

Изменение величины Δ U внутренней энергии газа прямо пропорционально изменению значения Δ T его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу:

Q p = ∆ U + p ( V 2 - V 1 ) = C V ∆ T + p V .

В котором Δ V является изменением объема 1 м о л я идеального газа при изменении его температуры на Δ T . Таким образом, можно заявить, что:

C p = Q p ∆ T = C V + p ∆ V ∆ T .

Из уравнения состояния идеального газа, записанного для 1 м о л я , может выражаться отношение Δ V Δ T :

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p = c o n s t , можно записать следующее: p ∆ V = R ∆ T или ∆ V ∆ T = R p .

Из этого следует, что выражающее связь между молярными теплоемкостями C p и C V соотношение имеет вид (формула Майера):

В процессе с неизменным давлением молярная теплоемкость C p газа всегда превышает молярную теплоемкость C V в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3 . 10 . 1 .

Рисунок 3 . 10 . 1 . Два возможных процесса нагревания газа на Δ T = T 2 – T 1 . При p = c o n s t газ совершает работу A = p 1 ( V 2 – V 1 ) . Поэтому C p > C V .

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ .

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T 1 и T 2 на диаграмме ( p , V ) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры Δ T = T 2 – T 1 является одним и тем же, выходит, что изменение значения
Δ U внутренней энергии тоже одинаково. С другой стороны, совершенные при этом работы A и количества теплоты Q , полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей. C p и C V представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3 . 10 . 2 . Модель теплоемкости идеального газа.

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Каждый изопроцесс являются политропическим. В изотермическом процессе Δ T = 0 , из-за чего C T = ∞ . В адиабатическом процессе Δ Q = 0 , выходит, что C а д = 0 .

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Молекулярно-кинетическая теория

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией E → поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 м о л я идеального газа эквивалентна произведению E → на число Авогадро N А :

U = 3 2 k N A T = 3 2 R T .

При условии изменения температуры на величину Δ T внутренняя энергия изменяется на величину:

U = 3 2 R ∆ T = C V ∆ T .

Коэффициент пропорциональности между Δ U и Δ T эквивалентен теплоемкости C V в условиях постоянного давления:

C V = 3 2 R = 12 , 47 Д Ж / м о л ь · К.

Данное выражение подтверждается экспериментами с газами, которые состоят из одноатомных молекул вроде гелия, неона или аргона. При этом для двухатомных (водород, азот) и многоатомных (углекислый газ) газов такое соотношение не согласуется с полученными в результате опытов данными. Причина этого расхождения заключается в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию как поступательного, так и вращательного их движения.

Молекулярно-кинетическая теория

Рисунок 3 . 10 . 3 . Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы.

Рисунок 3 . 10 . 3 иллюстрирует модель двухатомной молекулы. Молекула имеет возможность производить пять независимых типов движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y .

Опытным путем выяснено, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких значениях температуры. В условиях обычных температур вращение вокруг оси Z не происходит.

Каждое независимое движение в молекуле носит название степени свободы.

В классической статистической физике доказывается теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна 1 2 k T .

Из данной теоремы следует, что для молярных теплоемкостей газа C p и C V и их отношения
γ справедлива запись в следующем виде:

C V = i 2 R , C p = C v + R = i + 2 2 R , γ = C p C V = i + 2 i ,

где i представляет собой количество степеней свободы газа.

Для газа, состоящего из одноатомных молекул ( i = 3 )

C V = 3 2 R , C p = C v + R = 5 2 R , γ = C p C V = 5 3 = 1 , 66 .

Для газа, состоящего из двухатомных молекул ( i = 5 )

C V = 5 2 R , C p = C v + R = 7 2 R , γ = C p C V = 7 5 = 1 , 4 .

Для газа, состоящего из многоатомных молекул ( i = 6 )

C V = 3 R , C p = C v + R = 4 R , γ = C p C V = 4 3 = 1 , 33 .

В обычных условиях экспериментально измеренные теплоемкости многих газов неплохо согласуются с приведенными выражениями, но в целом классическая теория теплоемкости газов вполне удовлетворительной не является. Существует колоссальное число примеров со значительной разницей между результатами эксперимента и теорией. Данный факт объясняется тем, что классическая теория не может полностью учесть, связанную с внутренними движениями в молекуле энергию.

Внутренняя энергия 1 м о л я твердого вещества равна следующему выражению:

U = 3 R N A k t = 3 R t .

Следовательно, молярная теплоемкость вещества в твердом состоянии равняется:

С = 3 R = 25 , 12 Д ж / м о л ь · К .

Данное выражение носит название закона Дюлонга–Пти. Для твердых тел почти нет различия между C p и C V по причине пренебрежительно малой работы при сжатии или расширении.

Опыт показывает, что молярная теплоемкость у многих твердых тел (химических элементов) при обычных температурах на самом деле близка к 3 R . При этом, в условиях низких температур заметны довольно сильные расхождения между теорией и экспериментом. Таким образом, гипотеза о равномерном распределении энергии по степеням свободы может считаться лишь приближением. Заметная в опыте зависимость теплоемкости от температуры объясняется только при условии использования квантовых представлений.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c .

Во многих случаях удобно использовать молярную теплоемкость C :

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе ( V = const) и C p – молярная теплоемкость в изобарном процессе ( p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

Изменение Δ U внутренней энергии газа прямо пропорционально изменению Δ T его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

Отношение Δ V / Δ T может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

pV = RT ,
где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид ( формула Майера ):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

Два возможных процесса нагревания газа наΔ T = T 2 – T 1. При p = const газ совершает работу A = p 1( V 2 – V 1). Поэтому C p > C V

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме ( p , V ) возможны различные пути перехода. Поскольку для всех таких переходов изменение температурыΔ T = T 2 – T 1 одинаково, следовательно, одинаково изменение Δ U внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса Δ T = 0, поэтому C T = ∞. В адиабатическом процессе Δ Q = 0, следовательно, C ад = 0.

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро N А:

При изменении температуры на Δ T внутренняя энергия изменяется на величину

Коэффициент пропорциональности между Δ U и Δ T равен теплоемкости C V при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа C p и C V и их отношение γ могут быть записаны в виде

где i – число степеней свободы газа.

Для газа, состоящего из одноатомных молекул ( i = 3)

Для газа, состоящего из двухатомных молекул ( i = 5)

Для газа, состоящего из многоатомных молекул ( i = 6)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени свободы. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT , а на один атом – 3 kT . Внутренняя энергия 1 моля твердого вещества равна:

U = 3 N А kT = 3 RT .

Поэтому молярная теплоемкость вещества в твердом состоянии равна:

Это соотношение называется законом Дюлонга–Пти . Для твердых тел практически не существует различия между C p и C V из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3 R . Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением. Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

Во многих случаях удобно использовать молярную теплоемкость C:

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CVмолярная теплоемкость в изохорном процессе (V = const) и Cpмолярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT.

Отсюда следует:

Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера):

Молярная теплоемкость Cp газа в процессе с постоянным давлением всегда больше молярной теплоемкости CV в процессе с постоянным объемом (рис. 3.10.1).

Рисунок 3.10.1. Два возможных процесса нагревания газа на ΔT = T2T1. При p = const газ совершает работу A = p1(V2V1). Поэтому Cp > CV.

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T1 и T2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T2T1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. Теплоемкости Cp и CV – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими. Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому CT = ∞. В адиабатическом процессе ΔQ = 0, следовательно, Cад = 0.




В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T:

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро NA:

При изменении температуры на ΔT внутренняя энергия изменяется на величину

Коэффициент пропорциональности между ΔU и ΔT равен теплоемкости CV при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать не только энергию поступательного движения, но и энергию вращательного движения молекул.

Рисунок 3.10.2. Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы.

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа Cp и CV и их отношение γ могут быть записаны в виде

где i – число степеней свободы газа.

Для газа, состоящего из одноатомных молекул (i = 3)

Для газа, состоящего из двухатомных молекул (i = 5)

Для газа, состоящего из многоатомных молекул (i = 6)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT, а на один атом – 3kT.

Внутренняя энергия 1 моля твердого вещества равна:

U = 3NAkT = 3RT.

Поэтому молярная теплоемкость вещества в твердом состоянии равна:

Это соотношение называется законом Дюлонга–Пти. Для твердых тел практически не существует различия между Cp и CV из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R. Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением.

Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

Во многих случаях удобно использовать молярную теплоемкость C:

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CVмолярная теплоемкость в изохорном процессе (V = const) и Cpмолярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT.

Отсюда следует:

Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера):

Молярная теплоемкость Cp газа в процессе с постоянным давлением всегда больше молярной теплоемкости CV в процессе с постоянным объемом (рис. 3.10.1).

Рисунок 3.10.1. Два возможных процесса нагревания газа на ΔT = T2T1. При p = const газ совершает работу A = p1(V2V1). Поэтому Cp > CV.

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T1 и T2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T2T1 одинаково, следовательно, одинаково изменение ΔU внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. Теплоемкости Cp и CV – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими. Все изопроцессы являются политропическими. В случае изотермического процесса ΔT = 0, поэтому CT = ∞. В адиабатическом процессе ΔQ = 0, следовательно, Cад = 0.

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T:

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро NA:

При изменении температуры на ΔT внутренняя энергия изменяется на величину

Коэффициент пропорциональности между ΔU и ΔT равен теплоемкости CV при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать не только энергию поступательного движения, но и энергию вращательного движения молекул.

Рисунок 3.10.2. Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы.

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T, то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа Cp и CV и их отношение γ могут быть записаны в виде

где i – число степеней свободы газа.

Для газа, состоящего из одноатомных молекул (i = 3)

Для газа, состоящего из двухатомных молекул (i = 5)

Для газа, состоящего из многоатомных молекул (i = 6)

Экспериментально измеренные теплоемкости многих газов при обычных условиях достаточно хорошо согласуются с приведенными выражениями. Однако, в целом классическая теория теплоемкости газов не может считаться вполне удовлетворительной. Существует много примеров значительных расхождений между теорией и экспериментом. Это объясняется тем, что классическая теория не в состоянии полностью учесть энергию, связанную с внутренними движениями в молекуле.

Теорему о равномерном распределении энергии по степеням свободы можно применить и к тепловому движению частиц в твердом теле. Атомы, входящие в состав кристаллической решетки, совершают колебания около положений равновесия. Энергия этих колебаний и представляет собой внутреннюю энергию твердого тела. Каждый атом в кристаллической решетке может колебаться в трех взаимно перпендикулярных направлениях. Следовательно, каждый атом имеет 3 колебательные степени. При гармонических колебаниях средняя кинетическая энергия равна средней потенциальной энергии. Поэтому в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия kT, а на один атом – 3kT.

Внутренняя энергия 1 моля твердого вещества равна:

U = 3NAkT = 3RT.

Поэтому молярная теплоемкость вещества в твердом состоянии равна:

Это соотношение называется законом Дюлонга–Пти. Для твердых тел практически не существует различия между Cp и CV из-за ничтожно малой работы при расширении или сжатии.

Опыт показывает, что у многих твердых тел (химических элементов) молярная теплоемкость при обычных температурах действительно близка к 3R. Однако, при низких температурах наблюдаются значительные расхождения между теорией и экспериментом. Это показывает, что гипотеза о равномерном распределении энергии по степеням свободы является приближением.

Наблюдаемая на опыте зависимость теплоемкости от температуры может быть объяснена только на основе квантовых представлений.

Читайте также: