Теорема котельникова простыми словами кратко

Обновлено: 02.07.2024

Попробуем нестандартно в сравнении с книгами по радиоэлектронике и цифровым системам связи, простыми житейскими примерами объяснить суть теоремы Котельникова. Если читатель еще не знаком с теоремой отсчётов, то рекомендуется сначала изучить ее формулировку в деловом официальном стиле. Смотрите, например, прошлую статью.

Аналоговые и дискретные процессы в природе

Абсолютное большинство процессов в природе протекают непрерывно, (изменение температуры воздуха на улице, давления, влажности, изменение скорости ветра, колебание электрического тока в проводнике, сияние Солнца). Почему все эти процессы непрерывны? Нам кажется, что время течет непрерывно, а значит в каждый момент времени должно существовать какое-то значение температуры воздуха или значение силы тока в проводнике, или значение интенсивности света Солнца. Непрерывные процессы, функции или сигналы называют аналоговыми (от слова аналог – нечто сходное, подобное чему-то, т.е. функция как модель является аналогом какому-то физическому процессу). Можно наблюдать множество непрерывных процессов в природе, например, непрерывный поток воды в источнике. Струя воды при падении вниз сужается как раз в силу поддержания непрерывности потока.

Аналоговый сигнал даже на конечном временном промежутке подразумевает набор бесконечного числа значений. Однако регистрирующие устройства, как правило фиксируют конечное число значений, поэтому мы получаем дискретные сигналы (дискретный от лат. discretus означает раздельный, состоящий из отдельных частей).

Представление непрерывного и дискретного сигналов.

  1. Из квантовой физики 1-й постулат Бора: электрон в атоме может двигаться только по определенным (можно сказать по дискретным) орбитам, находясь на которых, он не излучает и не поглощает энергию. Электроны в атоме, находясь на определенных стационарных (т.е. дискретных) орбитах, имеет вполне определённые дискретные значения энергии Е1, Е2, Е3 и т.д.
  2. Если вы играете на пианино, то звучащая музыка во времени представляет собой перескоки с одной дискретной ноты на другую, то есть ноты – это отдельно выбранные дискретные звуки.
  3. Когда мы поднимаемся по лестнице, ступня в пространстве оси высот находится только на определенной дискретной координате (ступеньке)

Поскольку человек не может оперировать с бесконечными числами и величинами, обычно все округляем до ближайших целых чисел – в результате получаем цифровые сигналы. Например, мы наносим цифровую шкалу на столбик термометра и фиксируем округленное значение температуры. Непрерывное время мы разбиваем на секунды минуты, часы – наносим цифры на циферблат часов. Все символьные и знаковые системы, созданные человечеством для обмена информацией, использует конечное число возможных элементов.

Поскольку все вычислительные информационные устройства могут работать лишь с дискретными символьными системами и с цифровыми сигналами, постоянно возникает необходимость в переходе от существующих в природе непрерывных процессов, к дискретным и цифровым. С развитием цифровой связи и цифровых устройств (микроконтроллеров, компьютеров) постоянно и повсеместно на каждом шагу выполняется аналого-цифровое преобразование сигналов, неотъемлемой частью которого является дискретизация сигналов. Но здесь важно следующее: перейти от непрерывного сигнала к дискретному дело нехитрое – здесь удачно подходит выражение "ломать не строить". По аналогии можно сказать "ломать аналоговый сигнал – не восстанавливать его", здесь все просто реализовать, но главное при этом выполнить дискретизацию правильно. Одно дело просто произвести выборку отдельных значений сигнала, но есть еще другое дело – потом надо будет по этим значениям снова восстановить исходный непрерывный сигнал. Как правильно дискретизировать сигналы говорится в теореме о дискретизации сигналов, или ее можно называть в честь автора – теоремой Котельникова.

Если не знать теорему Котельникова

Итак, мы выяснили, что как и множество процессов в природе, электрические сигналы, используемые во всей электронике и системах связи бывают аналоговые и дискретные. В цифровых системах необходимо переходить от аналоговых сигналов к дискретным, при этом переход должен быть корректным.

Наглядный пример номер раз. Давайте посмотрим на примере двух музыкальных фрагментов, что будет, если осуществлять дискретизацию сигнала некорректно.

Вот что будет при неправильной оцифровке музыки

Вот что будет при неправильной оцифровке речи

Наглядный пример № 2. На рисунке ниже представлены 7 сигналов, каждый из которых соответствует своей музыкальной ноте – До, Ре, Ми, Фа, Соль, Ля, Си. Все они оцифрованы с частотой дискретизации 1700 Гц.

Давайте послушаем, что из этого получилось.

Надеюсь, с музыкальным слухом все в порядке и вы услышали, что с последними двумя прозвучавшими нотами что-то не так. Если не знать теорему Котельникова, то будет непонятно, почему звук при дискретизации исказился. Поэтому давайте разбираться в этой теореме.

Наглядное, но нестандартное объяснение теоремы о дискретизации

Представим себе, что мы работники Animal Planet и хотим изучить траекторию движения в джунглях какой-нибудь редкой змейки из красной книги. Назовем, например, изучаемую змею Зигзагусс.

С целью исследования мест обитания змеи и ее повадок цепляем к ее хвосту GPS-датчик, который будет регистрировать ее местоположение в отдельные моменты времени.

Вопрос: как надо запрограммировать датчик, чтобы мы получили точную траекторию движения змейки, т.е. получили самый подробный график траектории движения юркой змейки со всеми ее виляниями и изгибами? Через сколько миллисекунд или секунд датчику необходимо будет записывать и посылать нам очередную координату положения в пространстве?

Допустим, наша змея Зигзагусс ползет гармонично – ее хвост совершает гармонические колебания и ее движения можно описать синусоидальными функциями.

Фото настоящего следа от змеи на песке.

Траектория движения представляет собой колебания с различными частотами. Так вот, по правилам теоремы о дискретизации, чтобы восстановить всю траекторию движения змейки, необходимо найти составляющую колебаний самой высокой частоты.

Если по дискретным точкам мы сможем восстановить составляющую колебаний самой высокой частоты, то мы сможем восстановить всю траекторию змейки. Определим периоды всех колебаний (см. рисунок ниже).

Как видно из рисунка, наименьшим периодом колебаний является период . Следовательно, необходимо подобрать частоту выборки дискретных точек именно для колебания с периодом , тогда и все остальные колебания мы сможем потом восстановить. Другими словами, в соответствии с теоремой о дискретизации (см. формулировку здесь) можно полностью восстановить данную синусоидальную функцию, если брать дискретные точки через интервал времени вдвое меньший длительности периода . Это означает, что необходимо брать точки с таким интервалом, чтобы на период колебания самой высокой частоты приходилось не менее 2-х точек.

В этом случае можно будет с высокой точностью восстановить всю непрерывную траекторию движения исследуемой змеи.

Предположим теперь, что Зигзагусс опьянилась запахом одурманивающего цветка и стала ползти негармонично, несуразно.

В этом случае для определения периода дискретизации нам необходимо самим отыскать гармонию в данной кривой функции, а она есть внутри любого сигнала всегда, что пытался в свое время доказать всем людям французский математик Жан-Батист Фурье. Также как любое тело можно разложить на множество атомов, также и полученную сложную функцию (от траектории змеи), можно разложить на множество гармонических функций. Физические тела разные, потому что они отличаются друг от друга структурой молекул. Например, мы говорим H2O – это вода, что означает: молекула воды состоит из двух атомов водорода H и одного атома кислорода O. Точно также можно сказать, что разные сигналы отличаются разным составом. Например, такой вот сигнал

состоит из двух гармонических функций (синус и косинус) с частотой 1000 Гц и одного синуса с частотой 2000 Гц (2000 Гц означает, что гармоника совершает 2 тысячи колебаний в секунду). В соответствии с условием теоремы Котельникова, о котором мы уже ранее говорили, для такого сигнала временной интервал между дискретными точками необходимо брать таким, чтобы он был меньше половины периода самой высокой частоты. В нашем случае имеется гармоника с максимальной частотой 2 тысячи колебаний в секунду (2000 Гц), значит период сигнала равен 1/2000 = 0.005 секунд и значит период между дискретными точками должен быть менее, чем 0.005/2 = 0.0025 секунды.

Чтобы определить требуемый период между дискретными точками для траектории нашей змейки, необходимо определить из каких гармонических функций она состоит, а точнее нас интересует значение частоты наивысшей гармонической функции (т.е. фиолетовой на рисунке).

Делим период фиолетовой гармоники пополам, и получаем граничное значение для периода дискретизации функции траектории одурманенной змеи. Все, задача решена, можно произвести дискретизацию данного сложного сигнала.

Знаем и соблюдаем условия теоремы Котельникова

Теперь, когда мы знаем теорему Котельникова, давайте еще раз рассмотрим задачу правильного перехода от аналоговых 7 сигналов- музыкальных нот к дискретным. Итак, у нас есть семь гармонических колебаний, с частотами

Для правильной дискретизации, чтобы не было искажений, необходимо взять частоту дискретизации не менее в два раза больше максимальной частоты сигнала. Ранее мы брали частоту 1700 Гц, но как можно посчитать, такая частота подходит для сигналов нот До – Соль (для ноты Соль требуется частота дискретизации 784*2=1568 Гц), а вот для сигналов нот Ля и Си значение 1700 Гц уже не годится.

Еще раз рассмотрим дискретизацию наших сигналов

Как видно из рисунка из-за несоблюдения условий теоремы Котельникова для сигналов Ля и Си с частотами 880 Гц и 988 Гц, через получившиеся дискретные отсчёты можно провести другие гармонические сигналы (красные функции), частоты которых меньше 1700 Гц / 2 = 850 Гц. Произошел эффект, который называют наложение спектров (в англоязычной литературе – aliasing). В рамках данной статьи "для чайников" мы не будем подробно рассматривать этот эффект, поскольку здесь уже требуются знания спектрального анализа сигналов. Этот эффект интересен тем, что объясняет условия теоремы Котельникова с позиций представления сигналов в частотной области (см. рисунок ниже). Если разобраться в этом, то теорема Котельникова и принципы восстановления сигналов станут более понятными. Описание этого эффекта можно найти почти в каждой книге по цифровой обработке сигналов.

Но сейчас новичкам в этой области главное запомнить результат несоблюдения теоремы отсчётов – восстановление сигналов по имеющимся дискретным отсчётам будет неоднозначно. Чтобы такого не происходило, необходимо чтить теорему Котельникова.

Максимальная частота среди наших 7 сигналов 988 Гц (нота Си), следовательно частота дискретизации должна быть больше, чем 2*988=1976 Гц. Важно здесь неуместно отметить, что в 1976 году был создан первый персональный компьютер – начался кустарный выпуск Apple I.

Значит надо выбрать частоту дискретизации больше значения 1976.

Вот как будут звучать семь наших сигналов при частоте дискретизации 2000 Гц.

Задачка для разминки мозгов

Нельзя сказать, что эта задачка очень простая для начинающих и ее решит любой. Новички в этой области не унывайте, если не получится (здесь нужны знания теории сигналов), ну а тот, кто решит, может собой гордиться.

С двух датчиков регистрируются сигналы

Какой должна быть минимальная частота дискретизации в АЦП по условию теоремы о дискретизации, если К – операция сложения и если К – операция умножения?

Если еще проще, то допустим у вас есть речевой сигнал. Он содержит частоты от 300 Герц до 3 килогерц. Для его передачи по цифровому каналу связи вам потребуется "выхватывать" мгновенные значения этого сигнала с частотой, в два раза превышающей самую высокочастотную компоненту сигнала, т. е. 6 кГц. Иными словами, шесть тысяч раз в секунду вы будете измерять значение сигнала, который изменяется не чаще трех тысяч раз в секунду.

Теоре́ма Коте́льникова (в англоязычной литературе — теорема Найквиста) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой не менее удвоенной максимальной частоты спектра Fmax:

где Fmax — верхняя частота в спектре, или (формулируя по-другому) по отсчётам, взятым с периодом не реже полупериода максимальной частоты спектра Fmax:

Т. е. для дискретизации аналогового сигнала без потери информации частота отсчётов должна быть как минимум в два раза выше верхней граничной частоты спектра сигнала.
Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временной характеристике точек разрыва. Именно это подразумевает понятие "спектр, ограниченный частотой Fmax". Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, т. к. они конечны по времени и, обычно, имеют во временной характеристике разрывы. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова выплывает 2 следствия:

* Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой

где Fmax — максимальная частота, которой мы ограничили спектр реального сигнала.

* Если максимальная частота в сигнале превышает половину частоты прерывания, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде следующего ряда:

\sum x(k\Delta t) \frac(t - k\Delta t))><\pi F_(t - k\Delta t)>.

Под интегральной суммой написана формула отсчётов функции x(t). Мгновенные значения этой функции есть значения дискретизированного сигнала в каждый из моментов времени.

Грубо говоря, теорема Котельникова указывает условия, ​при которых непрерывный сигнал может быть точно восстановлен по ​соответствующему ему сигналу с дискретным временем.

Вот вижу очень умного ученика. Про такую теорему не слышал даже. Служил на заставе имени Котельникова.

Все реальные непрерывные сигналы являются плавными функциями времени. Скачки значений в них практически не наблюдаются. Поэтому такие сигналы можно представить последовательностью их значений, взятых с некоторым шагом по времени. Значение сигнала в фиксированный момент называется отсчетом.

На этом рисунке показан непрерывный сигнал и его отсчеты с различным шагом по времени. При малом шаге (рис. б) последовательность отсчетов достаточно точно описывает сигнал, а при большом шаге (рис. в) по отсчетам нельзя восстановит форму сигнала, так как пропущены его характерные экстремальные точки.

Как же часто следует брать отсчеты, чтобы по ним можно было полностью восстановить сигнал?

Ответ на этот вопрос дает теорема, доказанная в 1933 г. Советским ученым академиком В.А.Котельниковым. и названная его именем.

Согласно этой теореме любой непрерывный сигнал с конечным спектром (имеющим максимальное значение ) можно представить в виде дискретных отсчетов , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала:, передать его по линии связи, а затем восстановить исходный аналоговый сигнал.

Теорема Котельникова является основой для дискретизации непрерывных сигналов по времени, так как, во – первых, доказывает, что непрерывный сигнал можно заменить его дискретными значениями, во – вторых, дает правило вычисления шага дискретизации – . При таком шаге дискретизации ряд Котельникова дает точное временное представление сложного сигнала.

Физический смысл теоремы Котельникова.

Теорема Котельникова утверждает, что если требуется передать непрерывный сигнал с ограниченным спектром по каналу связи, то можно не передавать все его значения: достаточно лишь передать его мгновенные значения (отсчеты) через интервал . Поскольку сигнал полностью определяется этими значениями, то по ним он может быть восстановлен на приемном конце системы связи. Для этого достаточно соединить отсчеты плавной кривой. Это можно объяснить тем, что сигнал между отсчетами может изменяться только плавно, так как частоты выше дающие быстрые изменения, в сигнале отсутствуют. Ведь отсчеты берутся достаточно часто, и тем чаще, чем выше максимальная частота .

Практическое применение теоремы Котельникова.

Дискретизация сигнала осуществляется достаточно просто: периодически на короткое время через интервал ключом замыкается цепь от источника сигнала к нагрузке – получаем отсчеты . Далее эти отсчеты, пройдя через канал связи, поступают на вход идеального фильтра нижних частот (ФНЧ) с верхней частотой пропускания . На выходе фильтра получается исходный непрерывный сигнал .


Структурная схема системы связи с использованием теоремы Котельникова.

На передающей стороне берутся отсчеты сигнала в моменты . Далее отсчеты любым способом передаются по каналу связи. Идеальный ФНЧ на приемном конце восстанавливает исходный сигнал .

Частота следования импульсов, называемая также частотой дискретизации, определяется по теореме Котельникова:

Например, частота дискретизации для речевого (телефонного) сигнала, имеющего максимальное значение спектра сигнала , будет равна . Согласно рекомендациям МККТТ и, соответственно, .

Теорема Котельникова в многоканальной электросвязи.

Возможность передачи вместо непрерывных сигналов последовательности импульсов (отсчетов) позволяет осуществить временное разделение каналов. Дело в том, что при импульсной передаче период следования импульсов обычно намного больше их длительности, то есть импульсы имеют большую скважность – при большой скважности между импульсами одного сигнала остается промежуток, на котором можно разместить импульсы от других сигналов. Этот способ и называется временным разделением. В настоящее время уже реализованы многоканальные системы передачи с временным разделением каналов на 12, 15, 30, 120, 480, 1920 речевых сигналов.

Лекция № 7.

Все реальные непрерывные сигналы являются плавными функциями времени. Скачки значений в них практически не наблюдаются. Поэтому такие сигналы можно представить последовательностью их значений, взятых с некоторым шагом по времени. Значение сигнала в фиксированный момент называется отсчетом.




На этом рисунке показан непрерывный сигнал и его отсчеты с различным шагом по времени. При малом шаге (рис. б) последовательность отсчетов достаточно точно описывает сигнал, а при большом шаге (рис. в) по отсчетам нельзя восстановит форму сигнала, так как пропущены его характерные экстремальные точки.

Как же часто следует брать отсчеты, чтобы по ним можно было полностью восстановить сигнал?

Ответ на этот вопрос дает теорема, доказанная в 1933 г. Советским ученым академиком В.А.Котельниковым. и названная его именем.

Согласно этой теореме любой непрерывный сигнал с конечным спектром (имеющим максимальное значение ) можно представить в виде дискретных отсчетов , частота дискретизации которых должна быть выбрана не менее чем в два раза выше максимального значения спектра сигнала:, передать его по линии связи, а затем восстановить исходный аналоговый сигнал.

Теорема Котельникова является основой для дискретизации непрерывных сигналов по времени, так как, во – первых, доказывает, что непрерывный сигнал можно заменить его дискретными значениями, во – вторых, дает правило вычисления шага дискретизации – . При таком шаге дискретизации ряд Котельникова дает точное временное представление сложного сигнала.

Физический смысл теоремы Котельникова.

Теорема Котельникова утверждает, что если требуется передать непрерывный сигнал с ограниченным спектром по каналу связи, то можно не передавать все его значения: достаточно лишь передать его мгновенные значения (отсчеты) через интервал . Поскольку сигнал полностью определяется этими значениями, то по ним он может быть восстановлен на приемном конце системы связи. Для этого достаточно соединить отсчеты плавной кривой. Это можно объяснить тем, что сигнал между отсчетами может изменяться только плавно, так как частоты выше дающие быстрые изменения, в сигнале отсутствуют. Ведь отсчеты берутся достаточно часто, и тем чаще, чем выше максимальная частота .

Практическое применение теоремы Котельникова.

Дискретизация сигнала осуществляется достаточно просто: периодически на короткое время через интервал ключом замыкается цепь от источника сигнала к нагрузке – получаем отсчеты . Далее эти отсчеты, пройдя через канал связи, поступают на вход идеального фильтра нижних частот (ФНЧ) с верхней частотой пропускания . На выходе фильтра получается исходный непрерывный сигнал .


Структурная схема системы связи с использованием теоремы Котельникова.

На передающей стороне берутся отсчеты сигнала в моменты . Далее отсчеты любым способом передаются по каналу связи. Идеальный ФНЧ на приемном конце восстанавливает исходный сигнал .

Частота следования импульсов, называемая также частотой дискретизации, определяется по теореме Котельникова:

Например, частота дискретизации для речевого (телефонного) сигнала, имеющего максимальное значение спектра сигнала , будет равна . Согласно рекомендациям МККТТ и, соответственно, .

Теорема Котельникова в многоканальной электросвязи.

Возможность передачи вместо непрерывных сигналов последовательности импульсов (отсчетов) позволяет осуществить временное разделение каналов. Дело в том, что при импульсной передаче период следования импульсов обычно намного больше их длительности, то есть импульсы имеют большую скважность – при большой скважности между импульсами одного сигнала остается промежуток, на котором можно разместить импульсы от других сигналов. Этот способ и называется временным разделением. В настоящее время уже реализованы многоканальные системы передачи с временным разделением каналов на 12, 15, 30, 120, 480, 1920 речевых сигналов.





В конце девятнадцатого начале двадцатого века бурно развивались средства телефонной и радиосвязи. В 1882 г. в Санкт Петербурге заработала первая в России телефонная станция. У этой станции было 259 абонентов. А в Москве примерно в это же время было 200 абонентов.

В 1896 г. Александр Попов передал на расстояние 250 метров первый сигнал по радио, состоявший всего из двух слов: "Генрих Герц".

старинные телефонные аппараты

Развитие средств связи было во главе технического прогресса. С тех пор прошло чуть более века, и благодаря работам ученых и инженеров этой отрасли мы видим, как изменился мир.

Мы не представляем нашей жизни без телефона, радиосвязи, телевидения и интернета. В основе этого лежит распространение электромагнитных волн, теорию которых разработал Джеймс Клерк Максвелл в середине девятнадцатого века. Электромагнитные волны являются носителем полезных сигналов, а в теории передачи сигналов основополагающее значение играет теорема российского ученого и инженера, академика Владимира Александровича Котельникова.

В науку она вошла под названием теорема Котельникова.

Владимир Александрович Котельников

Примерно такие разработки упоминаются у Солженицына в его романе "В круге первом".

Около сорока лет он заведовал кафедрой "Основы радиотехники", и был деканом радиотехнического факультета. В последствии стал директором института радиотехники и электроники АН СССР.

Все студенты соответствующих специальностей до сих пор учатся по учебнику Котельникова "Теоретические основы радиотехники".

Котельников также занимался проблемами радиоастрономии, радиофизическими исследованиями океанов, космическими исследованиями.

Свою последнюю работу "Модельная квантовая механика", написанную уже в почти в 97 лет, он не успел опубликовать. Она вышла только в 2008 г.

Скончался В. А. Котельников на 97-ом году жизни 11 февраля 2005 г. Он дважды герой социалистического труда, награжден множеством правительственных наград. В его честь названа одна из малых планет.

Академик Котельников и В.В.Путин

Теорема Котельникова

Развитие систем связи ставило множество теоретических вопросов. Например, сигналы какого диапазона частот можно передавать по каналам связи, разной физической структуры, с разной полосой пропускания, чтобы при приеме не потерять информации.

В 1933 году Котельников доказал свою теорему, которая иначе называется теорема отсчетов.

Формулировка теоремы Котельникова:

Если аналоговый сигнал имеет финитный (ограниченной по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой, строго большей удвоенной верхней частоты.

Описывается идеальный случай, когда время длительности сигнала бесконечно. Он не имеет прерываний, но имеет ограниченный спектр (по теореме Котельникова). Однако математическая модель, описывающая сигналы с ограниченным спектром, на практике хорошо применима и к реальным сигналам.

На основании теоремы Котельникова может быть реализован способ дискретной передачи непрерывных сигналов.

компрессор Котельникова

Физический смысл теоремы

Теорему Котельникова простыми словами можно объяснить следующим образом. Если надо передать некий сигнал, то не обязательно передавать его целиком. Можно передавать его мгновенные импульсы. Частота передачи этих импульсов называется частотой дискретизации в теореме Котельникова. Она должна быть в два раза больше верхней частоты спектра сигнала. В этом случае на приемном конце сигнал восстанавливается без искажений.

В теории связи существует несколько типов каналов связи. На физическом уровне - проводные, акустические, оптические, инфракрасные и радиоканалы. И хотя теорема разработана для идеального канала связи, она применима и для всех остальных типов каналов.

Многоканальная электросвязь

Антенны спутниковой связи

Теорема Котельникова лежит в основе многоканальной электросвязи. При дискретизации и передаче импульсов период между импульсами гораздо больше их длительности. Это значит, что в промежутках импульсов одного сигнала (это называется скважность) можно передавать импульсы другого сигнала. Были реализованы системы на 12, 15, 30, 120, 180, 1920 речевых каналов. То есть по одной паре проводов можно передать одновременно около 2000 телефонных разговоров.

На основании теоремы Котельникова, простыми словами можно сказать, возникли практически все современные системы связи.

Гарри Найквист

ученый физик Гарри Найквист

Как это иногда бывает в науке, ученые, занимающиеся подобными проблемами, приходят почти одновременно к одинаковым выводам. Это вполне закономерно. До сих пор не утихают споры, кто открыл закон сохранения - Ломоносов или Лавуазье, кто изобрел лампу накаливания - Яблочкин или Эдисон, кто изобрел радио - Попов или Маркони. Этот список можно продолжать без конца.

Так, американский физик шведского происхождения Гарри Найквист в 1927 г. в журнале "Определенные проблемы телеграфной передачи" опубликовал свои исследования с выводами как у Котельникова. Его теорему иногда называют теорема Котельникова-Найквиста.

Гарри Найквист родился в 1907 году, защитил диссертацию в Йельском университете, работал в лаборатории Белла. Там занимался проблемами теплового шума в усилителях, участвовал в разработке первого фототелеграфа. Его труды послужили основой для дальнейших разработок Клода Шеннона. Найквист скончался в 1976 г.

Клод Шеннон

ученый Клод Шеннон

Клода Шеннона иногда называют отцом информационного века - столь велик его вклад в теорию связи и информатики. Клод Шеннон родился в 1916 г. в США. Работал в лаборатории Белла и ряде американских университетов. Во время войны вместе с Аланом Тьюрингом занимался расшифровкой кодов немецких подводных лодок.

В 1948 г. в статье "Математическая теория связи" он предложил термин бит в качестве обозначения минимальной единицы информацию. Теорему, посвященную восстановлению сигнала по его дискретным отсчетам, он доказал (независимо от Котельникова) в 1949 году. Ее иногда называют теорема Котельникова-Шеннона. Правда на Западе больше принято наименование теорема Найквиста-Шеннона.

Шеннон ввел понятие энтропии в теорию связи. Занимался изучением кодов. Благодаря его работам, криптография стала полноценной наукой.

Котельников и криптография

Котельников тоже занимался проблемами кодов и криптографии. К сожалению, во времена СССР, все, что связано с кодами, шифрами, было строго засекречено. И открытых публикаций многих работ Котельникова быть не могло. Однако он работал над созданием закрытых каналов связи, коды которых противник взломать не мог.

18 июня 1941 года, практически перед самой войной, была написана статья Котельникова "Основные положения автоматической шифровки", опубликованная в сборнике 2006 г. "Квантовая криптография и теорема Котельникова об одноразовых ключах и отсчетах".

Помехоустойчивость

С помощью работы Котельникова была разработана теория потенциальной помехоустойчивости, которая определяет, какое максимальное количество помех может быть в канале связи, чтобы информация не была потеряна. Рассматривается вариант идеального приемника, который далек от реального. Но пути улучшения канала связи четко определены.

Космические исследования

Коллектив под руководством Котельникова внес большой вклад в системы космической связи, автоматики и телеметрии. Сергей Павлович Королев привлекал лабораторию Котельникова к решению проблем космической отрасли.

Были построены десятки контрольно-измерительных пунктов, связанные в единый контрольно-измерительный комплекс.

Была разработана радиолокационная аппаратура для межпланетных космических станций, осуществлено картографирование при непрозрачной атмосфере планеты Венеры. С помощью устройств, разработанных под руководством Котельникова, с космических станций "Венера" и "Магеллан" проводилась радиолокация областей планеты по заранее определенным секторам. В результате мы знаем, что скрывается на Венере за плотными облаками. Также велись исследования Марса, Юпитера, Меркурия.

Разработки Котельникова нашли применение в орбитальных станциях и современных радиотелескопах.

В 1998 г. В. А.Котельников был награжден премией фон Кармана. Это премия Международной академии астронавтики, которая дается людям с творческим мышлением за значительный вклад в космические исследования.

Поиск радиосигналов внеземных цивилизаций

Международная программа поиска радиосигналов внеземных цивилизаций Seti с помощью крупнейших радиотелескопов была начата в 90-ые годы. Именно Котельников обосновал необходимость использования многоканальных приемников для этой цели. Современные приемники прослушивают одновременно миллионы радиоканалов, перекрывая весь возможный диапазон.

Антенны дальней связи

Также под его руководством были выполнены работы, которые определяют критерии разумного узкополосного сигнала в общем шуме и помехах.

К сожалению, пока эти поиски не увенчались успехом. Но в масштабах истории они ведутся совсем недолго.

Теорема Котельникова относится к фундаментальным открытиям в науке. Ее смело можно поставить в один ряд с теоремами Пифагора, Эйлера, Гаусса, Лоренца и т. д.

В каждой области, где необходимо передавать или принимать любые электромагнитные сигналы, мы сознательно или неосознанно пользуемся теоремой Котельникова. Мы разговариваем по телефону, смотрим телевизор, слушаем радио, пользуемся интернетом. Все это в основе своей содержит принцип дискретизации сигналов.

Читайте также: