Теорема фалеса доказательство кратко

Обновлено: 05.07.2024

Прежде чем сформулировать теорему Фалеса и доказать её, напомним несколько ключевых определений геометрии:

  • четырёхугольник;
  • параллелограмм;
  • трапеция.

Четырёхугольник имеет четыре вершины.

Параллелограмм - это четырёхугольник, противоположные стороны которого попарно параллельны друг другу. В параллелограмме равны противоположные стороны между собой и противоположные углы.

Трапеция - это такой четырёхугольник, у которого две противоположные стороны параллельны друг другу, а две другие противоположные стороны не параллельны друг другу.

В целях понимания, приведём примеры задач с параллелограммом и трапецией.

Задача. Найти углы параллелограмма $ABCD$, если $\angle A=73^$.

Решение. Сделаем такой рисунок:

Рисунок 1. Параллелограмм. Автор24 — интернет-биржа студенческих работ

На рисунке проведена прямая, параллельная $AB$ из вершины $B$. Угол, образованный вершиной $B$, проведённой прямой и стороной $BC$ равен $73^$ как накрест лежащий относительно $\angle A$. По определению развернутого угла (развёрнутый угол равен $180^$) получаем простые вычисления:

$\angle B=180-73=107^$. Так как в параллелограмме противоположные углы равны, то $\angle C=\angle A=73^, \angle D=\angle B=107^$.

В примере выше можно было решить через свойство четырёхугольников о том, что сумма углов выпуклого четырёхугольника равна $360^$. Для этого нужно было бы дополнительно доказать, что параллелограмм - это выпуклый четырёхугольник. Этот простой вопрос останется читателю для размышлений на досуге.

Задача. Найти $\angle B$ и $\angle D$ в трапеции $ABCD$, если $\angle A = 47^, \angle C = 108^$.

Решение. Сделаем рисунок:

Рисунок 2. Трапеция. Автор24 — интернет-биржа студенческих работ

На рисунке проведена прямая, параллельная $AB$ из вершины $B$. Угол, образованный вершиной $B$, проведённой прямой и стороной $BC$ равен $47^$ как накрест лежащий относительно $\angle A$. По определению развернутого угла получаем простые вычисления: $\angle B=180-47=133^$.

На рисунке также проведена прямая параллельно $CD$ из вершины $D$. Угол, образованный вершиной $D$, проведённой прямой и стороной $CD$ равен $108^$ как накрест лежащий относительно $\angle С$. По определению развернутого угла получаем простые вычисления: $\angle B=180-108=72^$.

Готовые работы на аналогичную тему

Как и в случае параллелограмма, данную задачу можно проверить, сложив все углы данной трапеции. Их сумма должна быть равна $360^$. Можно убедиться, что сумма всех углов данной трапеции действительно равна $360$.

Владея ключевыми понятиями, можем перейти к теореме Фалеса и её доказательству.

Теорема Фалеса

Теорема названа в честь древнегреческого ученого Фалеса Милетского. Звучит она следующим образом:

Если последовательно отложить на прямой несколько равных друг другу отрезков и провести через их концы параллельные прямые, которые пересекают вторую проведённую прямую, то эти параллельные прямые отсекут на ней также равные отрезки.

Доказательство теоремы Фалеса

Докажем эту теорему.

Рисунок 3. Доказательство теоремы Фалеса. Автор24 — интернет-биржа студенческих работ

На прямой $a$ отложены следующие отрезки: $A_1 A_2, A_2 A_3, A_3 A_4. $. Через эти отрезки проведены несколько параллельных прямых, пересекающих прямую $b$ в соответствующих точках $B_1,B_2,B_3,B_4. $. Докажем, что отрезки $B_1 B_2, B_2 B_3, B_3 B_4. $ равны между собой. Для начала упростим задачу и докажем следующее: $B_1 B_2 = B_2 B_3$.

На рисунке прямые $a$ и $b$ параллельны. Следовательно, $A_1 B_1 B_2 A_2$ и $A_2 B_2 B_3 A_3$ - параллелограммы. Это означает, что противоположные стороны параллелограммов равны, следовательно, $A_1 A_2 = B_1 B_2, A_2 A_3 = B_2 B_3$. И из $A_1 A_2=A_2 A_3$ следует, что $B_1 B_2= B_2 B_3$.

Есть и другой случай, когда прямые $a$ и $b$ не параллельны:

Рисунок 4. Доказательство теоремы Фалеса. Автор24 — интернет-биржа студенческих работ

Проведём такую прямую $c$, которая параллельна $a$:

Рисунок 5. Доказательство теоремы Фалеса. Автор24 — интернет-биржа студенческих работ

Прямая $c$ пересекает $A_2 B_2$ и $A_3 B_3$ соответственно в т. $C_1, C_2$. Так как $A_1 A_2=A_2 A_3$, то, по аналогии в предыдущем случае, $B_1 C_1 = C_1 C_2$.

Рассмотрим $\triangle C_2 B_1 B_3$. $C_1$ - середина $B_1 C_2$. $B_2 C_1$ параллельна $B_3 C_2$.

Проведём через точку $B_3$ такую прямую, которая параллельна $B_1 C_2$.

Рисунок 6. Доказательство теоремы Фалеса. Автор24 — интернет-биржа студенческих работ

Точкой $D$ обозначено пересечение $B_2 C_1$ с проведённой прямой. Получаем параллелограмм $C_1 C_2 B_3 D$. Так как $C_1$ - середина $B_1 C_2$, а $C_1 C_2= B_3 D$ (как противоположные стороны параллелограмма), следовательно, $C_1 B_1 = B_3 D$.

Рассмотрим $\triangle C_1 B_1 B_2$ и $\triangle B_2 B_3 D$ Они равны согласно второму признаку равенства треугольников. То есть так как выполняются равенства $C_1 B_1 = B_3 D$, $\angle C_1 B_1 B_2 = \angle B_2 B_3 D$ и $\angle B_1 C_1 B_2=\angle B_2 D B_3$ (как лежащие накрест углы при пересечении параллельных прямых $B_1 C_2$ и $B_3 D$ секущими $B_1 B_3$ и $C_1 D$).

Следовательно, $B_1 B_2= B_2 B_3$.

Аналогично доказывается равенство $B_2 B_3=B_3 B_4$ и другие.

Таким образом, в данной статье мы полностью разобрали теорему Фалеса, произвели подробное её доказательство, фигурируя известными понятиями.

В данной публикации мы рассмотрим одну из основных теорем по геометрии 8 класса – теорему Фалеса, которая получила такое название в честь греческого математика и философа Фалеса Милетского. Также разберем пример решения задачи для закрепления изложенного материала.

Формулировка теоремы

Если на одной из двух прямых отмерить равные отрезки и через их концы провести параллельные прямые, то пересекая вторую прямую они отсекут на ней равные между собой отрезки.

Теорема Фалеса (чертеж)

Примечание: Взаимное пересечение секущих не играет роли, т.е. теорема верна и для пересекающихся прямых, и для параллельных. Расположение отрезков на секущих, также, не важно.

Обобщенная формулировка

Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках*: параллельные прямые отсекают на секущих пропорциональные отрезки.

В соответствии с этим для нашего чертежа выше справедливо следующее равенство:

* т.к. равные отрезки, в т.ч., являются пропорциональными с коэффициентом пропорциональности, равным единице.

Обратная теорема Фалеса

1. Для пересекающихся секущих

Если прямые пересекают две другие прямые (параллельные или нет) и отсекают на них равные или пропорциональные отрезки, начиная от вершины, значит эти прямые являются параллельными.

Обратная теорема Фалеса для пересекающихся секущих

Из обратной теоремы следует:

Обратная теорема Фалеса

Обязательное условие: равные отрезки должны начинаться от вершины.

2. Для параллельных секущих

Отрезки на обеих секущих должны быть равны между собой. Только в этом случае теорема применима.

Обратная теорема Фалеса для параллельных секущих

Пример задачи

Дан отрезок AB на плоскости. Разделите его на 3 равные части.

Отрезок AB

Решение

Теорема Фалеса (пример)

Проведем из точки A прямую a и отметим на ней три подряд идущих равных отрезка: AC, CD и DE.

Крайнюю точку E на прямой a соединяем с точкой B на отрезке. После этого через оставшиеся точки C и D параллельно BE проведем две прямые, пересекающие отрезок AB.

Образованные таким образом точки пересечения на отрезке AB делят его на три части, равные между собой (согласно теореме Фалеса).

Многие специалисты считают теорему Фалеса Милетского основанием геометрии, так как этот человек относится к категории самых значимых мудрецов Греции. Именно его считают первым астрономом, талантливым философом и математиком. Если провести небольшой анализ, то можно сделать вывод, что именно Фалес сыграл для современной Греции незаменимую роль.

  • Краткое описание
  • Основные понятия
  • Научное пояснение значений
  • Ключевые особенности теоремы
  • Вариации и обобщения
  • Огромные заслуги талантливого математика

Краткое описание теоремы Фалеса

Краткое описание

Фалес хорошо известен в истории как талантливый геометр. Именно этому человеку многие учёные приписывают открытие и доказательство многих теорем. Фалес смог разработать весьма интересный способ определения точного расстояния от берега до видимого невооружённым взглядом водного транспорта. Некоторые историки склонны полагать, что именно для этих целей учёный использовал признак некоего сходства прямоугольных треугольников. Современные последователи великого математика высоко ценят все его достижения, что он смог вывести и доказать многочисленные теоремы, законы.

Ключевые особенности теоремы

Наиболее логическое доказательство правильности предположений на основании единых положений, принятых за проверенные истины, было изобретено именно греками. Сегодня историкам трудно сказать, что именно в научном перечне принадлежит Фалесу. Конечно, благодаря этому талантливому человеку Греция обрела не только философа и математика, но и естествоиспытателя.

Перед изучением теоремы обязательно нужно понять, что параллелограмм — это самый обычный четырёхугольник, у которого все противоположные стороны попарно параллельны. А вот трапеция является специфическим четырёхугольником, у которого две стороны параллельны друг другу, а две другие стороны обладают противоположными характеристиками. Изучение этой темы состоит из нескольких частей, так как первым делом нужно ознакомиться с теорией, а только потом можно приступать к решению задач.

Основные понятия

Базовые понятия теоремы Фалеса

Фалесом было доказано, что две прямые линии RF и NS называются параллельными исключительно в том случае, если они проложены в одной плоскости и не пересекаются между собой вне зависимости от длины. Это правило всегда обозначают как RF || NS.

Абсолютно все существующие точки конкретной прямой располагаются на неизменном расстоянии от второй линии. А это значит, что все линии, которые параллельны одной прямой, являются параллельными между собой. Математики полагают, что итоговый угол между параллельными линиями приравнивается 0. Но это утверждение актуально только в том случае, если у отрезков одинаковые направления и они расположены под углом 180 градусов.

В качестве наглядного примера можно рассмотреть ситуацию, когда перпендикуляры RF, NS, EF относятся к одной и той же прямой РЕ и параллельны между собой. При этом прямая РЕ перпендикулярна ко всем остальным линиям. Итоговая длина сформированного отрезка перпендикуляра, расположенного между двумя параллельными прямыми, соответствует расстоянию средних линий. При изучении пространственной теоремы обязательно нужно понимать, что сразу восемь углов возникает при пересечении двух параллельных прямых третьей прямойю

Актуальная формулировка значений

Представленная специалистами формулировка теоремы Фалеса содержит много нюансов, в которых обязательно должен разбираться каждый человек, планирующий решать различные математические задачи. В противном случае будет сложно избежать самых распространённых ошибок. Даже кратко изложенная теория позволяет разобраться в главных математических тонкостях. Чтобы ученику стало понятно то, как именно нужно использовать теорему, можно задействовать специальные таблицы, которые помогут расширить итоговые математические возможности.

Научное пояснение значений

Если постараться поочерёдно отложить сразу несколько одинаковых отрезков только на одной из двух прямых линий, а потом провести прямые через конечные точки, которые смогут пересечь вторую прямую, то именно на второй прямой они смогут отсечь равные отрезки. Развёрнутая формулировка этой темы в геометрии носит название теоремы о пропорциональных геометрических отрезках. В качестве наглядного примера следует ознакомиться с этой формулой: S1S2/N1В2 = S2S3/N2N3 = S1S3/N1N3.

Важные нюансы:

Вариации и обобщения

  • Востребованная теорема греческого математика является частным случаем закона о пропорциональных отрезках, так как идентичные отрезки можно считать пропорциональными с элементарным коэффициентом ровности, который равняется единице.
  • В изучаемой теореме нет каких-либо ограничений и требований на взаимное расположение всех секущих. Это связано с тем, что она верна как для пересекающихся прямых, так и для параллельных линий. На итоговый результат совершенно не влияет то, где находятся отрезки на секущих.

Для изучения всех нюансов этой темы необходимо рассмотреть вариант, который демонстрирует ситуацию с несвязанными парами отрезков. К примеру: существующий угол пересекает прямые LL1 || ВВ1 || СС1 || КК1 и при этом LB = СК. Через точки L и С проводят прямую линию, которая будет расположена параллельно другой стороне сформированного угла LB2В1L1 и СК2К1С1. Свойства параллелограмма тоже имеют свои особенности:

Треугольники ? JSS2 и ? СКК2 равны. Они построены на основании второго признака равенства геометрических фигур. Если целью задачи является безусловное доказательство при параллельных прямых, тогда нужно выполнить несколько несложных действий. Следует провести прямую SC. Углы SCK и JSC равны как внутренние накрест лежащие при прямых СК и JS, а также секущей SC. А вот углы JCS и CSK равны как внутренние накрест проложенные линии при параллельных прямых JC и SK, секущий SC. Тогда по второму признаку равенства треугольников геометрические фигуры JSC и KCS равны. Из этого вытекает, что JC = SK и JS = СК.

Ключевые особенности теоремы

Когда учащийся попробует на одной из двух прямых линий отложить разные отрезки, а потом через их концы провести параллельные линии, которые будут пересекать вторую прямую, то в итоге на второй прямой они обязательно отсекут идентичные между собой отрезки. Даже в школьной математике часто пользуются обобщённой теоремой Фалеса: те отрезки, которые формируются только благодаря параллельным прямым на одной линии, являются пропорциональными по отношению к другой прямой линии.

Теорема Фалеса: применение в геометрии

Записи с идеями Фалеса не удалось сохранить до наших дней, из-за чего историкам приходится восстанавливать информацию из разных источников. Специалистам удалось доказать, что математик из Греции вывел 7 теорем для геометрии. Основное правило гласит, что если параллельные линии, у которых пересекаются стороны угла, отсекают только на одной его стороне равные отрезки, то аналогичная ситуация происходит и на другой его стороне.

Наглядное доказательство

Доказательство и формулировка теоремы Фалеса

В качестве примера можно взять точки Н1, Н2 и Н3, которые служат для обозначения пересечения используемых параллельных отрезков только с одной стороны угла. А вот для обозначения точек пересечения этих прямых с другой стороны угла используется К1, К2 и К3. Если через точку К2 провести небольшую прямую Т1 и Т2, а также параллельную Н1 и Н2, то в итоге получится обычный параллелограмм: Н1Т1КН2 и Н2К2Т2Н3. Из этого результата можно понять, что Н1Н2 = Т1К2 и Н2Н3 = К2Т2. Этот результат был достигнут благодаря тому, что Н1Н2 = Н2Н3, а Т1К1 = К2Т2.

теорема фалеса

Математика

Одна из основополагающих теорем (теорема Фалеса) в геометрии говорит о том, что проведенные через концы одинаковых отрезков прямой параллельные линии отсекают на другой прямой тоже одинаковые по длине отрезки. Причем происходит это независимо от угла между прямыми. Это достаточно произвольная формулировка теоремы Фалеса, но достаточно емко описывающая ее суть. Разные учебники приводят разные формулировки, но суть остается неизменной.

Ключевые слова в теореме (при любой формулировке) — прямые, отрезки, равные, пропорциональные, параллельные. Это говорит о том, что теорема Фалеса касается только планиметрии, то есть изображения линий на плоскости. Она очень важна для картографии и навигации, широко используется в архитектуре и живописи, строительстве и проектировании.

Классической формулировки, единой в своем роде нет. Например, формулировку можно услышать в такой редакции:

Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.

схема теоремы фалеса

А можно и в такой:

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

угловая схема теоремы фалеса

Если внимательно присмотреться, то можно увидеть, что одно утверждение не противоречит другому, а рисунки практически идентичны. Если продолжить прямые на первом рисунке по получим тот же угол.

Кроме прямых, которые проходят под углом, такая же картина происходит при пересечении параллельных прямых. Разница состоит в том, что на пересекающихся прямых отрезки АВ и А1В1 могут быть как одинаковыми, так и пропорциональными, в зависимости от угла наклона секущих. А для случая параллельных — только одинаковыми. Если обобщить два случая, то обобщенная теорема Фалеса звучит так: Параллельные прямые отсекают на секущих пропорциональные отрезки.

Для иллюстрации можно воспользоваться рисунком 1.

Теорема Фалеса это не только теоретическое утверждение, доказанное методами математики, но и практический инструмент для построения различных фигур. Простейшая задача — разделить на равные части произвольный отрезок ВА. Пусть этих частей будет 7.

схема деления на равные части

Для решения задачи нарисуем отрезок ВС, образующий с данным ВА угол. Как видим, отрезок ВС проходит вдоль клеток на бумаге, что позволяет выбрать на нем равные отрезки. В нашем случае, это:

BD=DE=EF=FG=GH=HJ=JC.

Начиная от крайних точек А и С проведем параллельные линии, пересекающие отрезок ВА. На нем тоже получиться семь равных отрезков: BR=RP=PN=NM=ML=LK=KA.

С таким же успехом мы можем разделить отрезок на 5, 6, 4 или любое другое количество равных частей. Суть метода состоит в том, что длину отрезка ВС мы заведомо выбираем такой, чтобы его можно было легко разделить на заданное количество частей. Например, длина отрезка ВА 37 см, а его нужно разделить на 5 частей. Выбираем длину отрезка ВС в 25 см, отмечаем точки и выполняем построение по теореме Фалеса.

Не менее широко используется и теорема, названная обратной. То есть, доказательства требует не равность или пропорциональность отрезков, а параллельность прямых. Формулируется обратная теорема Фалеса так:

Если две или более прямых (a, b, c) отсекают от двух других прямых (d, f) равные или пропорциональные отрезки, то они параллельные.

Утверждение справедливо, независимо от того, параллельные d, f или пересекаются.

Теорема Фалеса с доказательством приведена в большинстве учебников. В отличие от теоремы Пифагора, доказательств у нее меньше, но все они четкие, понятные и аргументированные. Покажем одно из них.

Не будем повторять формулировок, продемонстрируем только ход мыслей и выполним необходимые построения:

Выберем точку В2 и проведем прямую, параллельную стороне угла ОС. При этом отмечаем, что А1А3 || EF. Рассматривая четырехугольник

А1FЕА3 замечаем, что А1F и ЕА3 параллельны по определению, а А1А3 и FВ3 параллельны по построению. Отсюда вытекает, что А1 FЕА 3 — параллелограм и А1А3 = EF.

Аналогичным образом доказываем равенство других сторон и получаем, что по равенству вертикальных и внутренних углов ∠B1B2F=∠B3B2E и ∠B2FB1=∠B2EB3 треугольники B2B1F и B2B3E равны, откуда вытекает, что B1B2=B2B3.

Именно это и требовалось доказать.

По легенде, впервые на практике использовал теорему греческий философ Фалес Милетский. Он применил ее для измерения высоты пирамиды Хеопса, пользуясь падающей на песок тенью. Для сравнения длины отрезков использовалась воткнутая рядом палка.

легенда теоремы о пропорциональных отрезках

Читайте также: