Тела вращения история возникновения кратко

Обновлено: 05.07.2024

Тела вращения – это объемные тела, которые возникают при вращении некой плоской фигуры, которая, в свою очередь, ограничена кривой и крутится вокруг оси, лежащей в той же плоскости.

Какие же основные тела вращения существуют?

  1. Шар. Это геометрическая фигура, которая образована в результате вращения полукруга вокруг диаметра разреза.
  2. Цилиндр. Это геометрическая фигура, которая образована в результате вращения прямоугольника вокруг одной из его сторон.
  3. Конус. Это геометрическая фигура, которая образована в результате вращения прямоугольного треугольника вокруг одного из своих катетов.
  4. Тор. Это геометрическая фигура, которая образована в результате вращения окружности вокруг прямой, при этом окружность прямую не пересекает.

Стоит отметить такой интересный факт, что если вращаются контуры фигур, то у нас возникает поверхность вращения. Пример – сфера, которая образовывается в результате вращения окружности. Если же вращаются заполненные контуры, то у нас возникают тела. например, шар, который образовывается в результате вращения круга 9а круг. как всем известно, тело заполненное).

Тела вращения, разумеется, имеют свой объем и свою площадь. И то и другое, можно узнать с помощью теорем Гульдина-Паппа.

Первая теорема гласит о том, что площадь поверхности линии, которая образуется при вращении и лежит целиком в плоскости по одну сторону от оси вращения, равняется произведению длины линии на длину окружности, пробегаемой центром масс этой линии.

Вторая теорема говорит о том, что объем тела, который образуется при вращении фигуры и лежит целиком в плоскости по одну сторону от оси вращения, равняется произведению площади фигуры на длину окружности, пробегаемой центром масс этой фигуры.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

История изучения тел вращенияВыполнила: учитель математики высшей категории.

Описание презентации по отдельным слайдам:

История изучения тел вращенияВыполнила: учитель математики высшей категории.

История изучения тел вращения
Выполнила:
учитель математики высшей категории МБОУ СОШ №1 г.Воткинска Колесникова Татьяна Павловна

Первоначальные сведения о свойствах геометрических тел люди нашли, наблюдая о.

Первоначальные сведения о свойствах геометрических тел люди нашли, наблюдая окружающий мир и в результате практической деятельности. Со временем ученые заметили, что некоторые свойства геометрических тел можно выводить из других свойств путем рассуждения.
Так возникли теоремы и доказательства.

Начальные сведения о свойствах тел вращения относятся ко времени зарождения г.

Начальные сведения о свойствах тел вращения относятся ко времени зарождения геометрии как будущей математической науки. Еще за тысячи лет до наших времен земледельцы пытались хотя бы приблизительно узнать о собранном урожае, вычисляя размеры куч зерна и тех емкостей, где зерно сохраняли.

В связи с развитием мореплавании были нужны астрономические наблюдения, что з.

В связи с развитием мореплавании были нужны астрономические наблюдения, что заставляло человека изучать свойства шара и его частей. Длительное время зависимости между геометрическими величинами, с помощью которых производились различные вычисления, употреблялись как некоторые практические правила, без должного обоснования.

Уже в 7 в. до н.э. в Греции начали накапливаться знания в области, стереометр.

Уже в 7 в. до н.э. в Греции начали накапливаться знания в области, стереометрии, вырабатывались приемы математических рассуждений.

В области геометрии египтяне знали точные формулы для площади прямоугол.

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как

эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику. Площадь круга вычислялась, исходя из предположения
=3,1605

(погрешность менее 1 %).
Египтяне знали точные формулы для объёма параллелепипеда и различных цилиндрических тел, а также пирамиды и усечённой пирамиды. Пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле:

Цилиндр, шар и сфера – слова греческого происхождения, конус – латинское слов.

Начали формироваться общие представления о пространственных фигурах и способа.

Начали формироваться общие представления о пространственных фигурах и способах доказательства их свойств. Важная роль в изложении сведений по стереометрии в определенной логической последовательности принадлежит греческому математику Евклиду
( 3 в. до н.э. ), автору известного научного сочинения " Начала ", состоящему из 13 книг.

Имя Евклида упоминается в первом из двух писем Архимеда к Досифею «О шаре и ц.

Аполлоний Пергский древнегреческий математик и астроном, ученик Ев.

Другой знаменитый древнегреческий математик Архимед ( 3 в. до н.э. ) Боковая.

Объём цилиндра в полтора раза больше объёма вписанного в него шара.

Формулу вычисления объёма конуса даёт Герон Александрийский. великий физик.

Формулу вычисления объёма конуса даёт Герон Александрийский.
великий физик, математик, механик и инженер древней Греции. Жил предположительно в I-II
века до нашей эры в Александрии Египетской.
Много работ Герона Александрийского было посвящено Математике. Больше всего в его работах формул по геометрии, задач по вычислению геометрических фигур. Так же здесь описывается и знаменитая формула Герона, с помощью которой можно вычислить площадь треугольника по трем сторонам. Надо отметить, что открыл эту формулу все-таки Архимед, а не Герон. Большинство формул приведенных Героном Александрийским в своих книгах приводятся без всяких доказательств, только с примерами.

Труды Евклида и Архимеда после их перевода на арабский язык, а с арабского на.

Труды Евклида и Архимеда после их перевода на арабский язык, а с арабского на латинский проникают в Европу и создают основу для составления учебников для средних школ.

Сейчас мы знаем, что аналитически объём может быть выражен с помощью инте.

Сейчас мы знаем, что аналитически объём может быть выражен с помощью интегралов.

Исторически происходило так, что задолго до создания интегрального исчисления операция интегрирования фактически применялась к вычислению объёмов некоторых тел вращения, чем и была подготовлена почва для развития интегрального исчисления в 17-18 веках.
.

Жозеф Луи Лагранж (Joseph Louis Lagrange) Даты жизни: 25 января 1736 – 1.


Жозеф Луи Лагранж
(Joseph Louis Lagrange)
Даты жизни: 25 января 1736 – 10 апреля 1813
Лагранж родился в Турине. Из-за материальных затруднений семьи он был вынужден рано начать самостоятельную жизнь. Сначала Лагранж заинтересовался филологией. Его отец хотел, чтобы сын стал адвокатом, и поэтому определил его в Туринский университет. Но в руки Лагранжа случайно попал трактат по математической оптике, и он почувствовал своё настоящее призвание.
В 1755 году Лагранж послал Эйлеру свою работу об изопериметрических свойствах, ставших впоследствии основой вариационного исчисления. В этой работе он решил ряд задач, которые сам Эйлер не смог одолеть.

В середине 18 века Эйлер и Лагранж свободно владели двойным и тройным интегралами. В 1756 году Лагранж выразил с их помощью объёмы цилиндрических тел и площади криволинейных поверхностей

Эйлер Леонард 15 апреля 1707 года - 18 сентября 1783 года Родился в.

Эйлер Леонард
15 апреля 1707 года - 18 сентября 1783 года
Родился в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под руководством
Я. Бернулли), а в 1720-1724 годы в Базельском университете, где слушал лекции по математике
И. Бернулли.
В конце 1726 года Эйлер был приглашен в Петербургскую АН и в мае 1727 года приехал в Петербург. В только что организованной Петром 1 академии Эйлер нашёл благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Эйлер подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он очень быстро изучил русский язык.


За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер.

Эйлер оставил важнейшие труды по самым различным отраслям математики, механик.

Эйлер значительно продвинул аналитическую геометрию, особенно уче.

Эйлер значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввёл понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К. Ф. Гаусса по внутренней геометрии поверхностей. Эйлер занимался и отдельными вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках.
Эйлера-математика нередко характеризуют как гениального "вычислителя". Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид. Однако Эйлер был не только исключительной силы "вычислителем". Он внёс в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.

Слайды и текст этой презентации

История изучения тел вращенияВыполнила: учитель математики высшей категории МБОУ СОШ №1 г.Воткинска Колесникова Татьяна Павловна

История изучения тел вращения

Выполнила:
учитель математики высшей категории МБОУ СОШ №1 г.Воткинска Колесникова Татьяна Павловна

Первоначальные сведения о свойствах геометрических тел люди нашли, наблюдая окружающий мир и в результате практической деятельности. Со

Первоначальные сведения о свойствах геометрических тел люди нашли, наблюдая окружающий мир и в результате практической деятельности. Со временем ученые заметили, что некоторые свойства геометрических тел можно выводить из других свойств путем рассуждения.
Так возникли теоремы и доказательства.

Начальные сведения о свойствах тел вращения относятся ко времени зарождения геометрии как будущей математической науки. Еще за

Начальные сведения о свойствах тел вращения относятся ко времени зарождения геометрии как будущей математической науки. Еще за тысячи лет до наших времен земледельцы пытались хотя бы приблизительно узнать о собранном урожае, вычисляя размеры куч зерна и тех емкостей, где зерно сохраняли.

В связи с развитием мореплавании были нужны астрономические наблюдения, что заставляло человека изучать свойства шара и его

В связи с развитием мореплавании были нужны астрономические наблюдения, что заставляло человека изучать свойства шара и его частей. Длительное время зависимости между геометрическими величинами, с помощью которых производились различные вычисления, употреблялись как некоторые практические правила, без должного обоснования.

Уже в 7 в. до н.э. в Греции начали накапливаться знания в области, стереометрии, вырабатывались приемы математических

Уже в 7 в. до н.э. в Греции начали накапливаться знания в области, стереометрии, вырабатывались приемы математических рассуждений.

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь

В области геометрии египтяне знали точные формулы для площади прямоугольника, треугольника и трапеции. Площадь произвольного четырёхугольника со сторонами a, b, c, d вычислялась приближённо как

эта грубая формула даёт приемлемую точность, если фигура близка к прямоугольнику. Площадь круга вычислялась, исходя из предположения
=3,1605

(погрешность менее 1 %).
Египтяне знали точные формулы для объёма параллелепипеда и различных цилиндрических тел, а также пирамиды и усечённой пирамиды. Пусть мы имеем правильную усечённую пирамиду со стороной нижнего основания a, верхнего b и высотой h; тогда объём вычислялся по оригинальной, но точной формуле:

Цилиндр, шар и сфера – слова греческого происхождения, конус – латинское слово, заимствованное из греческого.В переводе на

Начали формироваться общие представления о пространственных фигурах и способах доказательства их свойств. Важная роль в изложении сведений

Начали формироваться общие представления о пространственных фигурах и способах доказательства их свойств. Важная роль в изложении сведений по стереометрии в определенной логической последовательности принадлежит греческому математику Евклиду
( 3 в. до н.э. ), автору известного научного сочинения " Начала ", состоящему из 13 книг.

Аполлоний Пергский древнегреческий математик и астроном, ученик Евклида дал полное изложение

Другой знаменитый древнегреческий математик Архимед ( 3 в. до н.э. ) Боковая поверхность цилиндра, конуса, объёмы шара

Объём цилиндра в полтора раза больше объёма вписанного в него шара.

Формулу вычисления объёма конуса даёт Герон Александрийский. великий физик, математик, механик и инженер древней Греции. Жил предположительно

Формулу вычисления объёма конуса даёт Герон Александрийский.

великий физик, математик, механик и инженер древней Греции. Жил предположительно в I-II
века до нашей эры в Александрии Египетской.
Много работ Герона Александрийского было посвящено Математике. Больше всего в его работах формул по геометрии, задач по вычислению геометрических фигур. Так же здесь описывается и знаменитая формула Герона, с помощью которой можно вычислить площадь треугольника по трем сторонам. Надо отметить, что открыл эту формулу все-таки Архимед, а не Герон. Большинство формул приведенных Героном Александрийским в своих книгах приводятся без всяких доказательств, только с примерами.

Содержание математических трудов Герона догматично, правила чаще всего не выводятся, а поясняются на примерах. Это сближает труды Герона с работами математиков Древнего Египта и Вавилона

Труды Евклида и Архимеда после их перевода на арабский язык, а с арабского на латинский проникают в

Труды Евклида и Архимеда после их перевода на арабский язык, а с арабского на латинский проникают в Европу и создают основу для составления учебников для средних школ.

Сейчас мы знаем, что аналитически объём может быть выражен с помощью интегралов. Исторически происходило

Сейчас мы знаем, что аналитически объём может быть выражен с помощью интегралов.

Исторически происходило так, что задолго до создания интегрального исчисления операция интегрирования фактически применялась к вычислению объёмов некоторых тел вращения, чем и была подготовлена почва для развития интегрального исчисления в 17-18 веках.
.

Жозеф Луи Лагранж (Joseph Louis Lagrange) Даты жизни: 25 января 1736 – 10 апреля 1813


Жозеф Луи Лагранж
(Joseph Louis Lagrange)
Даты жизни: 25 января 1736 – 10 апреля 1813
Лагранж родился в Турине. Из-за материальных затруднений семьи он был вынужден рано начать самостоятельную жизнь. Сначала Лагранж заинтересовался филологией. Его отец хотел, чтобы сын стал адвокатом, и поэтому определил его в Туринский университет. Но в руки Лагранжа случайно попал трактат по математической оптике, и он почувствовал своё настоящее призвание.
В 1755 году Лагранж послал Эйлеру свою работу об изопериметрических свойствах, ставших впоследствии основой вариационного исчисления. В этой работе он решил ряд задач, которые сам Эйлер не смог одолеть.

В середине 18 века Эйлер и Лагранж свободно владели двойным и тройным интегралами. В 1756 году Лагранж выразил с их помощью объёмы цилиндрических тел и площади криволинейных поверхностей

Эйлер Леонард15 апреля 1707 года - 18 сентября 1783 года Родился в семье

Эйлер Леонард
15 апреля 1707 года - 18 сентября 1783 года
Родился в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под руководством
Я. Бернулли), а в 1720-1724 годы в Базельском университете, где слушал лекции по математике
И. Бернулли.
В конце 1726 года Эйлер был приглашен в Петербургскую АН и в мае 1727 года приехал в Петербург. В только что организованной Петром 1 академии Эйлер нашёл благоприятные условия для научной деятельности, что позволило ему сразу же приступить к занятиям математикой и механикой. За 14 лет первого петербургского периода жизни Эйлер подготовил к печати около 80 трудов и опубликовал свыше 50. В Петербурге он очень быстро изучил русский язык.

За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер.

Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук.

Эйлер значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка.

Эйлер значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввёл понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К. Ф. Гаусса по внутренней геометрии поверхностей. Эйлер занимался и отдельными вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках.
Эйлера-математика нередко характеризуют как гениального "вычислителя". Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид. Однако Эйлер был не только исключительной силы "вычислителем". Он внёс в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.


Тема: Тела вращения в быту Проект выполнила : Студентка 14 -НК Линькова А.А.


Актуальность темы: расширяет знания в области геометрии позволяет узнать о геометрических фигурах, которые встречаются в быту архитекторы создают проекты с использованием форм тел вращения.



Задачи: Узнать историю появление тел вращения Распространение тел вращения в быту Использование тел вращения в архитектуре


Тела вращения — объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости. Тела вращения — объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.


История создания: Первоначальные сведений о свойствах геометрических фигур люди нашли, наблюдая за окружающим миром и в практической деятельности. Позже ученые заметили, что некоторые свойства тел можно выводить путем рассуждения. Так возникли теоремы и доказательства.


В связи с развитием мореплавании были нужны астрономические наблюдения, что заставляло человека изучать свойства шара.


Уже в 7 в. до нашей эры в Греции начали накапливаться знания в области стереометрии.


Начали формироваться представления о пространственных фигурах и доказательства их свойств. Важную роль в исследовании стереометрии внес греческий математик Евклид. Начали формироваться представления о пространственных фигурах и доказательства их свойств. Важную роль в исследовании стереометрии внес греческий математик Евклид.



Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает. Шар — геометрическое тело; совокупность всех точек пространства, находящихся от центра на расстоянии, не больше заданного. Шар образуется вращением полукруга около его неподвижного диаметра. Этот диаметр называется осью шара, а оба конца указанного диаметра — полюсами шара. Поверхность шара называется сферой: замкнутый шар включает эту сферу, открытый шар — исключает.


Свойства шара Шар является открытым множеством в топологии, порождённой метрикой. Замкнутый шар — замкнутым множеством в топологии, порождённой метрикой. По определению такой топологии открытые шары с центрами в любой точке являют собой её базу.


Формула вычисления объема шара: Площадь поверхности шара:


Геометрическая фигура шар встречается в быту. Например, футбольный мяч, елочная игрушка, глобус, надувной круг. Геометрическая фигура шар встречается в быту. Например, футбольный мяч, елочная игрушка, глобус, надувной круг.



Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.


Свойства цилиндра: Если плоскость основания цилиндра параллельна плоскости направляющей, то граница этого основания будет по форме совпадать с направляющей кривой.




Геометрическая фигура цилиндр встречается в быту. Например, свеча, кастрюля, чашка



Конус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Конус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Свойства конуса: Все образующие конуса равны. Углы наклона образующих к основанию равны. Углы между осью и образующими равны. Углы между осью и основанием прямые.


Свойства конуса: Все образующие конуса равны. Углы наклона образующих к основанию равны. Углы между осью и образующими равны. Углы между осью и основанием прямые.


Площадь боковой поверхности конуса вычисляется по формуле: Площадь боковой поверхности конуса вычисляется по формуле: S(бок.)=πRl, где R — радиус конуса, l — образующая конуса. Площадь основания конуса вычисляется по формуле S(полн.) = S(бок.) + S(круга) = S(круга) =πR2. Площадь полной поверхности конуса вычисляется по формуле S(полн.) =S(бок.) +S(круга) =πRl+πR2. Объём конуса вычисляют по формуле V = 13⋅H⋅ S(круга) = πR2⋅H3



Геометрическая фигура конус встречается и в быту. Например, мороженное, детская пирамида, елка.


Вывод Знание геометрических фигур не только расширяет кругозор человека , но и применяются в разных областях человеческой деятельности. Во многих профессиях они просто необходимы. Например, профессия архитектор, который занимается организацией пространства, разрабатывает сложнейшие чертежи зданий с необычной формой. Конструктор , который занимается технологическим проектированием , разрабатывает конструкции различного назначения и форм. И этот список можно перечислять долго . Из выше сказанного , можно сделать вывод, что знание геометрических фигур очень важно для человека .

Читайте также: