Свойства потенциальных сил кратко

Обновлено: 02.07.2024

Простейшие и знакомые явления повседневности объясняет классическая механика. Отдельные теории в физике применяются, считаются в целом верными для сфер с разнообразными системами, но при установленных дополнительных ограничениях (не могут иметь всеобъемлющего проявления).

Классическая механика в границах областей исследования верна при условиях:

  • размеры объектов значительно превышают размеры атомов;
  • скорости перемещений намного существеннее отстают от скорости света;
  • гравитационное взаимодействие слабое, силы малы.

Ньютоновская механика определяет класс полей, обладающих общими свойствами. Потенциал – возможная величина, характеризующая поле силой (векторные поля), которая осуществляет работу. Потенциальным называется стационарное силовое поле, в нем работа сил поля на пути промежду двух точек не зависит от формы пути, а определяется только началом и концом расположения этих точек. Консервативные силы имеют постоянные направление и модуль (скорость, ускорение, направление перемещения не влияют). В таком поле работают потенциальные усилия, а система считается замкнутой, сумма внешних воздействий равна нулю. Cила – мера взаимодействия тел (векторная). Масса – инерционное свойство объекта (скаляр). Материя существует в виде полей.

Виды консервативных сил

работа консервативных сил

Свойством консервативности обладают: сила упругости, тяжести, гравитационная сила, электростатическое взаимодействие и другие центральные. Для этих систем свойственно – работа cил при перемещении по замкнутому контуру равняется нулю. При упругих деформациях пружина возвращает свое исходное состояние по прекращению воздействия (работа =0). Если работают лишь консервативные силы, энергия общая механическая при этом не изменяется.

Потенциальные силы зависят только от положения взаимодействующих тел. Объекты притягиваются или отталкиваются. Положение точки отсчета 0 произвольное, выбирается в зависимости от задачи. Разные поля имеют различные начальные уровни потенциальной энергии. В однородном поле тяжести – от поверхности, для гравитационных полей – от далёких точек, для деформации упругости – от начального недеформированного состояния.

Сила тяжести

Еще до конца XVI в. Галилео Галилей изучал свободное падение тел под влиянием притяжения Земли. При устранении сопротивления воздуха разные тела достигают поверхности с одинаковым ускорением g, которое округленно является константой. Потенциальную энергию считают от поверхности Земли. Работа определяет изменение с противоположным знаком энергии тела.

Работа консервативных сил (тяжести) зависит только от координат двух точек пути, при замкнутом контуре = 0.

Планета Земля не круглая, а приплюснута, как груша, на полюсах. Расстояния до центра Земли от поверхности разные, поэтому ускорение на полюсах побольше, чем на экваторе. Меньшим оно будет на большей высоте над Землей. Принято усредненное число 9,81 м/с2. Притяжение к Земле вблизи ее поверхности (тяжесть) – проявление силы всемирного тяготения (гравитации).

Сила упругости

В деформируемом теле появляется сила упругости, как отклик внутренних взаимодействий частей в строении вещества. Наглядный пример – деформация растяжения или сжатия пружины. При упругих изменениях (деформациях) тело возвращает свои изначальные размеры состояния покоя по окончании действия внешней силы. При небольших смещениях x по формуле Гука упругость пропорциональна абсолютному удлинению и определяется:


Работа с полем упругой силы равна


, при движении тела из равновесия зависит только от удлинения пружины в конце, если в начале она была не деформирована. Поле упругости – консервативно.

Сила гравитации

Ньютон в 1682 году открыл Закон всемирного тяготения, объясняющий движение планет. Фундаментальный закон силы тяготения был сформулирован при решении обратной задачи по движению спутника Земли Луны.

Гравитационное силовое поле притяжения порождает массивное тело. Между телами, обладающими массой, есть только силы гравитационного притяжения. Гравитация действует на массы, но массы самостоятельно не совершат ничего.

Силы зависят только от массы и расстояния в квадрате между объектами.

F = G * (Mm/R2), где G= 6,67430(15)·10 −11 м³/(кг·с²) - гравитационная постоянная.

Закон приблизительно справедлив для тел со значительно меньшими скоростями (к световой) и малой силой тяготения. Для сил гравитации в масштабах космоса, пространства и времени лишь спустя 2 века родилась теория относительности Эйнштейна.

Вектор силы тяготения, которая действует на тело через влияния других тел, равен сумме векторов сил

Сила электростатического взаимодействия

Электрическим полем называется особый вид материи, воздействующий на заряженные частицы и тела. Давно замечено свойство янтаря или эбонитовой палочки притягивать мелкие бумажки, предметы. При трении тела наэлектризовываются, приобретают электрические заряды, так, например, при печати прилипают листы бумаги в принтерах. Существует два типа зарядов: положительные и отрицательные. Одноименные заряды отталкиваются, а разные притягиваются.

Электрические заряды – источники поля, они не сами действуют, а создают электрическое поле, которое и передает их действие. Неподвижные заряды взаимодействуют с силой, нарастающей при увеличении зарядов и уменьшающейся с квадратичным ростом расстояния между ними. Закон Кулона для вакуума с двумя точечными зарядами похож на закон тяготения масс, но у последнего только сила притяжения.

Центральные кулоновские силы находятся на прямой линии, соединяющей точки центров зарядов. В потенциальных центральных полях равна 0 работа силы по замкнутой линии.

Неконсервативные силы

неконсервативные силы

Поле не является потенциальным, а в нем неконсервативные силы, если не выполняется основное условие консервативности. Работа сил сопротивления воздуха и трения (не 0) будет тем больше, чем длиннее путь движения, она всегда отрицательна.

Трением добывают огонь благодаря преобразованию энергии в тепловую.

Сила трения

Направление трения противоположно скорости, работа — отрицательна и сумма не 0. Трение приводит к передаче части энергии от движения тела к движениям внутренним (тепловым молекул). Трение нагревает тело, но внутреннюю энергию тел и ее изменения не учитывают в классической механике.

Воздействие трения — неконсервативное. Длинный путь потребует больше работы для преодоления сопротивления движению. Но, если учитывать в системе все тела, трущиеся рядом, то она будет замкнутой, все усилия станут консервативными.

Сила сопротивления воздуха


Сопротивление F зависит от плотности среды — p, от площади сечения тела перпендикулярно направлению движения — S, от квадрата скорости движения — U и от угла атаки, наклона пластины к потоку.

Почему неконсервативных сил не существует?

Энергия не возникает и не пропадает. Для потенциальных сил справедливо сохранение энергии. Трение нагревает тело, а температура – показатель энергии внутри объекта. При трении разгоняются молекулы, увеличивается их мощь движения, но механика не учитывает это состояние. Если включить в состав системы дополнительно все контактируемые трущиеся соседние объекты, силы станут консервативными, а область действия замкнутой.

Трение создает сопротивление, направление его противоположно движению, работа этой силы по пути отрицательная (не 0). Энергия при этом теряется, рассеивается. Она не исчезает, а превращается в другой вид. Для неконсервативных сил невозможно определить потенциальную энергию системы.

Многообразна окружающая действительность происходящими процессами. Но для решения возникшей задачи при построении ее модели невозможно учесть все влияния, поэтому выделяется главное и важное с ограничениями, что-то упрощается или вовсе не рассматривается. Так исследования сил, действующих на расстоянии в различных точках пространства (гравитационное и электростатическое взаимодействия), объяснили многие явления, но и определили новые вопросы и парадоксы.

Если в каждой точке простран­ства на помещенную туда частицу действует сила, то го­ворят, что частица находится в поле сил. Так, напри­мер, частица может находиться в поле сил тяжести, в по­ле упругих сил, в поле сил сопротивления (в потоке жид­кости, газа) и т. д.

Существуют силовые поля, в которых работа, совершае­мая над частицей силами поля, не зависит от пути меж­ду точками 1и 2.Силы, обладающие таким свойством, называют консервативными или потенциальными. Очевидно, что для потенциальных сил выполняется равенство:

где A1a2 - работа при перемещении точки из положения 1 в 2 по траектории 1- a- 2 в стационарном поле (рис. 3.1), A1b2 - вдоль траектории 1-b-2. Изменение направления движения точки вдоль траектории на проти­воположное вызывает изменение знака работы потенциальной силы, так как величина Fs в выражении (3.2) меняет свой знак, т.е. , Поэтому,, т.е. при перемещении материальной точки вдоль любой замкнутой траектории работа потенциальной силы тождественно равна нулю.


Примерами потенциальных сил могут служить силы всемир­ного тяготения, силы упругости, силы электростатического взаимодействия между заряженными телами.

Силы, не являющиеся потенциальными, называют непотенциальными. К числу непотенциальных сил относятся, например, силы трения и сопротивления. Работа этих сил зависит от пути между начальным и конечным положениями частицы и не рав­на нулю на любом замкнутом пути.

Потенциальная энергия частицы - это энергия, которая зависит только от ее положения относительно других частиц или тел, с которыми данная частица взаимодействует. Изменение положения частицы в поле сопровождается изменением ее потенциальной энергии, которое определяется совершаемой работой. Потенциальная энергия частицы убывает, если работа перемещения совершается силами самого поля и возрастает, если частица перемещается против сил поля на величину совершаемой работы внешними (сторонними) силами. С учетом сказанного изменение потенциальной энергии частицы, которая перемещается в поле потенциальных сил из точки 1в точку 2, можно представить в виде:

uде- работа перемещения частицы из точки 1 в точку 2, и- радиус-векторы точек 1 и 2 соответственно, и потенциальная энергия частицы соответственно в точках 1 и 2. Выражение справа есть разность значений потенциальной энер­гии частицы в начальной и конечной точках пути. Разность потенциальной энергии U в конечной и начальной точках есть приращение ΔU. Тогда (3.11) можно представить в виде:

A12 = – ΔU , (3.12)

Из соотношения (3.12) видно, что работа потенциальных сил, действующих на частицу, равна убыли ее потенциальной энергии. При бесконечно малом перемещении частицы элементарная работа перемещения будет равна элементарному приращению потенциальной энергии частицы со знаком минус:

dA = –dU. (3.13)

Представим элементарное перемещение частицы в формуле (3.1) для элементарной работы dA, совершаемой силами поля, через приращения декартовых координат:

Тогда (3.1) примет вид согласно правилу скалярного произведения:

С другой стороны, согласно (3.13) элементарная работа равна убыли (–) потенциальной энергии, которая в декартовом пространстве является функцией координат (x, y, z). Представив приращение dU по формуле для полного дифференциала функции от нескольких переменных, перепишем равенство (3.15) в виде:

Сопоставляя (3.15) и (3.16), получим:

Формулы (3.17) определяют проекции вектора силы на координатные оси. Вектор силы в этом случае определяется соотношением:

Выражение, стоящее в скобках называют градиентом потенциальной энергии U и обозначают grad U .Поэтому

Формула (3-18) означает, что сила поля равна градиенту со знаком минус по­тенциальной энергиичастицы в данной точке поля. Эта формула дает возможность, зная функцию U определить поле сил .

Кинетическая энергия системы равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

Если в каждой точке простран­ства на помещенную туда частицу действует сила, то го­ворят, что частица находится в поле сил. Так, напри­мер, частица может находиться в поле сил тяжести, в по­ле упругих сил, в поле сил сопротивления (в потоке жид­кости, газа) и т. д.




Существуют силовые поля, в которых работа, совершае­мая над частицей силами поля, не зависит от пути меж­ду точками 1и 2.Силы, обладающие таким свойством, называют консервативными или потенциальными. Очевидно, что для потенциальных сил выполняется равенство:

где A1a2 - работа при перемещении точки из положения 1 в 2 по траектории 1- a- 2 в стационарном поле (рис. 3.1), A1b2 - вдоль траектории 1-b-2. Изменение направления движения точки вдоль траектории на проти­воположное вызывает изменение знака работы потенциальной силы, так как величина Fs в выражении (3.2) меняет свой знак, т.е. , Поэтому,, т.е. при перемещении материальной точки вдоль любой замкнутой траектории работа потенциальной силы тождественно равна нулю.


Примерами потенциальных сил могут служить силы всемир­ного тяготения, силы упругости, силы электростатического взаимодействия между заряженными телами.

Силы, не являющиеся потенциальными, называют непотенциальными. К числу непотенциальных сил относятся, например, силы трения и сопротивления. Работа этих сил зависит от пути между начальным и конечным положениями частицы и не рав­на нулю на любом замкнутом пути.

Потенциальная энергия частицы - это энергия, которая зависит только от ее положения относительно других частиц или тел, с которыми данная частица взаимодействует. Изменение положения частицы в поле сопровождается изменением ее потенциальной энергии, которое определяется совершаемой работой. Потенциальная энергия частицы убывает, если работа перемещения совершается силами самого поля и возрастает, если частица перемещается против сил поля на величину совершаемой работы внешними (сторонними) силами. С учетом сказанного изменение потенциальной энергии частицы, которая перемещается в поле потенциальных сил из точки 1в точку 2, можно представить в виде:

uде- работа перемещения частицы из точки 1 в точку 2, и- радиус-векторы точек 1 и 2 соответственно, и потенциальная энергия частицы соответственно в точках 1 и 2. Выражение справа есть разность значений потенциальной энер­гии частицы в начальной и конечной точках пути. Разность потенциальной энергии U в конечной и начальной точках есть приращение ΔU. Тогда (3.11) можно представить в виде:

A12 = – ΔU , (3.12)

Из соотношения (3.12) видно, что работа потенциальных сил, действующих на частицу, равна убыли ее потенциальной энергии. При бесконечно малом перемещении частицы элементарная работа перемещения будет равна элементарному приращению потенциальной энергии частицы со знаком минус:

dA = –dU. (3.13)

Представим элементарное перемещение частицы в формуле (3.1) для элементарной работы dA, совершаемой силами поля, через приращения декартовых координат:

Тогда (3.1) примет вид согласно правилу скалярного произведения:

С другой стороны, согласно (3.13) элементарная работа равна убыли (–) потенциальной энергии, которая в декартовом пространстве является функцией координат (x, y, z). Представив приращение dU по формуле для полного дифференциала функции от нескольких переменных, перепишем равенство (3.15) в виде:

Сопоставляя (3.15) и (3.16), получим:

Формулы (3.17) определяют проекции вектора силы на координатные оси. Вектор силы в этом случае определяется соотношением:

Выражение, стоящее в скобках называют градиентом потенциальной энергии U и обозначают grad U .Поэтому

Формула (3-18) означает, что сила поля равна градиенту со знаком минус по­тенциальной энергиичастицы в данной точке поля. Эта формула дает возможность, зная функцию U определить поле сил .


Из этого видеоурока ребята узнают, как найти работу силы тяжести и силы упругости. Познакомятся с консервативными силами и их основным свойством. А также узнают, что такое нулевой уровень потенциальной энергии и как он выбирается.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Работа потенциальных сил"

Итак, мы уже с вами знаем, что любое состояние тела (или системы тел) характеризуется его координатами и скоростью. И если изменяется хотя бы одна из этих величин, то говорят, что изменилось механическое состояние тела. Количественно механическое состояние системы и её изменение характеризуется механической энергией. Напомним, что механическая энергия — это физическая величина, являющаяся функцией состояния системы и характеризующая её способность совершать работу.

Так же мы с вами говорили о том, что в механике принято выделять два вида механической энергии: кинетическую и потенциальную.

Кинетической энергией обладает любое движущееся тело. А её изменение равно работе равнодействующей всех сил, действующих на него. При этом не важно, какие силы действуют на тело: сила упругости, сила трения или сила тяжести. Теорема о кинетической энергии справедлива всегда.

Потенциальная энергия — это энергия, обусловленная взаимным расположением тел или частей тела друг относительно друга и характером сил взаимодействия между ними.

Её изменение тоже равно работе. Однако эта работа будет зависть от того, какие силы действуют на тело.

Итак, пусть у нас есть материальная точка массой т, которая под действием силы тяжести перемещается с высоты h1 до высоты h2. При этом будем считать, что данные высоты намного меньше радиуса Земли, чтобы действующая на материальную точку сила тяжести была постоянной.


Тогда работа, совершаемая этой силой при перемещении тела с одного уровня на другой, будет равна произведению модуля вектора силы тяжести на модуль вектора перемещения точки и на косинус угла между этими двумя векторами.

A = mgr|cosα.

A = mg(h1 – h2) = mgh1 – mgh2.

Теперь давайте с вами найдём работу силы тяжести при подъёме материальной точки с высоты h1 до высоты h2 над поверхностью Земли.


Запишем формулу для работы силы тяжести в общем виде:

A = mgr|cosα.

Модуль перемещения, как и в предыдущем случае, равен разности в конечном и начальном положениях точки:

Δr = h2 h1.

Но теперь векторы силы тяжести и перемещения направлены в противоположные стороны. Значит, угол между этими двумя векторами составляет 180 о . А сos180 o = –1. Перепишем формулу для работы с учётом наших рассуждений:

A = mgh1 mgh2.

Как видим, мы с вами получили точно такое же выражение для работы силы тяжести, что и в предыдущем случае.

И давайте ещё раз определим работу силы тяжести, но для случая, когда тело переходит с одной высоты на другую не по вертикали.


Обозначив угол между направлением вектора силы и вектора перемещения через α, запишем формулу для работы силы тяжести в общем виде:

A = mgr|cosα.

Для определения перемещения точки воспользуемся получившимся прямоугольником треугольником ΔMKN, в котором гипотенуза — это искомое перемещение, а один из острых углов — это наш угол между вектором силы и вектором перемещения. Тогда очевидно, что произведение модуля вектора перемещения на косинус угла альфа равно длине прилежащего к углу катета МК:

MK =r|cosα.

С другой же стороны

Тогда получается, что работа силы тяжести вновь определяется той же формулой, что и в предыдущих двух случаях:

A = mgh1 mgh2.

Отсюда следует главный вывод о том, что работа силы тяжести не зависит от того, по какой траектории движется материальная точка и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях точки.

Тогда становится очевидным, что в случае движения точки по замкнутой траектории работа силы тяжести будет равна нулю, так как начальное и конечное положения точки совпадают.

Силы, работа которых не зависит от формы траектории точки приложения силы и которые на замкнутой траектории равны нулю, называются потенциальными или консервативными силами. Значит, сила тяжести — это консервативная сила.

Теперь давайте найдём формулу для работы, совершаемой силой упругости. Для этого рассмотрим механическую систему, состоящую из пружины и прикреплённого к ней шарика, через который проде́т тонкий металлический стержень, по которому шарик может свободно скользить практически без трения. Так как действующая на шар сила тяжести уравновешивается силой нормальной реакции стержня, то вся система находится в состоянии равновесия.


Направим координатную ось ОХ параллельно стержню, а за начало отсчёта примем центр тяжести шара в положении равновесия. Теперь отведём шар от положения равновесия на некоторое расстояние. Пружина при этом растянется и в ней возникнет сила упругости, модуль которой будет определяться на основании закона Гука:

Если мы теперь отпустим шарик, то он за счёт совершения работы силой упругости придёт в движение. Предположим, что шар переместился так, что его координата стала равной x2, а модуль силы упругости — F2 = kx2. Тогда модуль перемещения шарика будет равен разности между его начальной и конечной координатой:

Так как сила упругости является переменной силой, то для нахождения совершённой ею работы воспользуемся графиком зависимости модуля силы упругости от координаты шара.

Как нам уже известно, работа силы численно равна площади под графиком силы. В нашем случае это площадь трапеции, основаниями которой являются силы упругости пружины в начальном и конечном состояниях, а высота — это перемещение тела:



Из полученной нами формулы следует, что работа силы упругости пружины зависит только от координат её конца в начальном и конечном состояниях. То есть она не зависит от формы траектории. Тогда становится очевидным, что если начальное и конечное состояния пружины совпадают, то работа силы упругости будет равна нулю. Следовательно, сила упругости, как и сила тяжести, является потенциальной (или консервативной) силой.

На прошлом уроке мы с вами ввели понятие потенциальной энергии, которая определяется взаимным расположением тел или частей тела друг относительно друга.

Введя понятие потенциальной энергии, мы с вами получаем возможность выразить работу любых консервативных сил через изменение потенциальной энергии. Напомним, что под изменением величины понимают разность между её конечным и начальным значениями:

Тогда для работы силы тяжести и силы упругости можно записать, что изменение потенциальной энергии материальной точки равно работе консервативной силы, взятой с обратным знаком:

Таким образом, работа консервативных сил определяет не саму потенциальную энергию точки, а её изменение. И лишь это изменение в механике имеет физический смысл. Поэтому можно произвольно выбрать состояние системы, в котором её потенциальная энергия считается равной нулю. Этому состоянию соответствует нулевой уровень отсчёта потенциальной энергии. Его выбор диктуется условиями конкретной задачи.

Для примера решим с вами такую задачу. Бревно цилиндрической формы массой 400 кг, длиной 4 м и диаметром основания 50 см лежит на земле. Какую минимальную работу необходимо совершить, чтобы это бревно поставить в вертикальное положение? Ускорение свободного падения примем равным 10 м/с 2 .

В физике консервати́вные си́лы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует следующее определение: консервативные силы — такие силы, работа по любой замкнутой траектории которых равна 0.

Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

Для консервативных сил выполняются следующие тождества:

  • = 0" width="" height="" />
    — ротор консервативных сил равен 0;
  • d\vec> = 0 " width="" height="" />
    — работа консервативных сил по произвольному замкнутому контуру равна 0;
  • = - \nabla U " width="" height="" />
    — консервативная сила является градиентом некой скалярной функцииU , называемой силовой. Эта функция равна потенциальной энергии взятой с обратным знаком.

В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила Архимеда, сила упругости. Примерами неконсервативных сил являются сила трения и сила сопротивления.

В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия).

Wikimedia Foundation . 2010 .

Смотреть что такое "Потенциальные силы" в других словарях:

ПОТЕНЦИАЛЬНЫЕ СИЛЫ — силы, работа которых зависит только от начального и конечного положения точек их приложения и не зависит ни от вида траекторий, ни от закона движения этих точек … Большой Энциклопедический словарь

ПОТЕНЦИАЛЬНЫЕ СИЛЫ — поле сил заданное в области Q конфигурационного пространства как градиент скалярной ф ции: где (обобщённые) координаты, U(q) потенциальная энергия. Работа П. с. по любому замкнутому контуру в Q, стягиваемому в точку, равна нулю. Признаком… … Физическая энциклопедия

потенциальные силы — силы, работа которых зависит только от начального и конечного положения точек их приложения и не зависит ни от вида траекторий, ни от закона движения этих точек. * * * ПОТЕНЦИАЛЬНЫЕ СИЛЫ ПОТЕНЦИАЛЬНЫЕ СИЛЫ, силы, работа которых зависит только от… … Энциклопедический словарь

Потенциальные силы — силы, работа которых зависит только от начального и конечного положения точек их приложения и не зависит ни от вида траекторий, ни от закона движения этих точек (см. Силовое поле) … Большая советская энциклопедия

ПОТЕНЦИАЛЬНЫЕ СИЛЫ — силы, работа к рых зависит только от начального и конечного положения точек их приложения и не зависит ни от вида траекторий, ни от закона движения этих точек … Естествознание. Энциклопедический словарь

ПОТЕНЦИАЛЬНЫЕ СИЛЫ — консервативные силы, силы, работа к рых зависит только от нач. и конечного положений точки их приложения и не зависит ни от вида траектории этой точки, ни от закона её движения. Работа П. с. вдоль произвольной замкнутой траектории всегда равна 0 … Большой энциклопедический политехнический словарь

Потенциальные силы — (см. Потенциал) силы, работа которых зависит только от начального и конечного положения точек траектории движения и не зависит от самой траектории и закона движения по траектории; называется также консервативной силой … Начала современного естествознания

Потенциальные сверхдержавы — Современные государства, которые являются или могут стать сверхдержавами в 21 веке. Список государств … Википедия

Консервативные силы (физика) — В физике консервативные силы (потенциальные силы) силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил)[1]. Отсюда следует определение: консервативные силы такие силы, работа которых по… … Википедия

Консервативные силы — В физике консервативные силы (потенциальные силы) силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует следующее определение: консервативные силы такие силы, работа по… … Википедия

Читайте также: