Свет это волна или частица кратко

Обновлено: 03.07.2024

Говорят, что свет это волна. Но волна это например волны на воде, или звуковые волны. В этих случаях есть колебающаяся среда, тоесть волна распространяется в чём-то. Но свет то может распространяться в вакууме, где ничего нет. По определению волна это распространяющиеся колебания среды. (Ну ок, определения могут быть разными) Ну вот смотрите. Вот свет распространяется в вакууме. Но среды там нет, так что среда колебаться не может. Значит колебаться может только сам свет. Получается свет это волна, а волна это колебания света. А свет это волна. Тоесть свет это колебания света. Тоесть свет это колебания колебаний света. Тоесть свет это колебания колебаний колебаний колебаний колебаний колебаний колебаний. Крч заколебаться можно.
И ещё. На воде волны могут быть, а могут и не быть. В воздухе звуковые колебания могут быть, а могут и не быть. Но при этом ни вода, ни воздух никуда не исчезнут. А может ли быть свет без волн? Или без частоты и длины волны? Просто свет. Безо всяких колебаний.. Как-бы если в свете что-то колеблется, то оно может и не колебаться, а свет никуда не исчезнет..
И ещё. Волна на воде - это чередование повышенных и пониженных высот уровня воды, правильно? Волна в воздухе или где ещё - это чередование повышенной и пониженной плотности. Волна в свете это чередование. Чего? Повышенный свет - понять можно - чем больше фотонов, тем он повышенней. Но пониженный свет.
На воде в волне вода выше и ниже уровня воды. В воздухе в волне плотность выше и ниже средней плотности воздуха. Соответственно, в свете что-то должно быть выше и ниже нормы. Но ведь свет может быть в вакууме, а что может быть ниже вакуума? Это ж вакуум.
Ну ладно, положим норма это не ноль, а минимум это ноль, тогда ниже нуля уже не будет. Но уж хотябы должен же быть свет без колебаний, также как может быть текущая вода без волн. Она движется, но волн нет..

Свет - это электромагнитное излучение. Под колебаниями понимают колебания электромагнитного поля. Однако электромагнитное поле - это не среда, в которой распространяется свет и другое электромагнитное излучение. Поле - это и есть суть явления.

Можно привести такую аналогию (не забывая при этом, что все аналогии ложны):

Представим себе туго натянутое полотно. Затем снизу давим рукой на это полотно. При взгляде сверху, мы увидим некое уплотнение, горбик. Перемещаем руку - уплотнение перемещается. Убираем руку - уплотнение пропадает. В принципе никто нам не мешает двигать рукой согласно некоторому гармоническому закону. Уплотнение будет перемещаться аналогично, выпячиваться, увеличивать и уменьшать амплитуду и т.д. Будет частота, длина "волны", все, как полагается.

Теперь, чтобы приблизить нашу аналогию к реальности, делаем следующее. Пусть у нас есть некий наблюдатель, который регистрирует производимые нами колебания на поверхности полотна. Но при этом он не видит нашу руку под полотном. И самого полотна тоже не видит. Все что он регистрирует - колебания. Вот примерно так дело и обстоит. Мы видим и можем регистрировать колебания. Частота этих колебаний определяет характер электромагнитного излучения (видимый свет, УФ-диапазон, гамма-излучение и т.д.). Но носителя колебаний - этакой "руки" - нет. Среды, которая колеблется, т.е. аналога полотна, тоже нет.

А если копнуть чуть глубже, то оказывается, что даже движения волны нет. Про свет нельзя сказать, что он, к примеру, начал двигаться на поверхности Солнца, и спустя 8 мин долетел до Земли. По факту соответствующая электромагнитная волна существует на всем протяжении от Солнца до Земли, а распространяется лишь ее фронт. Примерно как движутся уплотнения на полотне из примера выше. Только со скоростью света, конечно. И сразу во всех направлениях. Если в какой-то момент фронт волны сталкивается с частицей (например, попадает в какой-то детектор, в глаз или просто на какой-то предмет), то происходит декогеренция и свет "оказывается" именно в этой точке из всего фронта. Кстати, по этой же причине на свет нельзя посмотреть сбоку.

И несколько вопросов прокомментирую:

Значит колебаться может только сам свет.

Колеблется электромагнитное поле. И эти колебания и есть то, что мы регистрируем как электромагнитное излучение, в том числе видимый свет.

А может ли быть свет без волн? Или без частоты и длины волны? Просто свет. Безо всяких колебаний

Не может по определению. Кроме того, аналогия ложна. В воде колеблются частицы воды. Звуковые колебания - это чередующиеся уплотнения и разряжения молекул воздуха. В случае электромагнитного поля носителей колебаний нет. Отсутствие колебаний электромагнитного поля означает отсутствие электромагнитного излучения.

Волна в свете это чередование. Чего? Повышенный свет - понять можно - чем больше фотонов, тем он повышенней.

С точки зрения классической физики, электромагнитное излучение - это периодическое изменение напряженности электрического и магнитного полей. Фотонов при этом больше не становится. И меньше тоже. Изменяются характеристики поля.

Соответственно, в свете что-то должно быть выше и ниже нормы. Но ведь свет может быть в вакууме, а что может быть ниже вакуума? Это ж вакуум.

Вопрос лишен смысла. Вакуум никак не связан с напряженностью электромагнитного поля.

С античных времен философы задумывались о том, что такое свет и какова его природа. Аристотель, Платон, Пифагор и другие мыслители высказывали свои предположения, но их идеи в наше время кажутся просто наивными.

Как начали изучать свет?

Настоящее изучение структуры света началось с изобретения увеличительных линз и телескопов. В 17 веке крупные ученые того времени начали детально исследовать структуру света опираясь на открытия дифракции, дисперсии и интерференции.

Крупнейший ученый 17-18 веков Исаак Ньютон высказал предположение, что свет представляет собой поток мельчайших частиц (корпускул) распространяющихся с очень большой скоростью.

Его идея прекрасно описывала прямолинейное распространение света и его дисперсию. Он полагал, что частицы разного цвета имеют различные размеры - самыми большими являются красные, минимальные размеры у фиолетовых корпускул. Смешение различных частиц дает белый цвет, который можно разложить с помощью призмы. Отражение света Ньютон объяснял отскакиванием частиц от поверхности твердого тела. Ученый полностью не отвергал волновую природу света, но все же возражал против нее с помощью нехитрого аргумента - если свет волна, то почему он не проходит сквозь изогнутую трубку, как это успешно делают звуковые волны.

В то же время голландский ученый Христиан Гюйгенс и научный противник Ньютона англичанин Роберт Гук сходились во мнении, что свет имеет волновую природу и распространяется в особой универсальной среде именуемой эфиром. По мнению Гюйгенса, каждый участок эфира способен возбуждать вторичные световые волны, что прекрасно помогало описать такие явления как интерференция (перераспределение минимумов и максимумов освещенности) и дифракцию (отклонение движения луча света от прямой).

Корпускулы или волны?

Некоторое время корпускулярная и волновая теория боролись между собой, причем первая имела даже больше сторонников - сказывался почти непререкаемый авторитет Ньютона. Однако Юнг и Френель успешно дорабатывали положения волновой теории, которая стала завоевывать все больше сторонников.

В 60-70-х годах 19 века показалось, что корпускулярной теории света нанесен окончательный удар - англичанин Джеймс Максвелл создал систему уравнений описывающую электромагнетизм. Поскольку световые волны распространялись с той же скоростью, что и электромагнитные волны, было решено, что свет имеет исключительно волновую структуру.

Абсолютно неожиданным явилось изучение прохождение одиночного фотона через две узких щели расположенные рядом (двойную щель), используемую для изучения волновых свойств света.

На экране ошарашив экспериментаторов появилась интерференционная картина с ее минимумами и максимумами. Получалось невероятное - квант света перед двойной щелью распался на 2 части и прошел через обе щели. Но этого то и не могло быть ни в коем случае - фотон представляет собой единственный квант, который не делим по определению. А вот для волн проблемы с интерференционной картинкой при прохождении двойной щели не появляется - она просто обязана быть.

Корпускулярно-волновой дуализм

Поскольку противоречия между корпускулярной и волновой природой света оказались неразрешимы, оставалось признать, что он обладает как корпускулярной, так и волновой структурой. Название такой структуре дали корпускулярно-волновой дуализм света .

Самое оригинальное, что свои свойства свет проявляет в зависимости от проводимого эксперимента. В большинстве физических явлений он ведет себя как волна, а в фотоэффекте, эффекте Комптона и некоторых других физических явлениях он демонстрирует свои корпускулярные свойства.

Позднее было доказано, что не только фотоны, но и иные микрочастицы обладают корпускулярно-волновым дуализмом. В 1948 году физик из СССР В. Фабрикант экспериментально подтвердил волновые свойства электрона. Позднее они были обнаружены у протонов, нейтронов и даже атомов. В 2013 году зафиксировали дифракцию (а это волновое свойство) молекулы содержащей больше 800 атомов.

Итак, кто же был прав - Ньютон или Гюйгенс с Гуком? Получается, что по своему правы были оба - и только объединение их теорий дает относительно полную картину природы света.

А сейчас ответим на вопрос вынесенный в заглавие статьи.

На протяжении истории человечество задумывалось о природе такого явления, как свет. С древних времен и до наших дней представления о нем менялись и совершенствовались. Наиболее популярные гипотезы склонялись к тому, что свет - это частица или волна. Раздел современной науки, изучающий природу и поведение света, называется оптикой.

История развития представлений о свете

Согласно представлениям древнегреческих философов, например, Аристотеля, свет – это лучи, исходящие из глаз человека. Через эфир, прозрачную субстанцию, заполняющую пространство, эти лучи распространяются, позволяя человеку видеть предметы.

Вам будет интересно: История и гибель лайнера "Нормандия" (Normandie)

Другой философ, Платон, высказал предположение, что источником света на Земле является Солнце.


Философ и математик Пифагор полагал, что из предметов вылетают крошечные частицы. Попадая в глаз человека, они дают нам представление о внешнем виде этих предметов.

Несмотря на кажущуюся наивность, данные гипотезы заложили основу для дальнейшего развития мысли.

Так, в XVII веке немецкий ученый Иоганн Кеплер высказал теорию, близкую к представлениям Платона и Пифагора. По его мнению, свет – частица, или точнее, поток частиц, распространяющийся от какого-либо источника.

Корпускулярная гипотеза Ньютона

Ученый Исаак Ньютон выдвинул теорию, объединившую до некоторой степени противоречивые представления о данном явлении.


Согласно гипотезе Ньютона, свет – частица, скорость перемещения которой очень велика. Корпускулы распространяются в однородной среде, двигаясь равномерно и прямолинейно от источника света. Если поток этих частиц попадает в глаз, то человек наблюдает его источник.

По мнению ученого, корпускулы имели неодинаковые размеры, давая ощущения различных цветов. Например, крупные частицы способствуют тому, что человек видит красный цвет. Явления отражения потока света он аргументировал отскоком частиц от твердой преграды.

Белый цвет ученый объяснил сочетанием всех цветов спектра. На этом заключении построена его теория дисперсии – явления, обнаруженного им в 1666 году.

Гипотезы Ньютона нашли большое признание среди его современников, объясняя многие оптические явления.

Волновая теория Гюйгенса

Другой ученый того же времени, Христиан Гюйгенс, не согласился с тем, что свет – частица. Он выдвинул волновую гипотезу природы света.

Гюйгенс полагал, что все пространство между предметами и в самих предметах заполнено эфиром, а световое излучение – это импульсы, волны, распространяющиеся в этом эфире. Каждый участок эфира, до которого доходит световая волна, становится источником, так называемых вторичных волн. Опыты по интерференции и дифракции света подтвердили возможность волнового объяснения природы света.

Теория Гюйгенса не получила большого признания в его время, так как большинство ученых склонны были считать свет частицей. Однако она была впоследствии принята и доработана многими учеными, например, Юнгом и Френелем.

Дальнейшее развитие представлений

Вопрос, что такое свет в физике, продолжал занимать умы ученых. В XIX веке Джеймс Клерк Максвелл разработал теорию, согласно которой световое излучение – это высокочастотные электромагнитные волны. Его представления основывались на факте, что скорость распространения света в вакууме равняется скорости распространения электромагнитных волн.

В 1900 году Макс Планк ввел в науку термин "квант", переводящийся как "порция", "небольшое количество". Согласно Планку, излучение электромагнитных волн происходит не непрерывно, а порционно, квантами.

Эти представления развил Альберт Эйнштейн. Он высказал мнение, что свет не только излучается, но также поглощается и распространяется частицами. Для их обозначения он использовал слово "фотоны" (термин впервые предложен Гилбертом Льюисом).


Корпускулярно-волновой дуализм

Современное объяснение природы света лежит в понятии корпускулярно-волнового дуализма. Суть данного явления состоит в том, что материи могут проявлять свойства и волны, и частицы. Свет является примером такой материи. Исследования ученых, пришедших к, казалось бы, противоположным мнениям, являются подтверждением двойственной природы света. В одно и то же время свет – частица и волна. Степень выраженности каждого из этих свойств зависит от конкретных физических условий. В определенных случаях свет проявляет свойства электромагнитной волны, подтверждая волновую теорию своего происхождения, в иных случаях, свет - это поток корпускул (фотонов). Это дает основания заявить, что свет – частица.

Свет стал первой материей в истории физики, у которой признали наличие корпускулярно-волнового дуализма. В дальнейшем это свойство было обнаружено еще у ряда материй, например, волновое поведение наблюдается у молекул и нуклонов.


Подводя итог, можно сказать, что свет – уникальное явление, история развития представлений о котором насчитывает более двух тысяч лет. Согласно современному понимаю данного явления, свет обладает двойственной природой, проявляя свойства и волн, и частиц.


Раздел физики, в котором изучается свет, носит название оптика.

Свет может рассматриваться либо как электромагнитная волна, скорость распространения в вакууме которой постоянна, либо как поток фотонов — частиц, обладающих определённой энергией, импульсом, собственным моментом импульса и нулевой массой.

Содержание

Характеристики света

Одной из характеристик света является его цвет, который для монохроматического излучения определяется длиной волны, а для сложного излучения — его спектральным составом.

Свет может распространяться даже в отсутствие вещества, то есть в вакууме. При этом наличие вещества влияет на скорость распространения света.

Скорость света в вакууме с = 299 792 458 м/с (точно, так как с 1983 года единица длины в СИ — метр — определяется как расстояние, проходимое светом за определённый промежуток времени).

Свет на границе между средами испытывает преломление и отражение. Распространяясь в среде, свет поглощается веществом и рассеивается. Оптические свойства среды характеризуются показателем преломления, действительная часть которого равна отношению фазовой скорости света в вакууме к фазовой скорости света в данной среде, мнимая часть описывает поглощение света. В изотропных средах, где распространение света не зависит от направления, показатель преломления является скалярной функцией (в общем случае — от времени и координаты); в анизотропных средах он представляется в виде тензора. Зависимость показателя преломления от длины волны света (дисперсия) приводит к тому, что свет разных длин волн распространяется в среде с разной скоростью; благодаря этому возможно разложение немонохроматического света (например, белого) в спектр.

Как любая электромагнитная волна, свет может быть поляризованным. У линейно поляризованного света определена плоскость (т.н. плоскость поляризации), в которой происходят колебания электрического вектора волны. У циркулярно поляризованного света электрический вектор, в зависимости от направления поляризации, вращается по или против часовой стрелки. Неполяризованный свет является смесью световых волн со случайными направлениями поляризации. Поляризованный свет может быть выделен из неполяризованного пропусканием через поляризатор или отражением/прохождением на границе раздела сред при падении на границу под определённым углом, зависящим от показателей преломления сред (см. угол Брюстера). Некоторые среды могут вращать плоскость поляризации проходящего света, причём угол поворота зависит от концентрации оптически активного вещества; это явление используется, в частности, в поляриметрическом анализе веществ (например, для измерения концентрации сахара в растворе).

Количественно интенсивность света характеризуют с помощью фотометрических величин нескольких видов. К основным из них относятся энергетические и световые величины. Первые из них характеризуют свет безотносительно к свойствам человеческого зрения. Они выражаются в единицах энергии или мощности, а также производных от них. К энергетическим величинам в частности относятся энергия излучения, поток излучения, сила излучения, энергетическая яркость, энергетическая светимость и облучённость.

Каждой энергетической величине соответствует аналог – световая фотометрическая величина. Световые величины отличаются от энергетических тем, что оценивают свет по его способности вызывать у человека зрительные ощущения. Световыми аналогами перечисленных выше энергетических величин являются световая энергия, световой поток, сила света, яркость, светимость и освещённость.

Учёт световыми величинами зависимости зрительных ощущений от длины волны света приводит к тому, что при одних и тех же значениях, например, энергии, перенесённой зелёным и фиолетовым светом, световая энергия, перенесённая в первом случае, будет существенно выше, чем во втором. Такой результат находится в полном согласии с тем, что чувствительность человеческого глаза к зелёному свету выше, чем к фиолетовому.

Скорость света

Скорость света в вакууме определяется в точности 299792458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр в настоящее время определяется в терминах скорости света. Все виды электромагнитного излучения, как полагают двигаются с точно такой же скоростью в вакууме.

Различные физики пытались измерить скорость света на протяжении всей истории. Галилей пытался измерить скорость света в семнадцатом веке. Ранний эксперимент по измерению скорости света был проведен Оле Рёмером, датским физиком, в 1676 году. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио. Отмечая различия в очевидной период орбиты Ио, он подсчитал, что свету требуется около 22 минут, чтобы пересечь диаметр орбиты Земли. [2] Тем не менее, её размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227000000 м/с.

Другой, более точный способ, измерения скорости света выполнил в Европе Ипполит Физо в 1849 году. Физо направлен луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который путешествовал от источника к зеркалу и затем возвращаося к своему источнику. Физо обнаружил, что при определенной скорости вращения, луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света 313000000 м/с.

Леон Фуко использовал эксперимент, который использовал вращающееся зеркало, чтобы получить значение 298000000 м/с в 1862 году. Альберт А. Майкельсон проводил эксперименты на определение скорости света с 1877 г. до своей смерти в 1931 году. Он улучшил метод Фуко в 1926 году с использованием усовершенствованных вращающихся зеркал для измерения времени которое потребовалось свету, чтобы попутешествовать с горы Уилсон до горы Сан - Антонио в Калифорнии. Точные измерения дали скоростью 299796000 м/с.

Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 того, что в вакууме. Тем не менее, замедление процессов в веществе, как полагают, происходит не от фактического замедления частицы света, а от их поглощения и переизлучения заряженными частиц в веществе.

Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось "полностью остановить" свет, пропуская ее через конденсат Бозе-Эйнштейна на основе рубидия, [3] Тем не менее слово "остановить" в этих экспериментах относится только к свету, хранящемуся в возбужденных состояниях атомов, а затем повторно излучается в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет "остановился", он перестал быть светом.


Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.

Оптические свойства света

Изучение света и взаимодействия света и материи называют оптикой. Наблюдение и изучение оптических явлений, таких как радуга и северное сияние позволяют пролить свет на природу света.

Преломление



Пример преломления света. Соломка кажется изогнутой, из-за преломления света, поскольку это входит в жидкость из воздуха.

Преломлением света называется изменение направления распространения света (световых лучей) при прохождении через границу раздела двух различных прозрачных сред. Оно описывается законом Снеллиуса:

n_1\sin\theta_1 = n_2\sin\theta_2\,

где — угол между лучом и нормалью к поверхности в первой среде, — угол между лучом и нормалью к поверхности во второй среде,а и – показатели преломления первой и второй среды соответственно. При этом для вакуума и в случае прозрачных сред.

Когда луч света пересекает границу между вакуумом и другой средой, или между двумя различными средами, длина волны света изменяется, но частота остается неизменной. Если луч света не является ортогональным (или, скорее, нормальным) к границе, изменение длины волны приводит к изменению направления луча. Такое изменение направления и является преломлением света.

Преломление света линзами часто используется для такого управления светом, при котором изменяется видимый размер изображения, как например в лупах, очках, контактных линзах, микроскопах и телескопах.

Источники света

Свет создаётся во многих физических процессах, в которых участвуют заряженные частицы. Наиболее важным является тепловое излучение, имеющее непрерывный спектр с максимумом, зависящим от температуры источника. В частности, излучение Солнца близко к тепловому излучению абсолютно чёрного тела, нагретого до примерно 6000 К , причём около 40 % солнечного излучения лежит в видимом диапазоне, а максимум распределения мощности по спектру находится вблизи 550 нм (зелёный цвет). Другие процессы, являющиеся источниками света:

  • переходы в электронных оболочках атомов и молекул с одного уровня на другой (эти процессы дают линейчатый спектр и включают в себя как спонтанное излучение — в газоразрядных лампах, светодиодах и т. п. — так и вынужденное излучение в лазерах);
  • процессы, связанные с ускорением и торможением заряженных частиц (синхротронное излучение, циклотронное излучение, тормозное излучение); при движении заряженной частицы со скоростью, превышающей фазовую скорость света в данной среде;
  • различные виды люминесценции: (в живых организмах она носит название биолюминесценция) и фосфоресценция
  • сцинтилляция

В прикладных науках важна точная характеристика спектра источника света. Особенно важны следующие типы источников:

Указанные источники имеют разную цветовую температуру.

Лампы дневного света выпускают на разные световые диапазоны, в том числе:

  • Лампы белого света (цветовая температура 3500 К),
  • Лампы холодного белого света (цветовая температура 4300 К)

Радиометрия и световые измерения


Спектральные зависимости относительной чувствительности человеческого глаза для дневного (красная линия) и ночного (синяя линия) зрения.

Световые и энергетические величины связаны друг с другом с помощью относительной спектральной световой эффективности монохроматического излучения для дневного зрения [5] , имеющей смысл относительной спектральной чувствительности среднего человеческого глаза, адаптированного к дневному зрению. Для монохроматического излучения с длиной волны , соотношение, связывающее произвольную световую величину с соответствующей ей энергетической величиной , в СИ записывается в виде:

X_v(\lambda)= 683 \cdot X_e(\lambda)V(\lambda).

В общем случае, когда ограничений на распределение энергии излучения по спектру не накладывается, это соотношение приобретает вид:

 X_v=683\cdot\int\limits_<380~nm></p>
<p>^X_<e,\lambda>(\lambda)V(\lambda) d\lambda,

где (\lambda)" width="" height="" />
— спектральная плотность энергетической величины , определяемая как отношение величины , приходящейся на малый спектральный интервал, заключённый между и , к ширине этого интервала. Связь световой величины, характеризующей излучение, с соответствующей ей энергетической величиной, выражают также, используя понятие световая эффективность излучения.

Световые величины относятся к классу редуцированных фотометрических величин, к которому принадлежат и другие системы фотометрических величин. Однако, только световые величины узаконены в рамках СИ и только для них в СИ определены специальные единицы измерений.

Давление света

Свет оказывает физическое давление на объекты на своем пути — явление, которое не может быть выведено из уравнений Максвелла, но может быть легко объяснено в корпускулярной теории, когда фотоны соударяются с преградой и передают свой ​​импульс. Давление света равно мощности светового пучка, поделённой на с, скорость света. Из-за величины с, эффект светового давления является незначительным для повседневных объектов. Например, одномилливатная лазерная указка создаёт давление около 3,3 пН. Объект, освещенный таким образом, можно было бы поднять, правда для монеты в 1 пенни на это потребуется около 30 млрд 1-мВт лазерных указок. [6] Тем не менее, в нанометровом масштабе эффект светового давления является более значимым, и использование светового давления для управления механизмами и переключения нанометровых коммутаторов в интегральных схемах является активной областью исследований. [7]

При больших масштабах световое давление может заставить астероиды вращаться быстрее [8] , действуя на их неправильные формы, как на лопасти ветряной мельницы. Возможность сделать солнечные паруса, которые бы ускорили движение космических кораблей в пространстве, также исследуется. [9] [10]

История теорий света в хронологическом порядке

Античные Греция и Рим

В V веке до н. э., Эмпедокл предположил, что всё в мире состоит из четырёх элементов: огня, воздуха, земли и воды. Он считал, что из этих четырёх элементов, богиня Афродита создала человеческий глаз, и зажгла в нём огонь, свечение которого и делало зрение возможным. Для объяснения факта, что тёмной ночью человек видит не так хорошо, как днём, Эмпедокл постулировал взаимодействие между лучами, идущими из глаз и лучами от светящихся источников, таких, как солнце.

Корпускулярная и волновая теории света

Начиная с 17 века научные споры о природе света шли между сторонниками волновой и корпускулярной теорий. Основателем волновой теории можно считать Рене Декарта, который рассматривал свет как возмущения в мировой субстанции - пленуме. Корпускулярную теорию сформулировал Пьер Гассенди и поддержал Исаак Ньютон. Волновую теорию света разрабатывали Роберт Гук и Христиан Гюйгенс. По мнению Гюйгенса световые волны распространяются в особой среде - эфире.

В начале 19 века опыты Томаса Юнга с дифракцией дали убедительные свидетельства в пользу волновой теории. Было открыто, что свет представляет собой поперечные волны и характеризуется поляризацией. Юнг высказал предположение, что разные цвета соответствуют различным длинам волны. В 1817 году свою волновую теорию света изложил в мемуаре для Академии наук Огюстен Френель. После создания теории электромагнетизма свет был идентифицирован, как электромагнитные волны. Победа волновой теории пошатнулась в конце 19 века, когда опыт Майкельсона-Морли не обнаружил эфира. Волны нуждаются в существовании среды, в которой они могли бы распространяться, однако тщательно спланированные эксперименты не подтвердили существование этой среды. Это привело к созданию Альбертом Эйнштейном специальной теории относительности. Природа электромагнитных волн оказалась сложнее, чем просто распространение возмущений в веществе. Рассмотрение задачи о тепловом равновесии абсолютно черного тела со своим излучением Максом Планком привело к появлению идеи об излучении света порциями - световыми квантами, которые получили название фотонов. Анализ явления фотоэффекта Эйнштейном показал, что поглощение световой энергии тоже происходит квантами.

С развитием квантовой механики утвердилась идея Луи де Бройля о корпускулярно-волновом дуализме, по которой свет должен обладать одновременно волновыми свойствами, чем объясняется его способность к дифракции и интерференции, и корпускулярными свойствами, чем объясняется его поглощение и излучение.

Волновая и электромагнитная теории

Свет в специальной теории относительности

Квантовая теория

Корпускулярно-волновой дуализм

Квантовая электродинамика

Восприятие света глазом


Нормированные спектральные зависимости чувствительности колбочек трёх типов. Пунктиром показана светочувствительность палочек.

Видеть окружающий мир мы можем только потому, что существует свет и человек способен его воспринимать. В свою очередь, восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Сетчатка человеческого глаза имеет два типа светочувствительных клеток: палочки и колбочки. Палочки обладают высокой чувствительностью к свету и функционируют в условиях низкой освещённости, отвечая тем самым за ночное зрение. Однако, спектральная зависимость чувствительности у всех палочек одинакова, поэтому палочки не могут обеспечить способность различать цвета. Соответственно, изображение, получаемое с их помощью, бывает только чёрно-белым.

Колбочки имеют относительно низкую чувствительность к воздействию света и обусловливают механизм дневного зрения, действующий только при высоких уровнях освещённости. В то же время, в отличие от палочек, в сетчатке глаза человека имеется не один, а три типа колбочек, отличающихся друг от друга расположением максимумов их спектральных распределений чувствительности. Вследствие этого колбочки поставляют информацию не только об интенсивности света, но и о его спектральном составе. Благодаря такой информации у человека и возникают цветовые ощущения.

Спектральный состав света однозначно определяет его цвет, воспринимаемый человеком. Обратное утверждение, однако, неверно: один и тот же цвет может быть получен различными способами. В случае монохроматического света ситуация упрощается: соответствие между длиной волны света и его цветом становится взаимнооднозначной. Данные о таком соответствии представлены в таблице.

Читайте также: