Строительство зданий в сейсмических районах кратко

Обновлено: 05.07.2024

Согласно п.4.1 СП 14.13330.2018 при проектировании зданий и сооружений надлежит:

При назначении зон пластических деформаций и локальных разрушений следует принимать конструктивные решения, обеспечивающие зданиям или сооружениям живучесть и устойчивость к прогрессирующему обрушению при сейсмических воздействиях. Требования по проектированию зданий и сооружений в целях обеспечения их защиты от прогрессирующего обрушения следует принимать согласно СП 385.1325800.

Не следует применять конструктивные решения, допускающие обрушение сооружения в случае разрушения или недопустимого деформирования одного несущего элемента.

Согласно п.4.2 СП 14.13330.2018 проектирование зданий высотой более 75 м должно осуществляться в соответствии с требованиями действующих нормативных документов.

Расчет конструкций и оснований зданий и сооружений, проектируемых для строительства в сейсмических районах, должен выполняться в соответствии с раделом 5 СП 14.13330.2014.

В соответствии с п.5.1 СП 14.13330.2018 при проектировании гражданских и промышленных зданий и сооружений применяется одноуровневое сейсмическое воздействие.

Согласно п.5.2 уровень сейсмического воздействия определяется по данным ОСР-2016, приведенным в приложении А. Характеристиками уровня сейсмического воздействия являются вероятность реализации в течение 50 лет (или средний период повторяемости) и нормативная сейсмичность в баллах по одной из карт комплекта ОСР-2016.

Сейсмическими называют районы, в которых возможны землетрясения. Сейсмические воздействия относятся к динамическим. Силы землетрясения оцениваются по 12-ти бальной шкале и принимают по картам сейсмического районирования.

Землетрясения силой до 6 баллов не вызывают заметных повреждений в строениях и поэтому практически не учитываются, предъявляя повышенные требования к качеству монтажа. В 7 баллов вызывают трещины и другие повреждения в стенах каменных зданий. В 8 баллов – значительные повреждения и отдельные разрушения, в 9 баллов – сильные разрушения и обвалы зданий. При землетрясениях в 10 баллов строить экономически не целесообразно.

Степень сейсмического воздействия зависит от грунтовых условий. При строительстве на плотных и сухих грунтах сейсмические воздействия ослабевают, а на рыхлых и водонасыщенных грунтах – усиливаются. Неблагоприятны участки с расчлененным рельефом (овраги, обрывистые берега и т.д.).

Сейсмостойкость здания обеспечивается:

· Выбором благоприятной в сейсмическом отношение площадки строительства, конструктивно-планировочной схемы и материалами;

· Применение специальных конструктивных мероприятий;

· Соответствующим расчетом несущих и ограждающих конструкций; особенно высоким качеством выполнения строительно-монтажных работ.

Принципы проектирования сейсмостойких зданий и сооружений:

1. при выборе объемно-планировочных и конструктивных решений необходимо обеспечивать симметричное относительно их главных осей и равномерное в плане распределение масс и жесткостей. Несоблюдение этого условия может привести к интенсивному развитию крутящихся моментов в плане здания и приведение к концентрации усилий на отдельных несущих конструкциях.

2. здание в плане рекомендуется простое очертание (круг, квадрат, прямоугольник). Не рекомендуется возводить пристройки и ассиметрично располагать лестничные клетки.

3. здание большое по площади и со сложным очертанием расчленяют на отдельные блоки с антисейсмическими деформационными швами.

4. основные несущие конструкции должны быть монолитными и однородные. Им придают равнопрочность, так как преждевременный выход из строя слабых узлов и элементов может привести к разрушению здания до исчерпания несущей способности основных конструкций.

5. при проектирования сборных элементов по возможности укрупняют их, тем самым уменьшая количество стыков. Стыки располагают вне зоны максимальных усилий.

6. поскольку величина сейсмических нагрузок зависит от веса здания, стремятся уменьшить вес здания и полезных нагрузок.

Сейсмостойкие здания и сооружения проектируют по:

o жесткой конструктивной схеме из несущих вертикальных элементов (диафрагм), работающих под действием сейсмической нагрузки преимущественно на сдвиг и обладающих малыми деформациями. Способствует затуханию колебаний;

o по гибкой конструктивной схеме из несущих вертикальных элементов, работающих под действием сейсмических толчков преимущественно на изгиб. Снижает сейсмическую нагрузку на здание.

Конструктивные особенности сейсмостойких зданий:

Для зданий повышенной этажности рекомендуют устраивать фундаменты в виде перекрестных лент или сплошных плит.

Хорошей сейсмостойкостью обладают фундаменты круглой формы, которые укладываются на песчано-гравийную подушку, заключенную в цилиндрическую обойму- оболочку. Подушка является амортизатором.

Для сейсмостойких зданий можно применять и свайные фундаменты. Ростверк в пределах отсека устраивают непрерывным, нижним, в одном уровне.




Наружные стены каркасных зданий также устраивают навесными или самонесущими.

При этом при превышение высоты стены 12,9 и 6 соответственно предусматривают конструктивное вертикальное продольное армирование. Процент армирования не менее 0,1%.

Для обеспечения деформаций между колонной и стеной устраивают зазор 20 мм, в местах пересечения поперечных и продольных стен устраивают вертикальные антисейсмические швы на всю высоту стены.

В навесных стенах помимо вертикальных швов предусматривают горизонтальные антисейсмические швы по всей длине стены на уровне низа каждого навесного участка, заполняемые эластичным материалом.

Каменные стены армируют сварными сетками. В каменных зданиях на уровне плит покрытия и верха оконных проемов устраивают антисейсмические пояса. Их выполняют из сборного или монолитного ж/бетона и соединяют с каркасом анкерами. Ширина поясов равна толщине стены, высота не менее 150 мм.

Для восприятия горизонтальных сейсмических нагрузок стыки между плитами армируется каркасом и бетонируется.

Бетонируются стыки ригеля с колонной, плит перекрытия с ригелем с сваркой выпусков арматуры.

9.1.1.Объемно-планировочные решения промышленных зданий

На практике наиболее часто встречаются одноэтажные пол­носборные промышленные здания площадью 3. 20 тыс. м2. Они могут быть бескрановыми или оборудованными мостовыми электрическими кранами. Пролеты зданий составляют 12, 18, 24 и 30 м, шаг колонн 6 и 12 м, высота зданий от 8,4 до 18 м. Масса сборных элементов составляет от 2,5 до 33 т. Здания ха­рактеризуются однотипными ячейками, конструкциями и боль­шими размерами в продольном и поперечном направлениях.


Основные достоинства одноэтажных промышленных зда­ний — относительная дешевизна, возможность применять раз­реженную сетку колонн и передавать нагрузки от технологиче­ского оборудования непосредственно на грунт. Такие здания обычно строят прямоугольного очертания в плане, без перепа­дов высот, с пролетами в одном направлении.


Разработаны универсальные объемно-планировочные и конструктивные решения зданий, которые позволяют приме­нять индустриальные методы монтажа. Установлено ограни­ченное число взаимосочетаний параметров зданий или габаритных схем. Размеры пролетов связаны с определенными высотой и шагом колонн, надкрановыми габаритами. Все эле­менты каркаса, ограждения и покрытия одноэтажных зданий кратны номинальным размерам укрупненных модулей: плани­ровочного — 6 м, высотного — 1,2 м.

Сейсмическими называют районы, в которых возможны землетрясения. Сейсмические воздействия относятся к динамическим. Силы землетрясения оцениваются по 12-ти бальной шкале и принимают по картам сейсмического районирования.

Землетрясения силой до 6 баллов не вызывают заметных повреждений в строениях и поэтому практически не учитываются, предъявляя повышенные требования к качеству монтажа. В 7 баллов вызывают трещины и другие повреждения в стенах каменных зданий. В 8 баллов – значительные повреждения и отдельные разрушения, в 9 баллов – сильные разрушения и обвалы зданий. При землетрясениях в 10 баллов строить экономически не целесообразно.

Степень сейсмического воздействия зависит от грунтовых условий. При строительстве на плотных и сухих грунтах сейсмические воздействия ослабевают, а на рыхлых и водонасыщенных грунтах – усиливаются. Неблагоприятны участки с расчлененным рельефом (овраги, обрывистые берега и т.д.).

Сейсмостойкость здания обеспечивается:

· Выбором благоприятной в сейсмическом отношение площадки строительства, конструктивно-планировочной схемы и материалами;

· Применение специальных конструктивных мероприятий;

· Соответствующим расчетом несущих и ограждающих конструкций; особенно высоким качеством выполнения строительно-монтажных работ.

Принципы проектирования сейсмостойких зданий и сооружений:

1. при выборе объемно-планировочных и конструктивных решений необходимо обеспечивать симметричное относительно их главных осей и равномерное в плане распределение масс и жесткостей. Несоблюдение этого условия может привести к интенсивному развитию крутящихся моментов в плане здания и приведение к концентрации усилий на отдельных несущих конструкциях.

2. здание в плане рекомендуется простое очертание (круг, квадрат, прямоугольник). Не рекомендуется возводить пристройки и ассиметрично располагать лестничные клетки.

3. здание большое по площади и со сложным очертанием расчленяют на отдельные блоки с антисейсмическими деформационными швами.

4. основные несущие конструкции должны быть монолитными и однородные. Им придают равнопрочность, так как преждевременный выход из строя слабых узлов и элементов может привести к разрушению здания до исчерпания несущей способности основных конструкций.

5. при проектирования сборных элементов по возможности укрупняют их, тем самым уменьшая количество стыков. Стыки располагают вне зоны максимальных усилий.

6. поскольку величина сейсмических нагрузок зависит от веса здания, стремятся уменьшить вес здания и полезных нагрузок.

Сейсмостойкие здания и сооружения проектируют по:

o жесткой конструктивной схеме из несущих вертикальных элементов (диафрагм), работающих под действием сейсмической нагрузки преимущественно на сдвиг и обладающих малыми деформациями. Способствует затуханию колебаний;

o по гибкой конструктивной схеме из несущих вертикальных элементов, работающих под действием сейсмических толчков преимущественно на изгиб. Снижает сейсмическую нагрузку на здание.

Конструктивные особенности сейсмостойких зданий:

Для зданий повышенной этажности рекомендуют устраивать фундаменты в виде перекрестных лент или сплошных плит.

Хорошей сейсмостойкостью обладают фундаменты круглой формы, которые укладываются на песчано-гравийную подушку, заключенную в цилиндрическую обойму- оболочку. Подушка является амортизатором.

Для сейсмостойких зданий можно применять и свайные фундаменты. Ростверк в пределах отсека устраивают непрерывным, нижним, в одном уровне.

Наружные стены каркасных зданий также устраивают навесными или самонесущими.

При этом при превышение высоты стены 12,9 и 6 соответственно предусматривают конструктивное вертикальное продольное армирование. Процент армирования не менее 0,1%.

Для обеспечения деформаций между колонной и стеной устраивают зазор 20 мм, в местах пересечения поперечных и продольных стен устраивают вертикальные антисейсмические швы на всю высоту стены.

В навесных стенах помимо вертикальных швов предусматривают горизонтальные антисейсмические швы по всей длине стены на уровне низа каждого навесного участка, заполняемые эластичным материалом.

Каменные стены армируют сварными сетками. В каменных зданиях на уровне плит покрытия и верха оконных проемов устраивают антисейсмические пояса. Их выполняют из сборного или монолитного ж/бетона и соединяют с каркасом анкерами. Ширина поясов равна толщине стены, высота не менее 150 мм.

Для восприятия горизонтальных сейсмических нагрузок стыки между плитами армируется каркасом и бетонируется.

Бетонируются стыки ригеля с колонной, плит перекрытия с ригелем с сваркой выпусков арматуры.

9.1.1.Объемно-планировочные решения промышленных зданий

На практике наиболее часто встречаются одноэтажные пол­носборные промышленные здания площадью 3. 20 тыс. м2. Они могут быть бескрановыми или оборудованными мостовыми электрическими кранами. Пролеты зданий составляют 12, 18, 24 и 30 м, шаг колонн 6 и 12 м, высота зданий от 8,4 до 18 м. Масса сборных элементов составляет от 2,5 до 33 т. Здания ха­рактеризуются однотипными ячейками, конструкциями и боль­шими размерами в продольном и поперечном направлениях.


Основные достоинства одноэтажных промышленных зда­ний — относительная дешевизна, возможность применять раз­реженную сетку колонн и передавать нагрузки от технологиче­ского оборудования непосредственно на грунт. Такие здания обычно строят прямоугольного очертания в плане, без перепа­дов высот, с пролетами в одном направлении.


Разработаны универсальные объемно-планировочные и конструктивные решения зданий, которые позволяют приме­нять индустриальные методы монтажа. Установлено ограни­ченное число взаимосочетаний параметров зданий или габаритных схем. Размеры пролетов связаны с определенными высотой и шагом колонн, надкрановыми габаритами. Все эле­менты каркаса, ограждения и покрытия одноэтажных зданий кратны номинальным размерам укрупненных модулей: плани­ровочного — 6 м, высотного — 1,2 м.

СТРОИТЕЛЬСТВО В СЕЙСМИЧЕСКИХ РАЙОНАХ

Seismic building design code

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ - АО "НИЦ "Строительство" - ЦНИИСК им.В.А.Кучеренко

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте разработчика (Минстрой России) в сети Интернет

Введение

Работа по пересмотру выполнена Центром исследований сейсмостойкости сооружений ЦНИИСК им.В.А.Кучеренко - института ОАО "НИЦ "Строительство" (руководитель работы - д-р техн. наук, член-корр. РАН, проф. Б.В.Гусев; научный руководитель рабочей группы - д-р техн. наук, проф. Я.М.Айзенберг, ответственный исполнитель - инж. А.А.Бубис) при участии рабочей группы в следующем составе: д-р техн. наук, проф. B.C.Беляев, д-р техн. наук, проф. Т.А.Белаш, канд. техн. наук М.А.Клячко, д-р техн. наук, проф. Ю.В.Кривцов, д-р физ.-мат. наук, проф. Ф.Ф.Аптикаев, канд. техн. наук А.В.Грановский, д-р техн. наук, проф. Ю.П.Назаров, канд. техн. наук Л.Н.Смирнова, инж. Г.Н.Юдакова, д-р техн. наук, проф. В.И.Травуш, д-р физ.-мат. наук Р.Э.Татевосян, д-р техн. наук, проф. В.А.Семенов, д-р техн. наук М.И.Богданов, д-р техн. наук, проф. А.М.Уздин, канд. геол.-мин. наук А.Л.Стром, д-р техн. наук, проф. Л.Р.Ставницер, д-р техн. наук, проф. И.Я.Дорман.

Подраздел 6.17 подготовлен при участии д-ра техн. наук, проф. B.C.Беляева, д-ра техн. наук, проф. Т.А.Белаш, канд. техн. наук В.В.Костарева, инж. П.С.Васильева, были использованы разработки канд. техн. наук, доц. В.И.Смирнова.

Подраздел 6.19 подготовлен при участии д-ра техн. наук, проф М.А.Клячко.

Раздел 7 подготовлен д-ром геол.-мин. наук, проф. Г.С.Шестоперовым.

Раздел 8 подготовлен АО "Всероссийский научно-исследовательский институт гидротехники им.Б.Е.Веденеева" (д-р техн. наук Е.Н.Беллендир, д-р техн. наук В.Б.Глаговский, д-р техн. наук А.А.Храпков, канд. техн. наук А.П.Пак, канд. техн. наук М.С.Ламкин) и Центром службы геодезических наблюдений в электроэнергетической отрасли - филиалом АО "Институт Гидропроект" (д-р физ.-мат. наук А.И.Савич, канд. техн. наук В.В.Речицкий, канд. физ.-мат. наук А.Г.Бугаевский, канд. геол.-мин. наук А.Л.Стром).

Раздел 9 подготовлен при участии д-ра техн. наук, проф. Ю.В.Кривцова, канд. техн. наук Д.Г.Пронина, канд. техн. наук В.В.Пивоварова.

Приложение А разработано коллективом авторов в следующем составе: д-р физ.-мат. наук, проф. Ф.Ф.Аптикаев, канд. геол.-мин. наук Ю.М.Вольфман, д-р геол.-мин. наук Н.Н.Гриб, д-р физ.-мат. наук А.А.Гусев, д-р геол.-мин. наук, проф. Г.С.Гусев, Г.Ю.Донцова, д-р геол.-мин. наук, проф. B.C.Имаев, канд. геол.-мин. наук Л.П.Имаева, Б.М.Козьмин, М.С.Кучай, канд. физ.-мат. наук А.И.Лутиков, канд. геол.-мин. наук А.Н.Овсюченко, д-р физ.-мат. наук Б.Г.Пустовитенко, д-р геол.-мин. наук, проф. Е.А.Рогожин, канд. геол.-мин. наук О.П.Смекалин, А.И.Сысолин, д-р физ.-мат. наук, проф. В.И.Уломов, д-р геол.-мин. наук А.В.Чипизубов.

Приложение В подготовлено при участии д-ра техн. наук, проф. B.C.Беляева, д-ра техн. наук, проф. Т.А.Белаш, канд. техн. наук В.В.Костарева, инж. П.С.Васильева, были использованы разработки канд. техн. наук, доц. В.И.Смирнова.

Приложение Г подготовлено при участии инж. Г.Н.Юдаковой.

1 Область применения

Настоящий свод правил устанавливает требования по расчету с учетом сейсмических нагрузок, по объемно-планировочным решениям и конструированию элементов и их соединений, зданий и сооружений, обеспечивающие их сейсмостойкость.

Настоящий свод правил распространяется на проектирование зданий и сооружений на площадках сейсмичностью 7, 8 и 9 баллов.

На площадках, сейсмичность которых превышает 9 баллов, проектирование и строительство зданий и сооружений осуществляются в порядке, установленном уполномоченным федеральным органом исполнительной власти.

Примечание - Разделы 4, 5 и 6 относятся к проектированию жилых, общественных, производственных зданий и сооружений, транспортных и гидротехнических зданий, раздел 7 распространяется на транспортные сооружения, раздел 8 - на гидротехнические сооружения, раздел 9 - на все объекты, при проектировании которых следует предусматривать меры противопожарной защиты.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 30247.0-94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

ГОСТ 30403-2012 Конструкции строительные. Метод испытания на пожарную опасность

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

ГОСТ Р 53292-2009 Огнезащитные составы и вещества для древесины и материалов на ее основе. Общие требования. Методы испытаний

ГОСТ Р 53295-2009 Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности

СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты (с изменением N 1)

СП 15.13330.2012 "СНиП II-22-81* Каменные и армокаменные конструкции" (с изменениями N 1, 2)

СП 20.13330.2016 "СНиП 2.01.07-85* Нагрузки и воздействия"

СП 22.13330.2016 "СНиП 2.02.01-83* Основания зданий и сооружений"

СП 23.13330.2011 "СНиП 2.02.02-85* Основания гидротехнических сооружений"

СП 25.13330.2012 "СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах" (с изменением N 1)

СП 39.13330.2012 "СНиП 2.06.05-84* Плотины из грунтовых материалов"

СП 40.13330.2012 "СНиП 2.06.06-85 Плотины бетонные и железобетонные"

СП 58.13330.2012 "СНиП 33-01-2003 Гидротехнические сооружения. Основные положения" (с изменением N 1)

СП 63.13330.2012 "СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения" (с изменениями N 1, 2)

СП 64.13330.2017 "СНиП II-25-80 Деревянные конструкции"

СП 119.13330.2012 "СНиП 32-01-95 Железные дороги колеи 1520 мм" (с изменением N 1)

СП 120.13330.2012 "СНиП 32-02-2003 Метрополитены" (с изменениями N 1, 2)

СП 122.13330.2012 "СНиП 32-04-97 Тоннели железнодорожные и автодорожные" (с изменением N 1)

СП 268.1325800.2016 Транспортные сооружения в сейсмических районах. Правила проектирования

СП 269.1325800.2016 Транспортные сооружения в сейсмических районах. Правила уточнения исходной сейсмичности и сейсмического микрорайонирования

СП 270.1325800.2016 Транспортные сооружения в сейсмических районах. Правила оценки повреждений дорог при землетрясениях в отдаленных и труднодоступных районах

Примечание - При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования - на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины, определения и сокращения

В настоящем своде правил применены термины по ГОСТ 27751, СП 34.13330, СП 35.13330, СП 119.13330, СП 120.13330, СП 122.13330, а также следующие термины с соответствующими определениями:

3.1 абсолютное движение: Движение точек сооружения, определяемое как сумма переносного и относительного движений во время землетрясения.

3.2 акселерограмма (велосиграмма, сейсмограмма): Зависимость от времени ускорения (скорости, смещения) точки основания или сооружения в процессе землетрясения, имеющая одну, две или три компоненты.

3.3 антисейсмические мероприятия: Совокупность конструктивных и планировочных решений, основанных на выполнении требований, обеспечивающая определенный, регламентированный нормами, уровень сейсмостойкости сооружений.

3.4 динамический метод анализа: Метод расчета на воздействие, задаваемое в виде акселерограмм колебаний грунта в основании сооружения путем численного интегрирования уравнений движения.

3.5 исходная сейсмичность: Сейсмичность района строительства, определяемая для нормативных периодов повторяемости и средних грунтовых условий с помощью общего сейсмического районирования.

3.6 линейно-спектральный метод анализа; ЛСМ: Метод расчета на сейсмостойкость, в котором значения сейсмических нагрузок определяют по коэффициентам динамичности в зависимости от частот и форм собственных колебаний конструкции. Возможность возникновения нелинейных эффектов в конструкциях зданий учитывается введением эмпирических коэффициентов.

3.7 расчетное землетрясение; РЗ: Землетрясение, на действие которого проектируются сечения и элементы здания и сооружения. Интенсивность РЗ принимается с учетом положений настоящего свода правил по картам общего сейсмического районирования ОСР-2015, в необходимых случаях - с учетом сейсмического микрорайонирования. Расчет на действие РЗ выполняется с использованием линейно-спектрального метода, с допущением повреждений ненесущих конструкций и повреждением несущих конструкций, не приводящим к их разрушению и обрушению сооружения или его частей, допускающим ремонт и восстановление сооружения.

3.8 расчетные сейсмические воздействия: Кинематические параметры движения грунта, определяющие возможную интенсивность нагрузочного эффекта от расчетного землетрясения на конкретной площадке строительства и конкретного объекта капитального строительства, применяемые в расчетах сейсмостойкости сооружений (ускорения, скорости, смещения) в уровне основания, а также зависимости изменения таких параметров во времени (акселерограммы, велосиграммы, сейсмограммы и их основные параметры - амплитуда, длительность, спектральный состав). Могут быть выражены как в соответствующих единицах СИ, так и в баллах шкалы MSK-64 с точностью дискретизации 0,1 балла.

3.9 сейсмическая изоляция: Изменение сейсмической реакции здания или сооружения от сейсмических колебаний грунта, достигаемое за счет снижения их взаимодействия и повышения затухания колебаний изолированного сооружения.

3.10 сейсмическая (инерционная) сила, сейсмическая нагрузка: Сила (нагрузка), возникающая в системе "сооружение-основание" при колебаниях основания сооружения во время землетрясения.

3.11 сейсмический район: Район с установленными и возможными очагами землетрясений, вызывающими на площадке строительства сейсмические воздействия интенсивностью 6 баллов и более.

3.12 сейсмическое микрорайонирование; СМР: Оценка влияния свойств грунтов на сейсмические колебания в пределах площадей расположения конкретных сооружений и на территории населенных пунктов. Масштаб карт СМР - 1:50000 и крупнее.

Сейсмостойкое строительство, как правило, осуществляется в регионах, подверженных землетрясениям. Оно заключается в учете сейсмических воздействий на здание при его проектировании.

Следует заметить, что интенсивность землетрясений в разных странах измеряется по-разному. Например, в СССР была принята шкала, в соответствии с которой строения в 7-балльных (и более сейсмичных) регионах должны рассчитываться на сейсмическую нагрузку. В регионах, где прогнозируемая интенсивность землетрясения не превысит 6 баллов допускается возводить обычные здания.

Рисунок 1. Сейсмостойкое строительство. Автор24 — интернет-биржа студенческих работ

Районы сейсмического строительства определяются по картам сейсмического районирования, которые входят в состав нормативной литературы России. Для того, чтобы уточнить сейсмичность конкретной площадки необходимо производить геологические изыскания. Примечательно, что строительство в районах с сейсмичностью 9 баллов и более, весьма неэкономично. В этой связи в российской нормативной литературе сейсмически активные районы ограничены балльностью от 7 до 9.

Полная сохранность здания в случае землетрясения потребует больших затрат, а в некоторых ситуациях будет просто невозможна. Учитывая тот факт, что разрушительные землетрясения происходят довольно редко, современные нормы допускают возможность некоторого повреждения несущих конструкций при стихийном бедствии. При этом данные повреждения не должны представлять угрозы для людей или сохранности оборудования.

Готовые работы на аналогичную тему

Главными задачами сейсмостойкого строительства можно назвать:

  • изучение процесса взаимодействия неустойчивого основания и строительного объекта;
  • оценка разрушительности возможного землетрясения;
  • проектирование, монтаж и поддержание в надлежащем состоянии конструкций сейсмостойких сооружений.

Проектирование сейсмостойких зданий

Степень сейсмического воздействия в большей мере зависит от грунтовых условий. Наиболее благоприятным основанием в данном случае будут являться скальные породы. Сильно выветренные, обводненные или нарушенные геологическими процессами породы неблагоприятны, а иногда и вовсе непригодны для антисейсмического строительства. В случаях, когда на данной площадке возвести здание просто необходимо, прибегают к усилению грунтов основания, а также осуществляют дополнительные мероприятия по сейсмической защите объекта. Это приводит, как уже отмечалось выше, к значительному удорожанию строительства.

Сейсмостойкость здания может быть обеспечена как рациональным подбором участка строительства, так и выбором наилучшей конструктивной схемы здания в период проектирования. Помимо этого, применяются различные конструктивные мероприятия, способные повысить прочность и жесткость каркаса, а также создать возможность развития в некоторых конструкциях пластических деформаций (что в значительной мере увеличит сопротивляемость объекта сейсмическим нагрузкам).

Рисунок 2. Усиление конструкций. Автор24 — интернет-биржа студенческих работ

Правильность подбора той или иной конструкции и сечения ее элементов определяется соответствующим расчетом. Согласно действующей нормативной литературе, расчет объектов на сейсмостойкость должен производиться по несущей способности и предполагать действие сейсмических нагрузок.

Стоит отметить, что точно определить величину сейсмического воздействия на стадии проекта не представляется возможным, поскольку движение земной коры во время землетрясения зависит от множества факторов, оценить которые количественно возможно лишь с определенными допущениями.

Методы и ограничения

На сегодняшний день существует ряд приближенных методов оценки сейсмических нагрузок на сооружения. Широкое распространение в начале XX века получил статический метод. Его суть заключается в определении сейсмических сил с учетом того, что строительный объект представляет собой абсолютно жесткое тело, каждая точка которого имеет сейсмическое ускорение.

Более современным методом является динамический метод. В настоящее время предприняты попытки автоматизировать данный расчет, поэтому сегодня его выполняют специальные программные комплексы. Стоит заметить, что и данный метод предполагает ряд допущений. Их необходимость обусловлена отсутствием необходимой исходной информации о максимальных величинах изменения во времени скорости, ускорения и т.д.

Принимая во внимание приближенный характер некоторых методов расчета и определения сейсмических сил, нормы вводят ряд обязательных ограничений и требований. Они заключаются в ограничении размеров здания в плане и по высоте. Например, кирпичное здание с кладкой 2-ой категории сейсмостойкости, возводимое в районах с 7-балльной сейсмичностью, не должно быть выше 4-х этажей. Для кирпичных и каменных стен определены минимальные размеры толщин простенков и расстояний между стенами, помимо этого рекомендуется возведение дополнительных монолитных поясов и т.д.

Примечательно, что высота зданий, сооружаемых из более прочных материалов и конструкций никак не регламентируется. Так, для каркасных зданий из стали и железобетона не определена максимальная высота.

Величина сейсмических сил, а также все конструктивные требования к зданиям закреплены в соответствующей нормативной литературе и зависят от сейсмичности строительного участка. В большинстве случаев для зданий расчетной сейсмичностью будет являться сейсмичность площадки, на которой будет располагаться данный объект. Что касается особо ответственных сооружений, то их расчетная сейсмичность повышается относительно сейсмичности площадки.


Проектирование и строительство в сейсмичесних районах


Проектирование и строительство в сейсмичесних районах

Характер сейсмических явлений и их воздействия на здания. Сейсмическими называют районы, подвергающиеся воздействию периодически повторяющихся землетрясений. Под землетрясениями обычно принято понимать колебания земной поверхности, вызванные внутриземными процессами. В Советском Союзе к сейсмическим районам относятся Прикарпатье, Крым, Кавказ, республики Средней Азии, Алтай и Саяны, Прибайкалье, Верхоянская зона, Чукотка, Дальний Восток, Сахалин, Камчатка и Курильские острова. Таким образом, в СССР районы, подверженные землетрясениям, захватывают большие пространства от Камчатки и Сахалина на востоке до Крыма и Молдавии на западе. В этих районах ведется большое промышленное и гражданское строительство.

Сила землетрясения оценивается сейсмичностью в баллах по 12-бапльной шкале и определяется по картам сейсмического районирования территории СССР или по списку основных населенных пунктов СССР, расположенных в сейсмических районах. Землетрясения интенсивностью в 6 баллов и менее обычно не причиняют существенного вреда зданиям, в 7…9 баллов приводят к серьезным их повреждениям, а иногда и разрушениям. Поэтому нормы устанавливают специальные требования к проектированию зданий и сооружений, возводимых на участках сейсмичностью 7, 8 и 9 баллов (см. СНиП 11-7—81).

Расчет конструкций и оснований зданий и сооружений, проектируемых для строительства в сейсмических районах, должен выполняться на основные и особые сочетания нагрузок с учетом сейсмических воздействий, которые могут иметь любое направление в пространстве.

Для зданий и сооружений простой геометрической формы расчетные сейсмические нагрузки следует принимать действующими горизонтально в направлении их продольной и поперечной осей и учитывать раздельно. При расчете же сооружений сложной геометрической формы необходимо учитывать наиболее опасные для данной конструкции или ее элементов направления действия сейсмических нагрузок. Вертикальную сейсмическую нагрузку необходимо учитывать при расчете горизонтальных и наклонных консольных конструкций; пролетных строений мостов; рам, арок, ферм, пространственных покрытий зданий и сооружений пролетом 24 м и более; сооружений на устойчивость против опрокидывания или скольжения; каменных конструкций.

Принципы проектирования зданий в сейсмических районах и конструктивные требования к ним. При планировке населенных мест в сейсмических районах крупные строительные зоны следует расчленять незастроенными пространствами (например, полосами зеленых насаждений, площадями, каналами и тому подобными преградами), препятствующими распространению пожаров, а также желательно несколько увеличить ширину улиц и размеры пожарных разрывов между зданиями.

Обеспечение сейсмостойкости зданий и сооружений достигается: выбором благоприятных в сейсмическом отношении площадки строительства, конструктивно-планировочной схемы и материалов; проведением ряда специальных конструктивных мер; соответствующим расчетом конструкций; высоким качеством исполнения строительно-монтажных работ.

При проектировании зданий и сооружений для сейсмических районов необходимо руководствоваться следующими принципами: снижением сейсмических нагрузок путем применения рациональных конструктивных схем, а также облегченных несущих и ограждающих конструкций, обеспечивающих максимальное снижение массы проектируемых зданий и сооружений. Объемно-планировочные и конструктивные решения зданий и сооружений должны удовлетворять условиям симметрии и равномерного распределения масс и жесткостей; в тех случаях, когда по архитектурно-планировочным соображениям нельзя избежать сложного очертания здания в плане, его следует разделять антисейсмическими швами на отсеки простой формы (квадрат, прямоугольник) без входящих углов; фундаменты здания или его отсеков, как правило, надлежит закладывать на одном уровне; при устройстве свайных фундаментов следует отдавать предпочтение железобетонным сваям-стойкам.

В каркасных зданиях и сооружениях конструкцией, воспринимающей горизонтальную сейсмическую нагрузку, может служить каркас с заполнением, вертикальными связями или диафрагмами жесткости.

Узлы железобетонных каркасов необходимо усиливать посредством установки арматурных сеток или замкнутой поперечной арматуры. Диафрагмы и связи, воспринимающие горизонтальную нагрузку, следует устраивать на всю высоту зданий, располагая их симметрично и равномерно. В качестве ограждений каркасных зданий надо применять легкие навесные панели. Кладка заполнения каркаса должна быть связана с его стойками арматурными выпусками. Кладка самонесущих стен должна иметь гибкие связи с каркасом.

Крупнопанельные здания необходимо сооружать преимущественно с продольными и поперечными стенами, воспринимающими сейсмические нагрузки. Их конструкции должны обеспечивать совместную пространственную работу всех стен и перекрытий. Для этого следует панели стен и перекрытия проектировать возможно более крупногабаритными; в соединениях панелей стен и перекрытий предусматривать устройство

уширенных армированных швов, замоноличиваемых бетоном с пониженной усадкой и другими способами; предусматривать по возможности одинаковую жесткость стен, воспринимающих сейсмическую нагрузку. Стеновые панели армируют двойной арматурой в виде пространственных каркасов или сварных сеток. Соединение панелей следует выполнять посредством сварки выпусков рабочей арматуры или специально заделанных анкерных стержней с нанесением слоя антикоррозионной защиты и замоноличива-нием стыков бетоном.

В зданиях с несущими стенами из каменной кладки рекомендуется в пределах отсека конструкцию и материал принимать одинаковыми, простенки и проемы делать одина-,ковой ширины. Конструкции должны воспринимать одновременное действие как горизонтально, так и вертикально направленных сил. В уровне перекрытий необходимо предусматривать устройство антисейсмических поясов (как правило, на всю ширину стены) по всем продольным и поперечным стенам, выполняемых обычно в монолитном железобетоне с непрерывным армированием. В сопряжениях стен необходимо укладывать арматурные сетки.

Сейсмостойкость каменных стен следует повышать включением в них монолитных железобетонных элементов, создающих комплексные конструкции. Вертикальные железобетонные элементы (сердечники) должны соединяться с указанными поясами или обвязками.

С целью максимального снижения массы в покрытиях производственных и общественных зданий с учетом конкретных условий при пролетах 18 м и более необходимо, как правило, применять металлические фермы и алюминиевые панели или стальной профилированный настил. В этих случаях можно применять также асбестоцементные волнистые листы усиленного профиля с эффективным утеплителем. Покрытия и перекрытия зданий должны быть жесткими в горизонтальной плоскости и связанными с вертикальными несущими конструкциями.

Сборные железобетонные перекрытия и покрытия необходимо замоноличивать: устройством железобетонных антисейсмических поясов с заанкериванием в них панелей перекрытий и заливкой швов между панелями цементным раствором; устройством монолитных обвязок с заанкериванием панелей перекрытия в обвязке и применением связей между панелями, воспринимающих сдвигающие усилия; или без устройства таких поясов, но с применением между панелями, а также между панелями и элементами каркаса связей в виде армированных шпонок, выпусков петель, анкеров и др.

Читайте также: