Строение яйцеклетки млекопитающего кратко

Обновлено: 03.07.2024

Млекопитающие. Развитие яйцеклетки у млекопитающих.

Млекопитающие произошли от яйцекладущих предков — рептилий и перешли в процессе эволюции к живорождению. Эмбрион вынашивается в специальном органе материнского организма — матке, где он обеспечивается питательными веществами и кислородом за счет материнского организма.

Органом, осуществляющим связь зародыша с материнским организмом, является плацента. Вследствие того, что в эмбриогенезе млекопитающих отпадает необходимость накопления питательного материала в яйце, возникает небольшая, диаметром 100-200 мкм вторично изолецитальная и олиголецитальная яйцеклетка.

Оплодотворение у плацентарных млекопитающих внутреннее. Дробление зиготы полное, неравномерное, асинхронное, в результате чего вначале возникает скопление бластомеров в виде тутовой ягоды — морулы, или плотного шарика. Последующее дробление приводит к возникновению зародыша с полостью — бластоцисты. В бластоцисте выделяются две части — внутреннюю клеточную массу, или эмбриобласт, и наружный слой клеток — трофобласт. Клетки трофобласта способны секретировать жидкость в полость бластоцисты и взаимодействовать со слизистой оболочкой матки, участвуя в имплантации зародыша.

млекопитающие

Имплантация, или внедрение, зародыша в матку совершается в течение 2-х суток и включает две фазы: прилипание (адгезия) и проникновение (инвазия). Вокруг эмбриобласта рано образуется внезародышевая мезенхима, которая подстилает трофобласт изнутри. Обе структуры ответственны за развитие хориона — ворсинчатой оболочки, которая с участком слизистой оболочки матки формируют плаценту.

Только после имплантации зародыша становятся возможными развитие других внезародышевых органов и переход к гаструляции, гисто- и органогенезу. Развитие желточного мешка, хотя и происходит, функцию питания зародыша он не выполняет. В стенке желточного мешка обнаруживаются первичные половые клетки, стволовые клетки крови, а также сосуды. Амнион, аллантоис и желточный мешок развиваются из клеток эмбриобласта. Амнион появляется до возникновения первичной полоски. С возникновением амниотического пузырька оставшийся материал эмбриобласта расщепляется способом деламинации на наружную — эпибласт, и внутренюю — гипобласт — клеточные массы.

После выделения внезародышевых органов, которые могут обеспечить продолжение развития зародыша, заметно активизируются пролиферативные и миграционные процессы в эпибласте. Они практически аналогичны тем, которые происходят в эпибласте куриного зародыша. Формируются первичная полоска и гензеновский узелок, клетки которых закономерно мигрируют в пространство между эпи- и гипобластом. Так возникает многослойный зародыш, в составе которого далее выделяются эктодерма с нервной пластинкой, хордомезодерма и энтодерма (в головную часть последней встраивается материал прехордальной пластинки). В последующем происходят сегментация и нейруляция.

Таким образом, в развитии позвоночных появлению тканей предшествуют процессы, связанные с дроблением, гаструляцией и обособлением эмбриональных зачатков тканей. Данный временной отрезок можно определить как прогистогенез. После закладки комплекса эмбриональных зачатков тканей начинается период гистогенеза и органогенеза. Осуществляется дифференцировка и специализация клеточного материала эмбриональных зачатков, что составляет основу гистогенеза — возникновения и развития тканей. При этом происходит анатомо-гистологическое формирование практически всех органов, характерных для взрослой особи.

У большинства позвоночных локализация зачатков тканей и органов в составе зародышевых листков и развитие из них конкретных производных совпадает. Так, кожная эктодерма является источником развития кожного эпителия. Нервная трубка содержит стволовые клетки для развития тканевых элементов нервной системы. Из кишечной энтодермы развивается эпителиальная выстилка кишечной трубки, крупные железы пищеварительного тракта (печень, поджелудочная железа). Мезодерма содержит в себе стволовые клетки для большого числа производных — скелетной мышечной ткани (миотомы сомитов), соединительных тканей кожи (дерматомы сомитов), скелетных тканей (склеротомы сомитов) и др. Как правило, развитие большинства тканей и органов не завершается к рождению, а продолжается в постнатальном периоде онтогенеза. Классификация тканей и закономерные процессы развития стволовых клеток зачатков тканей и органов, составляющих суть эмбрионального гисто- и органогенеза, рассматриваются в следующих главах.

Гистогенез протекает и в провизорных органах. Он отличается рядом специфических особенностей, в частности, опережающим развитием тканей внезародышевых оболочек. Несмотря на асинхронность развития тканей зародышевых и внезародышевых органов, тем не менее на всех стадиях развития зародыш является целостным организмом. Взаимосвязь и взаимообусловленность его частей усиливаются по мере повышения структурной организации. Знания общих закономерностей индивидуального развития, филогенетической обусловленности этих процессов у человека позволят будущим врачам приобрести навыки эволюционного подхода к оценке общебиологических явлений, в том числе и патологии, умения применять их для профилактики, диагностики и лечения различных нарушений нормального развития человека.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Краткий обзор ответа. Яйцеклетка – крупная неподвижная клетка, обладающая запасом питательных веществ. Размеры яйцеклетки составляют 150-170 мкм. Яйцеклетка имеет почти правильную округлую форму. В центре клетки имеется ядро, содержащее глыбки гетерохроматина и ядрышки. Цитоплазма равномерно заполнена небольшим количеством желтка. Расположенные вокруг ооцита фолликулярные клетки образуют лучистый венец. Между лучистым венцом и ооцитом находится прозрачная оболочка. Цитоплазма ооцита содержит распределенные равномерно желточные включения. По периферии клетки расположены кортикальные гранулы (производные лизосом).

Основная часть. В яичниках млекопитающих содержатся не яйцеклетки, а их предшественники – ооциты, находящиеся на той или иной стадии деления созревания (мейоз). Но по морфологии поздние ооциты очень похожи на яйцеклетки. В яйцеклетке (ооците) отсутствуют центриоли (клеточный центр), поэтому деление становится возможным только после оплодотворения, когда в клетку поступают центриоли сперматозоида.

Функции питательных веществ различны, их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК)

2) специфические регуляторные вещества, которые контролируют все процессы происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор ответственный за блок мейоза на стадии метафазы II и др;

3) желток, в состав которого входят белки, фосфолипиды, жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.

Оболочки яйцеклетки. Расположенные вокруг ооцита фолликулярные клетки образуют лучистый венец( corona radiata) . Между лучистым венцом и ооцитом находится прозрачная оболочка (zona pellucida). Лучистый венец состоит из рыхло расположенных фолликулярных клеток, сперматозоид легко проникает через этот слой и достигает прозрачной оболочки, которая является существенным барьером на пути сперматозоида.

По мере развития яйцеклетки в ней происходят синтез и последующая секреция гликопротеинов, постепенно формируется прозрачная оболочка. Зрелая прозрачная оболочка содержит густую сеть тонких нитей, состоящих из гликопротеинов. У человека прозрачная оболочка подразделяется на два слоя: внутренний – богатый нейтральными гликозаминогликанами, наружный – содержащий преимущественно кислые гликозаминогликаны. Химический состав прозрачной оболочки: нейтральные и сульфатированные гликозаминогликаны, гиарулонова и сиаловые кислоты, гликопротеины. Основная масса зрелой прозрачной оболочки – гликопртеины ZP. ZP1, ZP2,ZP3 с М 90-110, 64-76 и 57-73 кД соответственно. ZP3 состоит из полипептида, цепей N-олигосахаридов и О-олигосахаридов. ZP3-рецептор сперматозоида, с нее начинается акросомная реакция. ZP2-вторичный рецептор сперматозоида. Как только начинается акросомная реакция, ZP2 олнительно связывает сперматозоид.

Цитоплазма яйцеклетки.Наиболее характерныеструктуры – желточные гранулы. Они обычно ограничены мембраной. Гранулы содержат фосфо- и липопротеины (фосфовитин и липовителлин). В центральной части гранул они формируют более плотные кристаллические структуры. Различают также мультивезикулярные тельца – это совокупность мелких пузырьков, заключенных в большой мембранный мешок (производные лизосом).

Плазматическая мембрана яйцеклетки может образовывать микроворсинки.

Мейоз.

Мейоз - это способ образования клеток с гаплоидным набором хромосом. При мейозе происходит два деления подряд. В интерфазе происходит подготовка клетки к делению, удвоение ДНК. В профазе I происходит конъюгация гомологичных хромосом. Между их хроматидами происходит кроссинговер, это приводит к рекомбинации. В метафазе Iна экваторе клетки выстраиваются биваленты. В анафазе I происходит независимое расхождение гомологичных хромосом к полюсам (третий закон Менделя). В телофазе I мейоза формируются гаплоидные ядра и происходит цитокенез. В интерфаземежду двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные. Второе деление мейоза ничем не отличается от митоза. Как и в митозе, в анафазе II мейоза к полюсам клетки расходятся одинарные сестринские хромосомы.

При мейозе происходят следующие события:

· Генетическая рекомбинация путем кроссинговера между гомологичными хромосомами

· Уменьшение числа хромосом

· Снижение содержания ДНК

· Уменьшение плоидности клеточных потомков

· Значительный синтез РНК

Первое деление мейоза-редукциооное. Профаза I (2n4c)- самая продолжительная и сложная фаза. Происходят последовательно несколько стадий: Лептотена (2n4c). Хроматин конденсируется, каждая хромосома состоит из двух хроматид, соединенных центромерой. Зиготена (2n4c). Стадия сливающихся нитей. Гомологичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют. Контакт позволяет хромосомам обмениваться генетическим материалом (кроссинговер). Две лежащие рядом пары хромосом образуют бивалент. Пахитена(2n4c). Хромосомы утолщаются вследствие спирализации. Отдельные участки конъюгировавших хромосом перекрещиваются друг с другом и образуют хиазмы. Здесь происходит кроссинговер. Диплотена(2n4c). В составе бивалента четко различимы 4 хроматиды(тетрада). В хроматидах появляются участки раскручивания, где синтезируется РНК. Диакинез(2n4c). Продолжается укорочение хромосом и расщепление хромосомных пар. Хиазмы перемещаются к концам хромосомных пар. Разрушается ядерная мембрана, исчезает ядрышко, появляется митотическое веретено.

Метафаза I. Хромосомы распределяются случайным образом по ту или другую сторону экватора митотического веретена(второй закон Менделя-генетическое различие между индивидуумами) Анафаза I. К полюсам отходят целостные хромосомы. Телофаза I. Формируются ядра, имеющие 23 удвоенных хромосомы, происходит цитокинез, образуются дочерние клетки. Интерфаза II(1n2c ) представляет собой перерыв между первым и вторым мейотическими делениями, продолжительность этого периода различается у разных организмов – в некоторых случаях обе дочерние клетки сразу вступают во второе деление, а иногда второе деление начинается через несколько месяцев или лет. Но так как хромосомы двухроматидные, во время интерфазы 2 не происходит репликация ДНК. Второе деление мейоза-эквационное-протекает так же, как митоз (но значительно быстрее) Дочерние клетки получают гаплоидный набор хромосом( 22 аутосомы и 1 половую хромосому)

Профаза 2 (1n2c )

Метафаза 2 (1n2c )

Анафаза 2 (2n2с)

Телофаза 2 (1n1c в каждой клетке)

Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается.

Вопрос №58

Биологическое значение

митоза – копирование клеток,

мейоза – рекомбинация и редукция.

Мейоз происходит только в половых клетках.

После деления клетки при мейозе количество хромосом в каждой новой клетке уменьшается в два раза. Первоначальная клетка словно разделилась на две одинаковые половинки, а после еще на две, получив четыре клетки, но с разной наследственной информацией.

Митоз происходит в одну стадию, а мейоз поделен на два этапа деления клетки.

После митоза получаются клетки тела (соматические), а после мейоза половые: сперматозоиды, яйцеклетки, споры.

Митоз и мейоз – два вида процесса деления клеток. Они имеют одинаковые фазы деления, но сами эти процессы и их результаты существенно различаются.

Митоз – универсальный способ непрямого деления клеток с ядром. Таким способом делятся клетки растений, животных, грибов. Также его называют клонированием или вегетативным способом размножения.

При митозе в процессе деления каждая хромосома делится на две, распределяясь по двум новым клеткам. Образуются две соматические диплоидные клетки. В ходе этого деления наследственные факторы не меняются. Эти клетки могут продолжить деление, но это не обязательно. Одна из них или обе могут утратить способность делиться. Клетки, получившиеся после деления, практически идентичны материнской клетке. У них такая же структура.

Митоз – единственный способ самовосстановления соматических клеток (клеток тела) и основа их бесполого размножения. Этот вид деления клеток лежит в основе индивидуального развития и роста любых многоклеточных организмов. При нем в ходе продольного расщепления происходит удвоение хромосом, которые равномерно распределяются по вновь образованным клеткам. При этом качество и объем исходной информации сохраняется в полной мере и не меняется.

Любые виды спаривания при митозе отсутствуют. Удвоенные хромосомы выстраиваются раздельно по экватору.В отличие от митоза, при мейозе процесс деления состоит из двух этапов. На первом этапе число хромосом уменьшается в два раза. Из одной диплоидной клетки в результате деления получаются две гаплоидные клетки. В каждой хромосоме при этом содержится по две хроматиды. Также происходит слияние гомологичных хромосом. Одна клетка словно делится на две свои половинки. Во втором делении образуются четыре клетки. В них число хромосом не уменьшается, и каждая хромосома содержит по одной хроматиде. Удвоенные хромосомы выстраиваются парами.

В результате мейоза появляются четыре половые гаплоидные клетки с измененной наследственностью. То есть наследственная информация перемешивается.

Мейоз является основой полового размножения, поскольку он происходит в созревающих половых клетках (у растений в спорах). Постоянное число хромосом поддерживается, и появляются новые соединения наследственных задатков в хромосомах

Половое размножение встречается у представителей всех типов растительного и животного мира. Оно связано с образованием особых половых клеток: женских — яйцеклеток и мужских — сперматозоидов.

Для половых клеток (гамет) характерно одинарное (гаплоидное) число хромосом (см. Мейоз). Кроме того, они отличаются соотношением объемов цитоплазмы и ядра (по сравнению с соматическими клетками).

Строение мужской половой клетки (сперматозоид)

Строение сперматозоида

Мужские половые клетки — сперматозоиды — обычно очень мелкие и подвижные. Типичные сперматозоиды состоят из головки, шейки и хвоста.

Головка почти целиком состоит из ядра, покрытого тонким слоем цитоплазмы. Самый передний ее участок заострен, покрыт колпачком.

Шейка сужена, в ней находятся центриоль (составная часть клеточного центра) и митохондрии.

Хвост сперматозоидов состоит из тончайших волокон, покрытых цитоплазматическим цилиндром: он является органоидом движения.

Общая длина сперматозоида, включая головку, шейку и хвост, у млекопитающих и человека составляет 50-60мкм. Характерно, что сперматозоиды образуются обычно в огромных количествах (у млекопитающих их в течение жизни созревает сотни миллионов).

Строение женской половой клетки (яйцеклетка)

Строение яйцеклетки

Строение яйцеклетки

Женские половые клетки (яйцеклетки) неподвижны и, как правило, крупнее сперматозоидов. Обычно они имеют шаровидную форму и разнообразное строение оболочек. У млекопитающих размеры яйцеклеток сравнительно небольшие и составляют 100-200мкм в диаметре. У других позвоночных (рыб, амфибий, рептилий, птиц) яйцеклетки крупные. В цитоплазме они содержат огромное количество питательных веществ.

У птиц, например, яйцеклеткой является та часть яйца, которая обычно называется желтком. Диаметр яйцеклетки курицы составляет 3-3,5см, а у таких крупных птиц, как страусы, — 10-11см. Эти яйцеклетки покрыты несколькими оболочками сложного строения (слой белка, подскорлуповая и скорлуповая оболочки и др.), которые обеспечивают нормальное развитие зародыша.

Количество образующихся яйцеклеток обычно значительно меньше, чем количество сперматозоидов. Например, у женщины в течение жизни созреет около 400 яйцеклеток.

Строение мужских и женских половых клеток растений описано здесь.

Развитие яйцеклеток и сперматозоидов

Созревание и развитие половых клеток называется гаметогенезом. У животных и человека он происходит в половых железах: яйцеклетки развиваются в яичниках, а сперматозоиды — в яичках.

Стадии развития

Процессы развития мужских половых клеток (сперматогенез) и женских половых клеток (овогенез) имеют ряд сходных черт. И в яичнике, и в яичках различают три разных стадии:

На первой стадии сперматогонии и овогонии (клетки — предшественники сперматозоидов и яйцеклеток) размножаются митотическим путем и число их увеличивается.

У мужчин митотическое деление сперматогоний начинается в период полового созревания и продолжается десятки лет. У женщин деление овогоний происходит только в эмбриональный период их жизни и заканчивается еще до рождения. У животных деление этих клеток зависит от сроков и периодов размножения.

Во второй стадии сперматогонии и овогонии перестают размножаться, начинают расти и увеличиваться в размерах, превращаясь в первичные сперматоциты и овоциты. Особенно значительно возрастают размеры у овоцитов. Например, у лягушек линейные размеры овоцита больше в 2 тыс. раз, чем у овогонии. Это связано с тем, что в них накапливаются питательные вещества, необходимые для развития зародыша.

Наиболее важные изменения происходят с будущими половыми клетками на третьей стадии созревания. Здесь проявляются и существенные отличия между спермато- и овогенезом. В этой зоне первичные овоциты дважды делятся путем мейоза. При первом мейотическом делении образуется крупный вторичный овоцит и мелкая клетка— первичный полоцит (первое полярное, или направительное, тельце).

При втором мейотическом делении вторичный овоцит делится на крупную незрелую яйцеклетку и мелкий вторичный полоцит (второе полярное тельце). Первичный полоцит тоже может разделиться еще на два полоцита.

Таким образом, в результате двух мейотических делений из одного первичного овоцита получается 4 клетки с гаплоидным набором хромосом — незрелая половая клетка (которая превращается в зрелую яйцеклетку) и три полоцита, которые в дальнейшем погибают.

При сперматогенезе первичный сперматоцит в зоне созревания тоже дважды делится путем мейоза. Но при этом возникают 4 одинаковых гаплоидных сперматиды. В дальнейшем они путем сложных преобразований (изменения формы, развития хвоста) превращаются в зрелые сперматозоиды.

Оплодотворение

Оплодотворение — это процесс слияния ядер сперматозоида и яйцеклетки и восстановление диплоидного набора хромосом. Оплодотворенная яйцеклетка носит название зиготы. Образование зиготы происходит только при проникновении сперматозоида в яйцеклетку.

Процесс оплодотворения

Процесс оплодотворения

Этот процесс у разных организмов осуществляется неодинаково. У млекопитающих проникновение сперматозоида в яйцеклетку сопровождается растворением ее оболочки при помощи различных ферментов, выделяемых сперматозоидом. У многих насекомых яйцеклетки имеют плотную оболочку, и сперматозоид проникает через небольшие отверстия. У некоторых водных организмов на поверхности яйцеклетки образуется в месте контакта со сперматозоидом небольшой воспринимающий бугорок, который затем втягивается внутрь вместе со сперматозоидом.

Обычно в цитоплазму яйцеклетки проникает только головка сперматозоида с митохондрией и центриолью, а хвост остается снаружи. Оболочка головки растворяется, ядро начинает набухать, пока не достигнет размеров ядра яйцеклетки. Затем оба ядра сближаются и, наконец, сливаются.

Иногда в яйцеклетку одновременно проникает несколько сперматозоидов, но слияние с ядром происходит только у одного из них. В зиготе все хромосомы становятся парными: в каждой паре гомологичных хромосом одна хромосома принадлежит яйцеклетке, вторая — сперматозоиду. Это явление имеет большое значение для эволюции. Организм, развивающийся из зиготы, обладает большим диапазоном комбинативной изменчивости, следовательно и более широкими возможностями приспособления к меняющимся условиям внешней среды.

Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;

3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.

По количеству желтка в яйцеклетке она может быть алеци-тальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо– или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.

Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша.

Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.

Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.

Читайте также: