Сторонние силы электродвижущая сила и напряжение кратко

Обновлено: 08.07.2024

Электродвижущая сила или сокращено ЭДС – это способность источника тока ил по-другому питающий элемент, создавать в электрической цепи разность потенциалов. Элементами питания являются аккумуляторы или батареи. Это скалярная физическая величина, равная работе сторонних сил для перемещения одного заряда с положительной величиной. В данной статье будут рассмотрены теоритические вопросы ЭДС, как она образуется, а также для чего она может быть использована на практике и где используются, а главное как рассчитать ее.

Что такое ЭДС: объяснение простыми словами

Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи . Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.

В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.

Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.

Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.

Что такое ЭДС.

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Электродвижущая сила индукции

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения. Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает. Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы.

Расчет ЭДС.

Как раз вот эти 0.3 В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль. Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Как образуется ЭДС

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна. Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки Rн необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора, т.е. необходимо выполнять условие: Rн >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения. Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления. Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е(t) – источник гармонической (переменной) ЭДС в форме функции времени. Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Постоянный ток и ЭДС.

Электродвижущая сила (ЭДС) источника энергии

Для поддержания электрического тока в проводнике требуется внешний источник энергии, создающий все время разность потенциалов между концами этого проводника. Такие источники энергии получили название источников электрической энергии (или источников тока). Источники электрической энергии обладают определенной электродвижущей силой (сокращенно ЭДС), которая создает и длительное время поддерживает разность потенциалов между концами проводника.

Лагутин Виталий Сергеевич

Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.

Иногда говорят, что ЭДС создает электрический ток в цепи. Нужно помнить об условности такого определения, так как выше мы уже установили, что причина возникновения и существования электрического тока — электрическое поле.

Электродвижущая сила (ЭДС) источника энергии.

В практике для измерения ЭДС используются как более крупные, так и более мелкие единицы, а именно:

  • 1 киловольт (кВ, kV), равный 1000 В;
  • 1 милливольт (мВ, mV), равный одной тысячной доле вольта (10-3 В),
  • 1 микровольт (мкВ, μV), равный одной миллионной доле вольта (10-6 В).

Очевидно, что 1 кВ = 1000 В; 1 В = 1000 мВ = 1 000 000 мкВ; 1 мВ= 1000 мкВ.

В настоящее, время существует несколько видов источников электрической энергии. Впервые в качестве источника электрической энергии была использована гальваническая батарея, состоящая из нескольких цинковых и медных кружков, между которыми была проложена кожа, смоченная в подкисленной воде. В гальванической батарее химическая энергия превращалась в электрическую (подробнее об этом будет рассказано в главе XVI). Свое название гальваническая батарея получила по имени итальянского физиолога Луиджи Гальвани (1737—1798), одного из основателей учения об электричестве.

Многочисленные опыты по усовершенствованию и практическому использованию гальванических батарей были проведены русским ученым Василием Владимировичем Петровым. Еще в начале прошлого века он создал самую большую в мире гальваническую батарею и использовал ее для ряда блестящих опытов. Источники электрической энергии, работающие по принципу преобразования химической энергии в электрическую, называются химическими источниками электрической энергии.

Другим основным источником электрической энергий, получившим широкое применение в электротехнике и радиотехнике, является генератор. В генераторах механическая энергия преобразуется в электрическую. У химических источников электрической энергии и у генераторов электродвижущая сила проявляется одинаково, создавая на зажимах источника разность потенциалов и поддерживая ее длительное время.

Что такое электродвижущая сила (ЭДС) и как ее рассчитать

Эти зажимы называются полюсами источника электрической энергии. Один полюс источника электрической энергии имеет положительный потенциал (недостаток электронов), обозначается знаком плюс ( + ) и называется положительным полюсом.

Другой полюс имеет отрицательный потенциал (избыток электронов), обозначается знаком минус (—) и называется отрицательным полюсом. От источников электрической энергии электрическая энергия передается по проводам к ее потребителям (электрические лампы, электродвигатели, электрические дуги, электронагревательные приборы и т. д.).

Для того чтобы в проводнике ток существовал длительное время, необходимо, чтобы движение заряженных частиц, например, электронов, поддерживалось какой-либо внешней силой. Следовательно, нужно, чтобы от конца проводника с меньшим потенциалом (считаем, что носители электрического тока положительные) непрерывно отводились приносимые туда заряды, а к концу с большим потенциалом заряды постоянно подводились. То есть необходим круговорот зарядов по замкнутому пути, именно тогда ток будет течь. Данный факт согласуется с замкнутостью линий тока. То есть ЭДС — это работа, прилагаемая по перемещению положительного заряда в замкнутом контуре.

Сторонняя электродвижущая сила (далее сторонняя сила) не может быть электростатической, потому что электростатическое поле потенциально.

Работа потенциальной силы, для контура с током, равна нулю. При таком условии ток существовать не может, так как ток должен совершать работу по преодолению сопротивления проводников. Сторонняя сила может быть механической или электрической (не электростатической), иметь химическое происхождение и т.д.. Также для замкнутого контура причиной возникновения ЭДС может стать изменение потока магнитного поля, это связано с явлением электромагнитной индукции.

С учетом сторонних сил закон Ома в локальной форме записывается в виде:

$\overrightarrow=\sigma \left(\overrightarrow+\overrightarrow>\right)\left(1\right)$, где:

  • $\overrightarrow$ — вектор плотности электрического тока,
  • $\sigma $ — удельная проводимость,
  • $\overrightarrow$ — напряжённость поля кулоновских сил, $\overrightarrow>$ — напряженность поля сторонних сил.

Пример сторонних сил

Простейшая схема источника сторонней силы (источника тока), которая имеет механическое происхождение, представлена на рис.1.

Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Пусть между электродами А и В (рис.1) находится электрически нейтральная среда с равным зарядов противоположного знака. Сторонняя сила неэлектрического происхождения перемещает положительные заряды к электроду В (данный электрод заряжается положительно), а отрицательная к электроду А (отрицательно заряженный электрод). Во внешней цепи течет электрический ток. Ток производит работу. Энергия, которая необходима для производства такой работы, сообщается внешними силами, которые тратят ее на разделение зарядов между электродами. Ток внутри источника сторонней силы замыкает ток внешней цепи. Направление электрического тока во внешней цепи — от положительного электрода к отрицательному, внутри источника тока, наоборот. Практической реализацией такой схемы является электростатическая машина.

Электродвижущая сила

Сторонние силы характеризуются работой, совершающей ими при перемещении заряда по цепи. Так электродвижущей силой (ЭДС) ($\mathcal E$) называют:

Основная размерность ЭДС в системе СИ: $\left[\mathcal E \right]=В$.

ЭДС, действующую на участке 1-2 можно выразить как:

  • $\overrightarrow>$ — напряженность поля сторонних сил,
  • $d\overrightarrow$— вектор перемещения.

Интеграл (3) для замкнутой цепи даст выражение для ЭДС в этой цепи, как циркуляции вектора напряженности сторонних сил:

ЭДС связана с падением напряжения или просто напряжением ($U$) на участке цепи 1-2 соотношением:

Задание № 1: Опишите механизмы, которые позволяют использовать гальванические элементы в качестве источников постоянного тока.

Решение:

Часто встречаются источники постоянного тока, которые называют гальваническими элементами. При контакте твердого тела и жидкости появляется разность потенциалов. В некоторых случаях при таком контакте проходит химическая реакция. Допустим, если цинковую пластинку опустить в раствор серной кислоты, то цинк растворяется. В раствор перемещаются положительные ионы цинка, то есть раствор имеет положительный заряд, а сама цинковая пластина отрицательный, возникает электрический ток. При некоторой разности потенциалов переход ионов цинка в раствор заканчивается. Эта разность потенциалов называется электрохимическим потенциалом. (Он зависит от свойств металла, жидкости и концентрации ионов металла в растворе). Для растворов в серной кислоте этот потенциал цинка равен – 0,5В, для меди электрохимический потенциал равен +0,6В.

При погружении двух металлов в раствор возникает разность потенциалов между ними, которая равна разности из электрохимических потенциалов. Система из двух электродов из разных металлов, погруженная в раствор называется гальваническим элементом, разность потенциалов между металлами — ЭДС элемента.

Так, например, элемент Вольта состоит из медной и цинковой пластин, которые находятся в растворе серной кислоты. Зная электрохимические потенциалы цинка и меди, получим ЭДС элемента Вольта:

В гальваническом источнике Вольта имеются 2 сторонние $\mathcal E$, которые сосредоточены в поверхностных слоях, где соприкасаются цинковая и медная пластины с раствором. Толщина этих слоев — молекула. В остальном объеме раствора сторонних $\mathcal E$ нет. Когда пластины соединяют проводником, по нему течет ток от медной (положительной) пластины к цинковой (отрицательной) пластине. В растворе между электродами направление тока — обратное: от цинковой пластины к медной.

Сторонняя ЭДС элемента определена его свойствами, и не зависит от силы тока, который течет по цепи. Изменение напряжения на внешней цепи всегда меньше, чем ЭДС элемента. Чем меньше внутренне сопротивление гальванического элемента, тем выше качество источника тока.

При прохождении тока в цепи элемента Вольта положительные ионы цинка переходят в раствор, там они соединяются с отрицательными ионами, на который, наряду с положительным ионом водорода, диссоциирует серная кислота. То есть в растворе проходит химическая реакция. Продукты реакции частично выпадают в виде осадка. При этом положительные ионы водорода движутся к медной пластине, там они нейтрализуются электронами тока проводимости в пластине. На поверхности медной пластины образуется водородная пленка. Эта пленка увеличивает внутреннее сопротивление элемента и одновременно, образует дополнительный электрохимический потенциал, который направлен против потенциала, который был на пластине до образования пленки. Так, ЭДС элемента уменьшается. Подобные процессы, называют поляризацией элемента.

Для того чтобы уменьшить падение ЭДС гальванического элемента применяют различные методы деполяризации, например, используют сильные окислители, которые связывают водород и кислород с образованием воды.

Задание № 2: Источник ЭДС $\mathcal E=1$ В имеет внутреннее сопротивление $r=1$ Ом включен в цепь, которая содержит сопротивление $R=9$ Ом. Найдите силу тока в цепи ($I$), падение напряжения во внешней цепи ($U$), падение потенциала внутри элемента ($U_r$).

Решение:

Для замкнутой цепи, которая содержит источник ЭДС запишем закон Ома в виде:

Скалярная физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) , действующей в цепи или на ее участке:.

Напряжение

Напряжение – это физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.

Разность потенциалов

Напряжение на неоднородном участке цепи (где есть сторонние силы) равно сумме ЭДС источника и разности потенциалов на этом участке:

Для однородного участка цепи , где сторонние силы не действуют,

Т.е. напряжение совпадает с разностью потенциалов на концах участка цепи .

Закон Ома для однородного участка цепи в интегральной и дифференциальной форме . Сопротивление и его зависимость от температуры. Сверхпроводимость.

Закон Ома для однородного участка цепи в интегральной и дифференциальной форме

Закон Ома для однородного участка цепи: н емецкий физик Георг Ом экспериментально установил, чтосила тока в цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:.

Закон Ома в дифференциальной форме (закон Ома для плотности тока). Закон Ома в форме относится ко всему проводнику. Представим закон Ома в дифференциальной (т.е. относящейся к элементу тока длиныdl ) форме. Некоторая точка внутри проводника характеризуется вектором плотности тока , напряженностью электрического поляи свойствами материала проводника, т.е. удельным сопротивлением. Выделим мысленно малый объем вблизи рассматриваемой точки и подставимв закон Ома, получим:, здесь - разность потенциалов между сечениямиdS отстоящими на расстоянии dl . Следовательно,.

Учтем, что - напряженность электростатического поля;- плотность электрического поля;- удельная электрическая проводимость.

Тогда из формулы (20) следует закон Ома в дифференциальной форме : .

Сопротивление и его зависимость от температуры

Температурная зависимость сопротивления может быть представлена в виде:,

Сверхпроводимость

Сверхпроводимость – свойство некоторых проводников, заключающееся в том, что их электрическое сопротивление скачкомпадает до нуля при охлаждении ниже определенной критической температуры T к, характерной для данного проводника.

16. Работа и мощность тока. Закон Джоуля – Ленца в интегральной и дифференциальной форме

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = I Δt . Электрическое поле на выделенном учестке совершает работу

выражающей закон Ома для однородного участка цепи с сопротивлением R , умножить на I Δt , то получится соотношение

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем иЭ. Ленцем и носит название закона Джоуля–Ленца .

Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt , за которое эта работа была совершена:


Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).

Закон Джоуля-Ленца в дифференциальной форме - удельная мощность тока равна скалярному произведению векторов плотности тока и напряженности электрического поля:


,

где s - удельная проводимость;

r - удельное сопротивление среды.

Закон Джоуля-Ленца в дифференциальной форме носит совершенно общий характер, т. е. не зависит от природы сил, возбуждающих электрический ток. Закон Джоуля-Ленца, как показывает опыт, справедлив и для электролитов и для полупроводников.

17. . Обобщенный закон Ома для неоднородного участка цепи в интегральной и дифференциальной форме. Анализ обобщенного закона Ома. Замкнутая электрическая цепь. Соединение сопротивлений: последовательное и параллельное.

11 Сторонние электродвижущие силы. Закон Джоуля - Ленца

Согласно (11.4), э.д.с. численно равна работе сторонних сил, совершаемой при перемещении единичного положительного заряда по замкнутой цепи.

Помимо сторонних сил, на заряд действуют силы электростатического поля, имеющего напряжённость . Следовательно, результирующая сила , действующая на заряд в любой точке цепи, может быть записана в виде Данное правило Кирхгофа является условием стационарности токов. В противном случае потенциал рассматриваемого узла изменялся бы с течением времени, и это привело бы к изменению токов в цепи.

Второе правило Кирхгофа гласит, что алгебраическая сумма произведений сил токов в отдельных участках произвольного замкнутого контура на сопротивления этих участков равна алгебраической сумме э.д.с., действующих в этом контуре:


. (11.13)
Здесь и - сила тока и сопротивление для некоторого участка замкнутой цепи, - значение э.д.с. в этой же цепи.

Второе правило Кирхгофа является следствием закона Ома для замкнутой цепи. Направление обхода замкнутого контура и направление токов на всех участках цепи выбирают произвольным образом. Сила тока записывается со знаком "+", если его направление совпадает с направлением обхода замкнутого контура, и со знаком "-" в противоположном случае. Значение э.д.с. записывается со знаком "+", если при обходе замкнутого контура движение внутри источника осуществляется от его отрицательного полюса к положительному, то есть совпадает по направлению с внутренним током источника.

Для нахождения всех неизвестных токов необходимо решить систему независимых уравнений, в которой число уравнений должно быть равно числу неизвестных токов. В результате решения системы уравнений могут быть получены отрицательные значения силы тока. Это означает, что на рассматриваемом участке цепи реальный ток проходит в противоположном направлении относительно выбранного направления.

Например, в цепи, показанной на рисунке 16, можно выделить три замкнутых контура, для которых второе правило Кирхгофа имеет вид

Здесь первое уравнение записано для контура

, второе уравнение – для контура

, третье уравнение – для контура


. Данная система уравнений является линейно зависимой. Поэтому для вычисления неизвестных токов I 1 , I 2 , I 3 необходимо использовать любые два из этих трёх уравнений совместно с первым правилом Кирхгофа (11.12).

Рисунок 16 - Пример разветвлённой цепи постоянного тока
С помощью правил Кирхгофа можно рассчитать , например, э.д.с. и внутреннее сопротивление аккумуляторной батареи. Допустим, батарея состоит из нескольких источников постоянного напряжения, количество источников равно

, э.д.с. каждого источника равна , внутреннее сопротивление равно , и источники соединены последовательно. Тогда общую э.д.с. и общее внутреннее сопротивление батареи можно вычислить следующим образом:

. Если источники соединены в батарее параллельно, то

При прохождении электрического тока в цепи выделяется тепло. Этот процесс можно характеризовать с помощью понятия о тепловой мощности тока

Тепловое действие тока можно описать на основании закона Джоуля - Ленца : тепловая мощность тока равна произведению силы тока на электрическое напряжение на этом участке:


. (11.16)
Используя закон Ома для участка цепи (10.10), выражение для тепловой мощности тока (11.16) можно представить в другой форме:


. (11.17)
Для переменного тока тепловая мощность зависит от времени. Если ток изменяется сравнительно медленно, его называют квазистационарным. Условие квазистационарности будет сформулировано в разделе 30. В этом случае количество выделяющейся теплоты можно вычислить следующим образом:


, (11.18)
где и - начальный и конечный моменты времени.

Для постоянного тока тепловая мощность не зависит от времени, и интеграл в выражении (11.18) следует заменить произведением мощности на длительность рассматриваемого промежутка времени.

Закон Джоуля – Ленца можно сформулировать также в дифференциальной форме. Для этого необходимо ввести в рассмотрение объёмную плотность тепловой мощности тока , то есть количество теплоты, выделяемой в единицу времени в единичном объеме проводника

Используя соотношение (11.16) и (11.19), получаем локальную формулировку закона Джоуля – Ленца:


. (11.20)
Учитывая закон Ома (10.11), закон Джоуля – Ленца в дифференциальной форме можно записать также следующим образом


. (11.21)
Д ля выяснения физического смысла формулы (11.20) введём в рассмотрение объёмную плотность силы, действующей со стороны электрического поля на свободные заряды

Если на концах какого-нибудь провод-ника AB создать разность потенциалов (рис. 5.16), то в нем возникнет электрическое поле напряженностью E̅.

Под действием этого поля свободные за-ряженные частицы (в металлах — это сво-бодные электроны) будут двигаться в опре-деленном направлении, не прекращая сво-его хаотического движения, создавая кратко-временный ток.

Тем не менее, на практике в подавляющем большинстве случаев необходимо иметь ток в проводниках на протяжении продолжитель-ного времени. Для этого на концах провод-ника разность потенциалов необходимо под-держивать неизменной. Эту функцию в элект-рических цепях выполняют источники тока.

Любой источник тока имеет два полюса: положительный и отрицательный. Источ-ник, как и любой другой проводник, имеет свое сопротивление r, которое называется внутренним сопротивлением (рис. 5.17).

На полюсах источника на протяжении продолжительного времени существует раз-ность потенциалов. Но почему же в таком случае не возникает ток в самом источнике? В самом деле, на полюсах батареи для кар-манного фонарика довольно долго сущест-вует разность потенциалов, однако ток воз-никает лишь тогда, когда к полюсам бата-реи подсоединяется лампочка. Очевидно, что в источнике существуют какие-то силы, ко-торые стараются поддерживать разность потен-циалов на его полюсах, противодействуют электрическим силам, стремящимся выров-нять потенциалы на полюсах источника. Эти силы имеют неэлектрическое происхожде-ние, поэтому и называются сторонними.

Рис. 5.17. Источник тока

Сторонние силы обусловливают разде-ление разноименно заряженных частиц в источнике и поддерживают на его полюсах определенную разность потенциалов. В галь-ванических элементах разделение заряжен-ных частиц осуществляется за счет хими-ческой энергии, в термогенераторах — за счет тепловой и т.п.

Таким образом, сторонние силы внутри источника тока создают электрическое по-ле, которое называется полем сторонних сил . Напряженность такого поля E ст. может измеряться силой, действующей на заря-женные частицы с суммарным зарядом в одну единицу. Материал с сайта

E ст. = F ст. / q.

Очевидно, что напряженности поля сто-ронних сил и электрических сил в источнике имеют противоположные направ-ления. Если внешняя часть цепи источника разомкнута, то напряженности обоих полей в источнике одинаковы и никакого тока в источнике нет.

Когда внешняя часть цепи ис-точника разомкнута, то напря-женность поля сторонних сил и электрических сил в источнике одинаковы по значению и про-тивоположны по направлению, поэтому и компенсируют друг друга.

Таким образом, роль источника сводится к разделению разноименно заряженных ча-стиц и к накоплению их на полюсах источ-ника.

Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил.

Представим стороннюю силу Fст, действующую на заряд q, в виде

Природа сторонних сил может быть различной. Источники постоянного тока могут быть основаны на химическом (гальванические элементы и аккумулятоpы) или тепловом (теpмопаpы) действии. В гальванических элементах сторонние силы возникают за счет энергии химических реакций между электродами и электролитами Гальванические элементы и аккумуляторы преобразуют химическую энергию в электрическую. В генераторе сторонние силы образуются за счет механической энергии вращения ротора генератора и т.д.,термопары преобразуют внутреннюю энергию в электрическую, фотоэлементы - световую в электрическую.

Электродвижущая сила (ЭДС) - скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил \vec E_, под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями (с одной стороны, применяет законы классической физики, а с другой основывается на квантовых постулатах). В теории Бора рассмотрены спектры атома водорода и водородоподобных систем и вычислены частоты спектральных линий, однакоэта теория не смогла объяснить интенсивности спектральных линий и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недостатком теории Бора была невозможность описания с ее помощью спектра уже атома гелия - одного из простейших атомов, непосредственно следующего за атомом водорода.

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

h E E , ν = n − m (19.6)

равной разности энергий соответствующих стационарных состояний (Еn и Еm - соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При Еm Еn - его поглощение (переходатома в состояние с большей энергией, т. е. переход электрона на более удаленную отядра орбиту). Набор возможных дискретных частот v=(En -Em)/ h квантовых переходов и определяет линейчатый спектр атома.

Переме́нный ток (англ. alternatingcurrent) - электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным. Условное обозначение на электроприборах: \thicksim или \thickapprox (знак синусоиды), или латинскими буквами AC.


Если в проводнике создать электрическое поле и не принять мер для его поддержания, то, как было уже установлено, перемещение носителей заряда приведет очень быстро к тому, что поле внутри проводника исчезнет и, следовательно, ток прекратиться. Для того чтобы поддерживать ток достаточно долго, нужно от конца проводника с меньшим потенциалом (носители тока предполагаются положительными) непрерывно отводить приносимые сюда заряды, а к концу с большим потенциалом непрерывно их подводить. Т.е. необходимо осуществить круговорот зарядов, при котором они двигались бы по замкнутому пути (13.2). Циркуляция вектора напряженности электростатического поля, как известно равна нулю. Поэтому в замкнутой цепи наряду с участками, на которых положительные заряды движутся в сторону убывания потенциала, должны иметься участки, на которых перенос положительных зарядов происходит в направлении возрастания потенциала, т.е. против сил электростатического поля. Перемещение, зарядов на этих участках возможно лишь с помощью сил не электростатического происхождения, называемых сторонними силами.

Таким образом, для поддержания тока необходимы сторонние силы, действующие либо на всем протяжении цепи, либо на отдельных ее участках. Они могут быть обусловлены химическими процессами, диффузией носителей заряда в неоднородной среде или через границу двух разнородных, веществ, электрическими (но не электростатическими) полями, порожденными меняющимися во времени магнитными полями и т.д.

Например, в гальванических элементах и аккумуляторах происхождение сторонних сил – химическое. В генераторах электрического тока сторонние силы – это силы Лоренца, действующие со стороны магнитного поля.

Устройства, обеспечивающие возникновение и действие сторонних сил, называют источниками тока. В этих устройствах происходит разделение разноимённых зарядов. Под действием сторонних сил электрические заряды внутри источника тока движутся в направлении, противоположном действию сил электрического поля. В результате этого на полюсах источника тока поддерживается постоянная разность потенциалов.

Подобно тому, как насос сообщает энергию воде, поднимая её вверх, источник тока сообщает энергию заряженным частицам. Как для работы насоса, поднимающего воду, так и для работы источника тока необходима энергия. В зависимости от типа источника тока, в нём происходит преобразование механической, внутренней или ещё какой-либо энергии в электрическую. В зависимости от вида энергии, которая внутри источника тока преобразуется в электрическую энергию, различают механические, химические, тепловые источники тока.

Сторонние силы совершают работу по перемещению электрических зарядов.

Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э.д.с.) ε, действующей в цепи.

Сторонняя сила Fст, действующая на заряд q0, может быть выражена как

где Eст – напряжённость поля сторонних сил. Работа же сторонних сил по перемещению заряда q0 на замкнутом участке цепи равна


(13.6)

Разделив на q0, получим выражение для э.д.с., действующей в цепи:


(13.7)

т.е. эдс, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряжённости поля сторонних сил. ЭДС, действующая на участке 1-2, равна


На заряд q0 помимо сторонних сил действует также силы электростатического поля Fэ = E q0. Таким образом, результирующая сила, действующая в цепи на заряд q0, равна

Работа, совершаемая результирующей силой над зарядом q0 на участке 1-2, равна


(13.9)

Используя выражения и , можем записать

Для замкнутой цепи работа электростатических сил равна нулю, поэтому в данном случае А12 = q0ε12

Напряжением U на участке 1-2 называется физическая величина, определяемая работой, совершаемой суммарным полем кулоновских и сторонних сил при перемещении положительного единичного заряда на данном участке цепи.

Читайте также: