Стереометрия кратко и понятно

Обновлено: 04.07.2024

Не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).

Аксиомы стереометрии

  • На каждой прямой и в каждой плоскости имеются по крайней мере две точки.
  • В пространстве существуют плоскости. В каждой плоскости пространства выполняются все аксиомы планиметрии.
  • Через любые три точки, не принадлежащие одной прямой, можно провести плоскость, и притом только одну.
  • Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
  • Если две точки прямой лежат на одной плоскости, то все точки данной прямой лежат в этой плоскости.
  • Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
  • Любая плоскость α разбивает множество не принадлежащих ей точек пространства на два непустых множества так, что:
    1. любые две точки, принадлежащие разным множествам, разделены плоскостью α;
    2. любые две точки, принадлежащие одному и тому же множеству, не разделены плоскостью α.
  • Расстояние между любыми двумя точками пространства одно и то же на любой плоскости, содержащей эти точки.

Многогранник

Многогранник представляет собой тело, поверхность которого состоит из конечного числа плоских многоугольников. Эти многоугольники называются гранями многогранника, а стороны и вершины многоугольников называются соответственно ребрами и вершинами многогранника. Многогранники могут быть выпуклыми и невыпуклыми . Выпуклый многогранник расположен по одну сторону относительно плоскости, проходящей через любую его грань .

Литература

  • В. В. Прасолов, И.Ф. Шарыгин. Задачи по стереометрии. — М.: Наука, 1989. . Задачи по геометрии (стереометрия). М.: Наука, 1984. — 160 с. (Библиотечка "Квант", Вып.31).

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Стереометрия" в других словарях:

стереометрия — стереометрия … Орфографический словарь-справочник

СТЕРЕОМЕТРИЯ — (греч., от stereos плотный, и metreo меряю). Часть геометрии, трактующая о свойстве твердых тел, находящихся не на плоскостях, противоположная планиметрии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, часть ГЕОМЕТРИИ, в которой изучаются фигуры в трехмерном пространстве. Стереометрия включает изучение плоскостей, объемных геометрических тел, их всевозможных сечений и пересечений, а также измерение объемов и площадей тел … Научно-технический энциклопедический словарь

стереометрия — и, ж. stéréometrie, нем. Stereometrie <гр. stereos телесный + metreo измеряю. Раздел геометрии, изучающий объемные фигуры. Крысин 1998. || Название игрушки по Фребелю. Возьмем хотя стереометрию. Игрушка эта стоит 2 р. 50 к., что очень дорого.… … Исторический словарь галлицизмов русского языка

стереометрия — (неправильно стереометрия) … Словарь трудностей произношения и ударения в современном русском языке

СТЕРЕОМЕТРИЯ — (от стерео. и . метрия) часть элементарной геометрии, в которой изучаются фигуры в пространстве … Большой Энциклопедический словарь

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, стереометрии, мн. нет, жен. (от греч. stereos плотный и metreo мерю) (мат.). Геометрия в пространстве, отдел геометрии, в котором изучаются фигуры, не лежащие в одной плоскости, в отличие от планиметрии. Толковый словарь Ушакова.… … Толковый словарь Ушакова

СТЕРЕОМЕТРИЯ — СТЕРЕОМЕТРИЯ, и, жен. Раздел геометрии, изучающий фигуры, лежащие в пространстве. | прил. стереометрический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

СТЕРЕОМЕТРИЯ — жен., греч. часть геометрии, измеренье тел, толщ. метрический чертеж. графия, черченье тел, толщ. Стереографическая проекция земного шара, перспективный чертеж, как бы пришлось смотреть на прозрачное тело. Стереотип, неразборная форма для печати… … Толковый словарь Даля

стереометрия — сущ., кол во синонимов: 2 • геометрия (9) • математика (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

\(>>\)
\(\bullet\) Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
\(\bullet\) Через две параллельные прямые проходит плоскость, и притом только одна.
\(\bullet\) Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
\(\bullet\) Если прямая \(a\) параллельна прямой \(b\) , а та в свою очередь параллельна прямой \(c\) , то \(a\parallel c\) .
\(\bullet\) Пусть плоскость \(\alpha\) и \(\beta\) пересекаются по прямой \(a\) , плоскости \(\beta\) и \(\pi\) пересекаются по прямой \(b\) , плоскости \(\pi\) и \(\alpha\) пересекаются по прямой \(p\) . Тогда если \(a\parallel b\) , то \(p\parallel a\) (или \(p\parallel b\) ):



\(>>\)
\(\bullet\) Существует три вида взаимного расположения прямой и плоскости:
1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости);
2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость);
3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
\(\bullet\) Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.


\(\bullet\) Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\) .



\(>>\)
\(\bullet\) Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
\(\bullet\) Если две пересекающиеся прямые из одной плоскости соответственно параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.



\(\bullet\) Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны: \[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]


\(\bullet\) Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны: \[\alpha\parallel \beta, \ a\parallel b \Longrightarrow A_1B_1=A_2B_2\]

\(>>\)
\(\bullet\) Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.
\(\bullet\) Признак:
Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.


\(\bullet\) алгоритм нахождения угла между скрещивающимися прямыми \(a\) и \(b\) :
Шаг 1. Через одну из двух скрещивающихся прямых \(a\) провести плоскость \(\pi\) параллельно другой прямой \(b\) . Как это сделать: проведем плоскость \(\beta\) через прямую \(b\) так, чтобы она пересекала прямую \(a\) в точке \(P\) ; через точку \(P\) проведем прямую \(p\parallel b\) ; тогда плоскость, проходящая через \(a\) и \(p\) , и есть плоскость \(\pi\) .
Шаг 2. В плоскости \(\pi\) найти угол между прямыми \(a\) и \(p\) ( \(p\parallel b\) ). Угол между ними будет равен углу между скрещивающимися прямыми \(a\) и \(b\) .



\(>>\)
\(\bullet\) Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
\(\bullet\) Если две прямые перпендикулярны плоскости, то они параллельны.
\(\bullet\) Признак: если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.



\(>>\)
\(\bullet\) Для того, чтобы найти расстояние между параллельными прямыми, нужно из любой точки одной прямой опустить перпендикуляр на другую прямую. Длина перпендикуляра и есть расстояние между этими прямыми.
\(\bullet\) Для того, чтобы найти расстояние между плоскостью и параллельной ей прямой, нужно из любой точки прямой опустить перпендикуляр на эту плоскость. Длина перпендикуляра и есть расстояние между этими прямой и плоскостью.
\(\bullet\) Для того, чтобы найти расстояние между параллельными плоскостями, нужно из любой точки одной плоскости опустить перпендикуляр к другой плоскости. Длина этого перпендикуляра и есть расстояние между параллельными плоскостями.
\(\bullet\) алгоритм нахождения расстояния между скрещивающимися прямыми \(a\) и \(b\) :
Шаг 1. Через одну из двух скрещивающихся прямых \(a\) провести плоскость \(\pi\) параллельно другой прямой \(b\) . Как это сделать: проведем плоскость \(\beta\) через прямую \(b\) так, чтобы она пересекала прямую \(a\) в точке \(P\) ; через точку \(P\) проведем прямую \(p\parallel b\) ; тогда плоскость, проходящая через \(a\) и \(p\) , и есть плоскость \(\pi\) .
Шаг 2. Найдите расстояние от любой точки прямой \(b\) до плоскости \(\pi\) . Это расстояние и есть расстояние между скрещивающимися прямыми \(a\) и \(b\) .


\(>>\)
\(\bullet\) Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции: \[\begin &1. AH\perp \beta, \ AB\perp x\quad \Rightarrow\quad BH\perp x\\[2ex] &2. AH\perp \beta, \ BH\perp x\quad\Rightarrow\quad AB\perp x\end\]

Заметим, что прямая \(x\) необязательно должна проходить через точку \(B\) . Если она не проходит через точку \(B\) , то строится прямая \(x'\) , проходящая через точку \(B\) и параллельная \(x\) . Если, например, \(x'\perp BH\) , то и \(x\perp BH\) .

\(>>\)
\(\bullet\) Угол между наклонной прямой и плоскостью — это угол между этой прямой и ее проекцией на данную плоскость. Таким образом, данный угол принимает значения из промежутка \((0^\circ;90^\circ)\) .
Если прямая лежит в плоскости, то угол между ними считается равным \(0^\circ\) . Если прямая перпендикулярна плоскости, то, исходя из определения, угол между ними равен \(90^\circ\) .
\(\bullet\) Чтобы найти угол между наклонной прямой и плоскостью, необходимо отметить некоторую точку \(A\) на этой прямой и провести перпендикуляр \(AH\) к плоскости. Если \(B\) – точка пересечения прямой с плоскостью, то \(\angle ABH\) и есть искомый угол.


\(\bullet\) Для того, чтобы найти угол между плоскостями \(\alpha\) и \(\beta\) , можно действовать по следующему алгоритму:
Отметить произвольную точку \(A\) в плоскости \(\alpha\) .
Провести \(AH\perp h\) , где \(h\) — линия пересечения плоскостей.
Провести \(AB\) перпендикулярно плоскости \(\beta\) .
Тогда \(AB\) – перпендикуляр к плоскости \(\beta\) , \(AH\) – наклонная, следовательно, \(HB\) – проекция. Тогда по ТТП \(HB\perp h\) .
Следовательно, \(\angle AHB\) — линейный угол двугранного угла между плоскостями. Градусная мера этого угла и есть градусная мера угла между плоскостями.


Заметим, что мы получили прямоугольный треугольник \(\triangle AHB\) ( \(\angle B=90^\circ\) ). Как правило, находить \(\angle AHB\) удобно из него.


\(>>\)
\(\bullet\) Признак: если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости. \[a\perp \beta, \ a\in \alpha\quad\Rightarrow\quad \alpha\perp \beta\]

\(\bullet\) Заметим, что так как через прямую \(a\) можно провести бесконечное множество плоскостей, то существует бесконечное множество плоскостей, перпендикулярных \(\beta\) (и проходящих через \(a\) ).

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Стереометрия — раздел евклидовой геометрии, в котором изучаются свойства фигур в пространстве.

Если основными фигурами планиметрии являются точка и прямая, то в стереометрии к изучению добавляется плоскость.

Примеры стереометрических фигур:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  • шар;
  • сфера;
  • конус;
  • цилиндр;
  • призма и так далее.

Нередко основным способом решения задач в стереометрии является рассмотрение разнообразных плоскостей при выполнении планиметрических законов.

В стереометрии используются следующие обозначения:

  • прописные буквы A,B,C,D обозначают точки;
  • строчные буквы обозначают прямые, например, AB = a;
  • плоскости, как правило, обозначаются такими буквами как \(\alpha,\;\beta,\;\gamma\) и подобными;
  • принадлежность точек к прямой или точек и прямых к плоскости обозначается стандартно: \(A\;\in\;a\) или \(b\;\in\;\alpha.\)

Базовые теоремы, аксиомы и определения стереометрии

Сечения многогранников

При решении задач по стереометрии нередко придется строить сечения многогранников на определенной плоскости. Далее приведены базовые определения, которые относятся к сечению.

Секущей плоскость будет называться в случае, если по обе стороны от нее будут находиться точки пирамиды, куба, параллелепипеда или же призмы.

Сечением пирамиды, куба, параллелепипеда или же призмы будет являться фигура, которая состоит из всех точек, являющихся общими фигуры и секущей плоскости.

Секущая плоскость будет пересекать грани пирамиды, куба, параллелепипеда или же призмы по отрезкам, исходя из этого, сечение является многоугольником, который лежит в секущей плоскости, со сторонами — указанными отрезками.

Чтобы построить сечение указанных выше фигур стереометрии, необходимо построение точек пересечения секущей плоскости и ребер фигуры, а после соединяться каждые две из них, которые лежат в одной грани.

Симметрия фигур

  1. Точки A и B будут являться симметричными относительно точки O в тех случаях, когда O — середина отрезка AB.
  2. Точки A и B будут являться симметричными относительно прямой C в тех случаях, когда прямая C будет проходить через середину отрезка AB и будет ему перпендикулярна.
  3. Точки A и B будут являться симметричными относительно плоскости \(\beta\) в тех случаях, когда плоскость α будет проходить через середину отрезка AB и будет ему перпендикулярна.
  4. Точка О (прямая c, плоскость \(\beta\) ) будет являться центром симметрии фигуры в тех случаях, когда все точки фигуры симметричны относительно точки O (прямой C, плоскости \(\beta\) ) какой-либо точке этой же фигуры.
  5. Выпуклый многогранник будет являться правильным в тех случаях, когда все его грани — равные между собой правильные многоугольники и в каждой вершине сходится одно и то же количество ребер.

Взаимное расположение прямых в пространстве

В пространстве прямые лежат либо в одной плоскости, либо в разных плоскостях.

  1. Две прямые в пространстве будут являться параллельными в тех случаях, когда они лежат в одной и той же плоскости и не имеют общих точек.
  2. Две прямые в пространстве будут являться пересекающимися в тех случаях, когда они лежат в одной и той же плоскости и имеют общую точку.
  3. Две прямые в пространстве будут являться скрещивающимися в тех случаях, когда они не лежат в одной и той же плоскости.

Расстояние между фигурами

  1. Расстоянием между фигурами будет называться самое маленькое среди расстояний между их точками.
  2. Расстояние между двумя прямыми, которые скрещиваются, будет соответствовать величине отрезка с концами на этих прямых, который перпендикулярен им обеим. Для каждых двух скрещивающихся прямых такой отрезок существует и единственен.
  3. Расстояние между двумя прямыми, которые скрещиваются, будет равняться расстоянию между параллельными плоскостями, в которых они лежат.
  4. Расстояние между двумя прямыми, которые скрещиваются, будет равняться расстоянию от одной из них до параллельной ей плоскости, которая проходит через вторую прямую.
  5. Расстояние между двумя прямыми, которые скрещиваются, будет равняться расстоянию между их проекциями на плоскость, которая перпендикулярна одной из них.

Основные теоремы стереометрии

Теоремы о параллельности прямых и плоскостей

  1. Если прямая AB параллельна какой-нибудь прямой CD, расположенной в плоскости P, то она параллельна самой плоскости.

1 График

Если плоскость R проходит через прямую AB, параллельную другой плоскости P, и пересекает эту плоскость, то линия пересечения CD параллельна первой прямой AB.

Если две параллельные плоскости P и Q пересекаются третьей плоскостью R, то линии пересечения AB и CD параллельны.

В окружающем нас мире есть не только плоские, но и объемные тела. Их изучает специальный раздел геометрии – стереометрия.

План урока:

Предмет стереометрии

В 7-9 классах мы изучали только те геометрические фигуры, которые полностью лежат в одной плоскости. Грубо говоря, все построения, которые мы делали на уроках, можно было точно выполнить на листе бумаги. Тем самым мы могли проверить с помощью построения, правильно ли решена та или иная задача. На самом деле мы изучали только один раздел геометрии – планиметрию, которая как раз рассматривает построения на плоскости и свойства плоских фигур.

Однако в реальности мир значительно сложнее. Наше пространство считается трехмерным, и большинство реальных объектов обладают объемом. Свойства фигур в пространстве изучает специальный раздел геометрии – стереометрия.

Сразу заметим, что при изучении стереометрии используются все те знания, которые были получены в рамках планиметрии.

Основные понятия стереометрии

Стереометрия оперирует всеми теми понятиями, которые нам известны из планиметрии – точка, прямая, окружность, треугольник и т. д. Но помимо них добавляются и иные термины.

Важнейшее из основных понятий стереометрии – это плоскость. Иногда в литературе применяется сокращение плос-ть. Строгого определения плоскости в рамках геометрии не дают, это понятие считается исходным, как понятия точки или прямой в планиметрии. Лишь некоторые ее свойства косвенно указываются с помощью аксиом. В реальной жизни примерами плоскости являются поверхность стола или лист бумаги. Однако, в отличие от них, плоскость не имеет границы, она бесконечна (как и прямая). Плоскость не имеет кривизны, поэтому, например, поверхность шара плоскостью не является. При изображении плоскости на чертежах ее обычно показывают в виде параллелограмма, при этом традиционно их обозначают маленькими буквами греческого алфавита, которые в планиметрии используются для обозначения углов (α, β, γ и т. п. ):

Если на плоскости проведена прямая, то она разобьет ее на две фигуры, которые именуются полуплоскостями:

Объемные фигуры – это часть пространства, которая отделена от остального пространства замкнутой поверхностью, то есть границей. Простейший пример объемной фигуры – это куб:

Поверхность куба – это 6 равных квадратов, каждый из них именуется гранью куба. Стороны этих квадратов – это уже ребра куба, а вершины квадратов одновременно являются и вершинами кубов.

Обратите внимание на изображение куба. Здесь он показан немного сбоку, в результате чего изображение становится объемным. Однако при этом мы вынуждены искажать некоторые размеры и углы на чертеже. Например, верхняя грань должна быть квадратом, но на плоском рисунке углы у этой грани прямыми не являются. При необходимости мы просто ставим специальный значок перпендикулярности между отрезками, который использовали и в планиметрии:

Важно понимать, что из-за искажения размеров у объемных фигур на плоских чертежах мы НЕ можем проверить решение некоторых стереометрических задач с помощью точных построений. Однако есть специальные компьютерные программы 3-D черчения, в которых такие построения уже можно выполнить. Также заметим, что на рисунке видны не все 6 граней куба, а только 3 из них. Если возникает необходимость показать невидимые на чертеже линии, то использует штриховые линии:

Все грани куба – это многоугольники. Если у фигуры вся ее поверхность состоит лишь из многоугольников, то она именуется многогранником. Таким образом, куб является примером многогранника. Другими примерами многогранников могут служить параллелепипед, пирамида, усеченная пирамида:

Более подробно различные виды многогранников будут рассматриваться позднее, тогда же им будут даны и их определения.

Если у объемной фигуры хоть одна поверхность не является многоугольником, то она не может считаться многогранником. Наиболее простыми и часто встречающимися такими фигурами являются шар, цилиндр, конус. Обратите внимание, что у них могут отсутствовать ребра и вершины, которые обязательно есть у многогранника:

Следует различать саму объемную фигуру и ее границу. Так, шар – это объемная фигура, а поверхность шара – это сфера.

Аксиомы стереометрии

Стереометрия, как и планиметрия, построена на нескольких базовых утверждениях, которые считаются абсолютно очевидными и не требуют доказательств. Их называют аксиомами. В свою очередь на основе аксиом доказываются простейшие теоремы стереометрии, которые далее используются для доказательства других, более сложных теорем и т. д. Грубо говоря, аксиомы – это исходные, первичные теоремы, принимаемые без доказательств.

Все вместе аксиомы образуют так называемую систему аксиом, или аксиоматику. Система аксиом должна быть непротиворечивой, то есть с ее помощью нельзя одновременно доказать и истинность, и ложность одной и той же теоремы. Также она должна быть ещё и независимой. Это значит, что ни одна из аксиом не может быть доказана с помощью других аксиом (в противном случае эту аксиому можно просто исключить из списка аксиом и считать ее теоремой). Наконец, аксиоматика должна быть полной, то есть с ее помощью любую теорему можно либо доказать, либо опровергнуть, а недоказуемых теорем быть не должно.

На самом деле вопрос о выборе системе аксиом в любой математической дисциплине, в том числе и в геометрии, является достаточно сложным. Первую аксиоматику сформулировал ещё Евклид, но в дальнейшем она была признана не вполне удачной. На сегодняшний день наибольшее распространение получила система аксиом Гильберта, которая была сформулирована только в 1899 г. Однако помимо неё существует ещё несколько аксиоматик: Погорелова, Колмогорова, Вейля, Биргофа и. т. д.

Прежде, чем формулировать сами аксиомы, ещё раз уточним, что есть так называемые неопределяемые понятия стереометрии. В аксиоматике Гильберта это плоскость, точка и прямая. Их свойства как раз и описываются аксиомами. Остальным понятиям даются определения, многие из них были сформулированы в 7-9 классах.

Всего в аксиоматике Гильберта есть 20 аксиом. Из них 15 относятся к планиметрии, и только 5 – к стереометрии. Сначала сформулируем две аксиомы о трех точках:

Здесь приведены два различных утверждения, поэтому их принято разделять на две отличных аксиомы. Для простоты запоминания их можно объединить в одно утверждение:

Другими словами, любые три точки находятся в одной плоскости. По этой причине для обозначения плос-тей иногда просто указывают три ее точки (важно, что они не должны принадлежать одной прямой).

Иногда используются утверждения, что три точки однозначно задают плос-ть или однозначно ее определяют.

Случай, когда три точки находятся на одной прямой, рассматривается отдельно и чуть ниже.

Далее сформулируем аксиому о четырех точках:

Следующая аксиома отражает связь плос-ти и прямой:

Эту аксиому также подтверждает жизненный опыт. Если отметить на ровном столе любые две точки и приложить к ним ровную линейку, то контакт между линейкой и столом будет плотным, то есть без зазоров. Если же какие-то зазоры есть, то это свидетельствует лишь о неровности стола либо линейки.

Возможен случай, когда прямая имеет с плос-тью единственную общую точку. В таких случаях принято говорить, что прямая и плос-ть пересекаются:

Последняя, пятая аксиома говорит о пересечении двух плос-тей.

Действительно, сложно представить себе ситуацию, когда две плос-ти коснулись друг друга только в одной точке. На основе сформулированных аксиом легко доказать одно из простейших и вместе с тем важнейших утверждений стереометрии.

Действительно, пусть у двух плос-тей, α и β, есть общая точка А. Тогда, согласно аксиоме 5, у них должна быть и другая общая точка, которую мы обозначим как В:

Рассмотрим прямую АВ. По аксиоме 4 она полностью принадлежит плос-ти α, ведь α принадлежат две ее точки. По той же причине можно утверждать, что АВ также принадлежит и β. Таким образом, АВ – общая прямая для α и β.

Но нам надо также показать, что никакая другая точка в пространстве не является общей для α и β. Действительно, пусть существует ещё и некоторая точка С, которая НЕ лежит на АВ, но является общей для α и β. Это означало бы, что через А, В и С проведены две различные плос-ти (α и β). Это противоречит аксиоме 2, поэтому такая точка С не существует, ч. т. д.

Вернемся к аксиомам 1 и 2. В них говорилось о 3 точках, причем отдельно оговаривалось, что они не должны принадлежать одной прямой. Теперь нам ясна причина этой оговорки. Только что доказанная теорема показывает, что через прямую (а значит, и через любые 3 ее точки) может проходить не одна, а как минимум 2 плос-ти. В дальнейшем мы покажем, что на самом деле через прямую можно провести бесконечное число плос-тей.

Простейшие следствия из аксиом стереометрии

На основе аксиом можно доказать несколько простых теорем стереометрии.

Доказательство. Возьмем произвольную прямую m и точку C, которая НЕ принадлежит m. Далее отметим на m две любые точки и обозначим их как А и В:

По аксиоме 1 через А, В, С можно провести некоторую плос-ть α. По аксиоме 4 прямая m будет принадлежать α. Тем самым мы показали, что существует плос-ть, проходящая через m и C. Единственность этой плос-ти вытекает уже из аксиомы 2, ведь через А, В и С нельзя провести две различных плос-ти, ч. т. д.

Иногда доказанный факт формулируют иначе: прямая и точка, не находящаяся на прямой, однозначно определяют проходящую через них плос-ть. То есть, указав прямую и точку, можно одновременно указать на ту плос-ть, которая задается ими.

Переходим к следующей теореме.

Отметим на произвольной прямой m точки А и В. Далее выберем ещё две точки в пространстве C и D, причем такие, что А, В, С и D не находятся в одной плос-ти. Тогда у нас есть плос-ти АВС и АВD, которые пересекаются по прямой АВ:

Теперь соединим С и D прямой. Прямая CD состоит из бесконечного количества точек. Через каждую из них можно провести единственную плос-ть, которая будет проходить через АВ. Так как точек бесконечно много, то и плос-тей будет бесконечно много. Осталось лишь показать, что никакие две таких плос-ти не будут совпадать, то есть все они различны.

Действительно, пусть две таких плос-ти совпадают, то есть на самом деле являются одной плос-тью. Тогда получается, что эта единая плоскость проходит через две точки прямой СD. Тогда, по аксиоме 4, вся прямая СD принадлежит этой плос-ти, в том числе и сами точки С и D. Но плос-ть проходит также через А и В. То есть получится, что А, В, С и D входят в состав одной плос-ти, а это не так. Это противоречие означает, что на самом деле все плоскости, проходящие через разные точки прямой CD, будут различны, ч. т. д.

Рассмотрим ещё одну теорему:

Пусть пересекаются прямые m и n. Обозначим точку их пересечения как А. Также выберем на m некоторую точку В, а на n – точку C. Мы можем построить плос-ть α через точки А, В и C, и она будет единственной. Так как и А, и В принадлежат α, то и вся прямая m ей принадлежит (аксиома 4). Аналогично и прямая n находится на плос-ти α. То есть α как раз и является плос-тью, о которой говорится в теореме. Никакая другая плос-ть не будет содержать обе прямые m и n, ведь в противном случае она проходила бы через точки А, В и С, то есть совпадала бы с α.

Эта теорема также говорит о том, что две пересекающиеся прямые однозначно определяют проходящую через них плос-ть.

Задачи на использование аксиом

Простейшие задачи стереометрии по большей части не требуют проведения расчетов и использования формул, однако приходится использовать строгие логические умозаключения. Чаще всего они сводятся к доказательству довольно очевидных утверждений.

Примечание. Попытайтесь перед просмотром решения задач самостоятельно их решить.

Задание. Точки M, N, Р, К не лежат на одной прямой. Могут ли прямые MN и РК пересекаться?

Решение. Если бы MN и РК пересекались бы, то через эти прямые можно было бы провести плос-ть. Эта плоскость содержала бы все точки прямых, в том числе M, N, Р и К. Но эти точки по условию не могут принадлежать одной прямой. Значит, MN и РК не пересекаются.

Задание. Есть 4 точки, из которых три принадлежат одной прямой. Могут ли эти точки не лежать на единой плоскости?

Решение. Пусть точки Р, К, М находятся на единой прямой РК, а Н – ещё одна точка. Если Н также лежит на РК, то мы можем построить бесконечно много плос-тей, проходящих через РК, и каждая из них будет содержать все эти четыре точки. Если же Н не принадлежит РК, то всё равно через РК и Н можно провести плос-ть, но на этот раз единственную. И эта плос-ть также будет содержать в точки Р, К, М и Н. В любом случае получается, что эти точки находятся на одной плос-ти.

Задание. Через пересекающиеся прямые m и n проведена плоскость α. Верно ли, что любая прямая h, пересекающая m и n в различных точках, будет также принадлежать α?

Решение. Пусть прямая h пересекает m и n в точках В и C соответственно. Раз эти точки принадлежат прямым m и n, то они принадлежат и плос-ти α. Получается, что две точки прямой h (В и С) находятся на α. Тогда, по аксиоме 4, и вся прямая h также находится на α. То есть утверждение, сформулированное в условии задачи, верно.

Задание. Три прямые проходят через общую точку M. Верно ли, что они находятся в одной плоскости?

Решение. Неверно, они могут как находиться, так и не находиться в одной плоскости. Оба случая проиллюстрируем примерами. Пусть есть точки М, Р, К и Н, причем они одной плос-ти не принадлежат. Тогда прямые МР, МК, МН пересекаются в М, но находятся в одной плос-ти. Если же мы выберем точки М, Р, К, Н так, чтобы они находились на единой плос-ти, то прямые МР, МК, МН пересекутся в М и будут принадлежать одной плос-ти.

Задание. Плос-ти α и β не пересекаются. Прямая m пересекает α. Докажите, что она также пересекает и β.

Решение. Сразу скажем, что эта задача сложнее предыдущих, и ее решение неочевидно. Дадим подсказку: при решении стереометрических задач можно использовать и аксиомы планиметрии, в том числе и знаменитую аксиому о параллельных прямых.

Теперь приведем решение. Пусть m пересекает α в точке А. Отметим на β произвольную точку С. Теперь мы можем провести ещё одну плос-ть γ через прямую m и точку C:

Плос-ти γ и β имеют общую точку С. Значит, они пересекаются по некоторой прямой k. У плос-тей γ и α есть общая точка А, поэтому и они пересекаются по некоторой прямой n.

Теперь проанализируем расположение прямых n и k. Они не могут пересекаться, ведь тогда бы точка их пересечения была общей для α и β, а они не пересекаются. Также n и k лежат в одной плос-ти. Тогда n и k по определению параллельны.

Напомним, что по аксиоме параллельности через точку на плос-ти может быть проведена лишь одна прямая, параллельная заданной прямой. В частности, через точку А мы можем провести только одну прямую, параллельную k. Такая прямая уже проведена – это n. Тогда вторая прямая, проходящая через А (это как раз m) либо совпадает с n, либо пересекает k. Совпадать с n она не может, ведь в этом случае m будет полностью принадлежать плос-ти α, а она по условию лишь пересекает ее. Значит, m должна пересечь k в некоторой точке В. Эта точка В принадлежит прямой k, а значит, находится и на плос-ти β. Тем самым мы показали, что m и β пересекаются в точке В.

Для полноты доказательства надо ещё показать, что m имеет ровно одну общую точку с В. Действительно, если бы была ещё одна общая точка, то по аксиоме 4 вся прямая m находилась бы на β. Тогда и точка А оказалась бы на β, то есть она стала бы общей точкой α и β, но таких общих точек по условию не существует, ч. т. д.

Задание. Четыре точки в пространстве выбраны так, что никакая прямая, проходящая через две из этих точек не пересекается с прямой, проходящей через другие две точки. Могут ли эти четыре точки находиться на одной плос-ти?

Решение. Предположим, что есть точки М, Р, К и Н, удовлетворяющие условию задачи и находящиеся на одной плос-ти. Ясно, что никакие три из этих точек не принадлежат одной прямой. Тогда мы можем построить четырехугольник МРКН.

Прямые МР и КН по условию не должны пересекаться, то есть они параллельны. Аналогично параллельны МН и РК. Значит, МРКН – параллелограмм по его определению. Но в параллелограмме пересекаются диагонали МК и РН, а по условию и эти прямые не должны пересекаться. Получили противоречие. Из него вытекает, что М, Р, К и Н НЕ могут находиться на одной плоскости.

В ходе сегодняшнего урока мы познакомились с понятием стереометрии. Именно этот раздел геометрии мы будем изучать в течение 10 и 11 класса. Мы узнали о пяти основных стереометрических аксиомах следствиях из них. Использование аксиом в учебном процессе не только позволяет понять геометрию, но и развивает навыки строгого логического мышления, так необходимые в современном мире.

Простейшие фигуры в пространстве : точка, прямая, плоскость.
Плоскость.

Представление о плоскости дает гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

На рисунках плоскости изображаются в виде параллелограмма или в виде произвольной области и обозначаются греческими буквами α, β, γ и т.д. Точки А и В лежат в плоскости β (плоскость β проходит

через эти точки), а точки M, N, P не лежат в этой плоскости. Коротко

это записывают так: А ∈ β, B ∈ β,

Аксиомы стереометрии и их следствия

Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).

Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В таком случае говорят, плоскости пересекаются по прямой.

Пример: пересечение двух смежных стен, стены и потолка комнаты

НЕКОТОРЫЕ СЛЕДСТВИЯ ИЗ АКСИОМ

Через прямую a и не лежащую на ней точку А проходит плоскость, и притом только одна.

Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.

Читайте также: