Сравните строение днк и рнк назовите различия кратко

Обновлено: 05.07.2024

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

строение ДНК

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основание Название нуклеотида Обозначение
Аденин Адениловый А (A)
Гуанин Гуаниловый Г (G)
Тимин Тимидиловый Т (T)
Цитозин Цитидиловый Ц (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3'-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5'-углеродом (его называют 5'-концом), другой — 3'-углеродом (3'-концом).

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

Репликация ДНК

В репликации участвуют следующие ферменты:

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3'-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3'-конца к 5'-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3'–5' синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5'–3' — прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Купить проверочные работы
по биологии

Биология. Растения. Бактерии. Грибы. Лишайники. Работаем по новым стандартам. Проверочные работы
Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. Общие закономерности. Работаем по новым стандартам. Проверочные работы

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

транспортная РНК

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Большинство из вас слышали о трехбуквенных аббревиатурах ДНК и РНК. Некоторые из вас могут даже знать, к чему они относятся. Дезоксирибонуклеиновая кислота (ДНК) часто упоминается в связи с тем, что она в буквальном смысле диктует дальнейшее развитие организма. Рибонуклеиновая кислота (РНК) является менее популярной аббревиатурой, чем ДНК, так как она не в центре внимания, но она так же важна. Хотя между этими двумя молекулами есть много общего (да, они являются молекулами), их различия гораздо более интересны, ведь именно в этом кроются их основные функции.

По данным Национальной медицинской библиотеки США, ДНК каждого человека состоит из трех миллиардов фундаментальных единиц. Кроме того, более 99 процентов этих единиц одинаковы для всех людей. Другими словами, посмотрите вокруг и обратите внимание, насколько мы все разные. Только 1% из трех миллиардов достаточно, чтобы сделать нас уникальными во многих отношениях.

Эти фундаментальные блоки в последовательности ДНК образуют гены, так же как буквы в предложении создают слова. Подобно тому, как мы используем слова, чтобы доносить свои мысли друг другу, клетка использует гены в качестве инструкций для создания белков.

ДНК и РНК являются частью одного из самых важных понятий в биологии , а именно центральной догмы, которая относится к процессу превращения ДНК в РНК, которая превращается в белок.

ДНК, расположенная глубоко внутри клетки в ее ядре, превращается в РНК во время процесса, который называется транскрипцией. Эта РНК, будучи копией ДНК, затем транслируется во все белки, которые делают нас теми, кто мы есть, и поддерживают наши жизненные процессы. Эта центральная догма уже указывает на два существенных различия между ДНК и РНК:

1. ДНК транскрибируется в РНК

ДНК жизненно важна для размножения клеток и для развития организмов. ДНК содержит все гены, которые превращают организм в то, чем он является. Таким образом, ДНК драгоценна и должна быть защищена. Он расположен в ядре, которое никогда не покидает. Во время транскрипции копии ДНК создаются в форме РНК, которая в свою очередь продолжает кодировать белки. Разница между этими двумя молекулами заключается в том, что процесс транскрипции идет только одним путем, а именно ДНК превращается в РНК, и никогда наоборот.

2. РНК транслируется в белки

Итак, учитывая вышесказанное, РНК является копией ДНК и готова к превращению в белки. Этот процесс называется трансляцией, и он происходит в рибосомах или небольших процессорных единицах, которые читают строительные блоки РНК , называемые нуклеотидами. Каждые три нуклеотида кодируют аминокислоту в ряду аминокислот, которые составляют белок. Только РНК может быть переведена в белки, а не ДНК.

Учитывая эти два различия, вы уже много знаете о двух молекулах. Одно из сходств между ними состоит в том, что оба являются длинноцепочечными молекулами или длинными цепочками букв, которые являются важными строительными блоками для всего, что следует после, а именно для нуклеотидов. Нуклеотидов всего четыре, что подводит нас к следующему различию между двумя молекулами.

3. Нуклеотидная последовательность

Молекула ДНК состоит из четырех нуклеотидов , а именно цитозина, гуанина, аденина и тимина. Каждый нуклеотид состоит из фосфатной группы, сахарной группы и азотистого основания. Молекула РНК также представляет собой цепочку из четырех нуклеотидов, а именно цитозина, гуанина, аденина и урацила.

4. Одна спираль, две спирали

ДНК является двухспиральной молекулой. РНК, с другой стороны, состоит только из одной цепи нуклеотидов. Две цепи ДНК удерживается вместе молекулярными связями между нуклеотидами, в результате чего цитозин связывается с гуанином, а аденин связывается с тимином (или урацилом в РНК).

5. Различные типы молекул РНК

Существует несколько различных моделей молекул РНК в зависимости от выполняемых функций. К ним относятся биологически активные РНК, такие как иРНК, тРНК и рРНК . Первая, а именно иРНК, несет информацию ДНК из ядра в рибосому. В свою очередь, тРНК относится к трансферной РНК, которая важна для распознавания трехбуквенного кода, или кодона, который кодирует конкретную аминокислоту. Рибосомная РНК, или рРНК, лежит в основе рибосомального механизма, который производит белки благодаря связыванию аминокислот.

Теперь, когда вы знаете немного больше о ДНК и РНК, будьте уверены, что между этими двумя молекулами есть еще больше различий. Они подчеркивают не только то, насколько продвинулись наши представления о молекулярной биологии, но и то, насколько точной и элегантной является природа матери в процессах, которые так важны в жизни.

В основе мономеров дезоксирибонуклеиновой и рибонуклеиновой кислот — углевод — пентоза и рибоза соответственно. ДНК в своем составе содержит азотистое основание (пиримидиновое основание) — тимин, а РНК — урацил (отсутствует метильная группа).

ДНК — двойная антипараллельная правозакрученная спираль, а РНК — одиночная цепь.

ДНК способна удваиваться, а РНК — нет. Молекулы ДНК длиннее молекул РНК.

Сходства: полинуклеотиды (кроме т-РНК), мономеры – нуклеотиды, несут наследственную информацию о белках клеток, азотистые основания – пятиуглеродистые углеводы.

Различия: ДНК – один тип молекулы и две ее структуры, РНК – три типа молекулы: матричная (информационная), транспортная, рибосомальная РНК; разные азотистые основания: РНК – А, Г, Ц, У. ДНК – А, Ц, Т, Г; комплементарность в ДНК: А=Т, Г=Ц, в РНК: А=У, Г=Ц; разные углеводы: в ДНК – дезоксирибоза, в РНК – рибоза.

Молекула ДНК представляет собой двухцепочечный линейный нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие дезоксирибозу, аденин, гуанин, цитозин, тимин и остаток фосфорной кислоты. Цепи в молекуле ДНК антипараллельны - разнонаправлены. Цепи связаны друг с другом водородными связями, возникающими между азотистыми основаниями противоположных цепей по принципу комплементарности, т. е. взаимодополнения. При этом образуются пары: аденин - тимин, гуанин - цитозин. Двухцепочечная молекула ДНК образует спираль, которая, взаимодействуя с белками гистонами, формирует нуклеосомную нить - спираль более высокого порядка. Нуклеосомная нить, в свою очередь, образует суперспираль, при атом молекула так значительно укорачивается и утолщается, что становится видна в световой микроскоп как вытянутое тельце - хромосома.

Молекула РНК - одноцепочечный, линейный, нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие рибозу, аденин. урацил, гуанин. цитозин и остаток фосфорной кислоты. Многие виды РНК формируют участки комплементарного соединения в пределах одной цепи, что придает им определенную пространственную конфигурацию. Встречаются и двуцепочечные РНК, которые являются хранителями генетической информации у ряда вирусов, т. е. выполняют у них функции хромосом.

Аватар

Существует два типа нуклеиновых кислот: ДНК и РНК.

ДНК (дезоксирибонуклеиновая кислота) — биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г); пятиатомный сахар пентозу — дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. В каждой цепи нуклеотиды соединяющиеся путем образования ковалентных связей мсжлу дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цени и одну молекулу при помощи водородных связей, возникающихих между азотистыми основаниями, входящими и состав нуклеотидов.

Рибонуклеиновая кислота (РНК), так же как ДНК, представляет собой полимер, в состав которого входят (аденин, гуанин, цитозин); нуклеотид — урацил — присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дезоксирибозы другую пентозу — рибозу. В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

Нуклеиновые кислоты отличаются по общей структуре: ДНК представляет собой комплементарную двуцепочечную молекулу (аденин всегда стоит напротив тимина, гуанин — напротив цитозина), РНК — одноцепочечную. Содержание ДНК в клетках относительно постоянно; содержание РНК может варьировать в зависимости От интенсивности синтеза белка. Все молекулы ДНК в принципе сходны между собой по строению и выполняемым функциям, а среди РНК выделяют несколько групп.

Общее в нуклеиновых кислотах то, что их молекулы являются полинукле­отидами.

Различий межу ДНК и РНК несколько. Вот самые главные из них:

1) молекула ДНК двуцепочечная, а мо­лекула РНК — одноцепочечная и мень­ших размеров;

2) нуклеотид ДНК включает углевод дезоксирибозу, а в нуклеотиде РНК в ка­честве пятиуглеродного сахара присутст­вует рибоза;

3) у молекулы РНК вместо азотистого основания тимина находится урацил.

Молекула ДНК состоит из двух спирально закрученных полинуклеотидных цепей, причём каждая спираль закручена вправо, и обе они свиты вместе, т. е. закручены вправо вокруг одной оси.

Молекулы РНК состоят из одной полинуклеотидной цепи, которая может иметь прямые и спиральные участки, образовывать петли (также за счёт водородных связей).

Изображение Параграф 18 Вопрос 3 ГДЗ Габриелян 10 класс (базовый уровень)

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

Похожие решебники

Популярные решебники 10 класс Все решебники

Изображение учебника

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

• А – аденин; Т – тимин; Г – гуанин; Ц – цитозин (азотистые основания) + моносахарид дезоксирибоза + остаток фосфорной кислоты.

• Связана водородными связями.



• ДНК находится в ядре. Только клетки эукариоты – частично в митохондриях и в пластидах.

• ДНК листа салата схожа с человеческой на 30%, шимпанзе – на 95%, мыши – около 70%. Весь человеческий род схож на 99,9%.

• А – аденин; У – урацил; Г – гуанин; Ц – цитозин + моносахарид рибоза.


Функции:

1. иРНК (информационная / матричная) находится в ядре клетки и цитоплазме. Несёт информацию о структуре белка от ДНК к месту синтеза белка.

2. тРНК (транспортная) находится в цитоплазме. Перенос молекул аминокислот к месту синтеза белка.

3. рРНК (рибосомная) синтезируется в ядрышках, образуя рибосомы. Переносчик генов от ДНК к белку.

Читайте также: