Способы натяжения арматуры кратко

Обновлено: 05.07.2024

1. На упоры (до бетонирования). Арматуру заводят в форму до бетонирования элемента, один конец закрепляют в упоре, другой – натягивают домкратом до заданного напряжения σsp. Затем в форму заливают бетон. После достижения бетоном передаточной прочности Rbp арматуру отпускают с упоров, при этом она обжимает окружающий бетон. Чтобы избежать разрушения бетона в торцах элементов, отпуск натяжения арматуры производят постепенно, снижая сначала на 50%, а затем до 0.

2. На бетон. Сначала изготавливают бетонный элемент, в котором предусматривают каналы или пазы. После приобретения бетоном передаточной прочности Rbp, в каналы пропускают рабочую арматуру и натягивают ее на бетон. После натяжения концы арматуры закрепляют анкерами. Для обеспечения сцепления арматуры с бетоном каналы и пазы заполняют под давлением цементным раствором.

Методы натяжения арматуры:

1. Электротермический – необходимое относительное удлинение арматуры еsp получают электрическим нагревом арматуры до соответствующей температуры.

2. Механический – необходимое относительное удлинение арматуры получают вытяжкой арматуры натяжными механизмами (гидравлические и винтовые домкраты, лебедки, тарировочные ключи, намоточные машины и т.д.).

3. Электротермомеханический – совокупность механического и электротермического методов.

4. Физико-химический – заключается в самонапряжении конструкции вследствие использования энергии расширяющегося цемента.

Виды обжатия

1. Одноосное обжатие.

2. Двуосное обжатие.

3. Трехосное обжатие.

Виды анкеров

1. Высаженная головка.

2. Анкеровка с помощью коротких стержней.

3. Винтовой анкер.

10.2. Значения предварительных напряжений

Значения предварительных напряжений имеют существенное значение. При малых значениях эффект преднапряжения может быть утрачен вследствие потерь предварительного напряжения. При высоких значениях возникает опасность разрыва арматуры при натяжении.

Предварительные напряжения σsp и σ’sp в арматуре S и S’ следует назначать с учетом допустимых отклонений р таким образом, чтобы выполнялись условия:

где - при механическом способе натяжения арматуры;

- при электротермическом способе натяжения арматуры, где l – длина натягиваемого стержня, p – в МПа.

Начальные контролируемые напряжения в арматуре S и S’ при натяжении на упоры с учетом потерь от деформации анкеров и трения об огибающие приспособления:

Начальные контролируемые напряжения в арматуре S и S’ при натяжении на бетон (с учетом того, что часть усилия тратится на обжатие бетона):

где σsp, σ’sp - определяются без учета потерь предварительного напряжения;

σbp, σ’bp - определяются с учетом потерь предварительного напряжения;

- коэффициент приведения (соотношение модулей упругости бетона и арматуры).

Возможные производственные отклонения от заданного значения предварительного напряжения арматуры учитывают в расчетах коэффициентом точности натяжения арматуры:

- при механическом способе натяжения арматуры;

- при электротермическом и электромеханическом способах натяжения арматуры; np – число стержней напрягаемой арматуры в сечении элемента.

При определении потерь предварительного напряжения арматуры, а также при расчете по раскрытию трещин и по деформациям значение допускается принимать равным нулю.

Передаточную прочность бетона к моменту обжатия Rbp устанавливают так, чтобы не создавался слишком высокий уровень напряжения , сопровождающийся значительными деформациями ползучести и потерей предварительного напряжения в арматуре. Рекомендуется Rbp принимать по расчету, но не менее 50% от нормативного сопротивления бетона сжатию Rbn.

10.3. Потери предварительных напряжений

Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие до начала эксплуатации конструкции, и вторые потери – за период эксплуатации.

Первые потери:

1. Потери от релаксации напряжений в арматуре при натяжении на упоры; зависят от способа натяжения и вида арматуры;

При механическом способе натяжения арматуры:

При электротермическом и электротермомеханическом способах натяжения арматуры:

Здесь принимается без учета потерь, МПа.

2. Потери от температурного перепада, т.е. от разности температур в зоне нагрева и устройства, воспринимающего усилие натяжения при прогреве бетона.

При натяжении на упоры: - для бетонов классов В15 - В40;

- для бетонов классов В45 и выше;

где - разность между температурой нагреваемой арматуры и неподвижных упоров (вне зоны нагрева), воспринимающих усилие натяжения, 0 С. При отсутствии точных данных принимается .

При натяжении на бетон потерь от температурного перепада нет, т.к. форма нагревается вместе с изделием.

3. Потери от деформации анкеров, расположенных у натяжных устройств, вследствие обжатия шайб, смятия высаженных головок. смещения стержней в инвентарных зажимах и т.п.

- при механическом способе натяжения на упоры: ,

где мм при обжатии шайб, смятии высаженных головок и т.п.;

- при смещении стержней в инвентарных зажимах, где d – диаметр стержня, мм,

l – длина натягиваемого стержня (расстояние между наружными граниями упоров формы), мм.

- при электротермическом способе натяжения на упоры: ,

- при натяжении на бетон: ,

где мм – обжатие шайб или прокладок, расположенных между анкерами и бетоном элемента;

мм – деформация анкеров стаканного типа, колодок с пробками, анкерных гаек и захватов;

l – длина натягиваемого стержня, мм.

4. Потери от трения арматуры:

а) о стенки каналов или о поверхность бетона конструкций при натяжении на бетон:

Методов изготовления предварительно напряженного ж/бетона много, но все они по своей принципиальной схеме могут быть классифицированны, какнатяжение на упоры и на натяжения на бетон.

А) 1. Натяжение на упоры.

Изготовление элементов с натяжением на упоры производится следующим образом. Арматуру укладывают в форму до бетонирования элемента. Один ее конец закрепляется в упоре, а другой в натяжном приспособлении (домкрате). После натяжения арматуры до заданных напряжений (в пределах упругих деформаций) закрепляют ее второй конец. Затем элемент бетонируют. Когда бетон наберет необходимую прочность (Ro>0,7R), арматуру отпускают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает окружающий ее бетон, благодаря сцеплению с ним. При этом арматура теряет часть предварительного напряжения. Если в конструкции была уложена не подвергаемая предварительному натяжению арматура, то и она при обжатии бетона получает сжимающие напряжения.

Укладку арматуры в форму и ее натяжение совмещается в одной операции. Имеем поддон, снабженный штырями, расположенными в соответственными проектным положением арматуры.

6) поддон; 7) штыри поддона;

8) трубки; 9) зажим;

На штыри надевают стальные трубки. Специальной навивочной машиной проволочную арматуру навивают на трубки с заданной величиной напряжений, и конец ее закрепляют пластичным зажимом. Штырями поддона проволока удерживается в натянутом состоянии. Когда бетон наберет достаточную прочность, изделие с поддона снимают, и арматура обжимает бетон. Трубки остаются в теле бетона и играют роль анкеров.

Натяжение арматуры может быть создано также электротермическим способом.

Заготовленные стержни разогревают электрическим током до t=300-400 градусов, вследствие что они удлиняются. Нагретые стержни укладывают в форму, и концы их закрепляют на упорах, расположенных на форме, или вне ее. Остывая, арматура стремится восстановить свою первоначальную длину, но поскольку она удерживается упорами, в ней возникают растягивающие напряжения. После бетонирования и отвердения бетона арматуру отпускают с упоров и происходит обжатие бетона.

Б)Натяжение на бетон.

При натяжении на бетон сначала изготовляют бетонный или мало армированный элемент; затем при достижении бетоном прочности не менее 0,7 R, создают предварительное напряжение.

Напрягаемая арматура располагается в каналах и при натяжении не имеет сцепления с бетоном. Обжатие бетона происходит в процессе натяжения арматуры. Напряжения в бетоне контролирует после обжатия бетона. Каналы элемента имеют диаметр на 5-15мм больше диаметра арматуры и выполняются при бетонировании элемента путем укладки гофрированных стальных трубок (оболочек) или пустотообразователей, извлекаемых из бетона. Арматуру пропускают сквозь канал. Один ее конец, снабженный соответствующим анкером, закрепляют в торце элемента, а другой захватывают домкратом на противоположном торце. Домкрат, упираясь в торец бетонного элемента производит натяжение арматуры и одновременно обжимает бетон. После натяжения арматуры до заданного напряжения, ее анкеруют со стороны расположения домкрата. Натяжение арматуры может производиться с 2х сторон.

Для повышения прочности бетона на местное сжатие у торцов элемента устанавливают поперечные сетки. Сцепление арматуры с бетоном создается в результате последующего заполнения канала цементным тестом или раствором, нагнетаемым под давлением через отверстия в концевых анкерах или через специальные отводы, расположенные по длине канала через 6м. Такое заполнение каналов называется инъецированием.

В последние годы для создания предварительного натяжения в конструкциях начинают усилено применять бетоны, приготовляемые на специальных напрягаемых цементах. Бетоны на таком цементе при твердении увеличиваются в объеме, и вследствие сцепления с арматурой растягивают ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения.

Арматуру можно располагать в элементе в двух и даже трех направлениях, тогда создается соответственные двухосное или трехосное предварительное напряжение.

МАТЕРИАЛЫ.

В качестве напрягаемой арматуры используют преимущественно сталь классов Ат-VI; Aт-V длинной до 12м, допускается сталь классов А-Vl, A-V, A-IV, а при большей длине- сталь классов B-II, Bp-II, K-7, K-19. Для конструкций, работающих в агрессивных средах, используют арматуру классов А-IV, термически упрочненную арматуру всех классов (кроме Aт-IVc) и высокопрочную проволоку. Сваривать или приваривать к ней закладные детали запрещается.

Экономичность напряженной арматуры возрастает по мере увеличения ее прочности, так как требуемое по расчету количество арматуры уменьшается пропорционально увеличению ее расчетного сопротивления

K=Ц/Rs – отсюда видно, что с увеличением прочности арматуры

(с увеличением Rs), снижается ее удельная стоимость и, следовательно, растет ее эффективность.

Арматурные канаты и пучки.

Армирование конструкций отдельными высокопрочными проволоками вследствие их большого числа трудоемко и часто приводит к излишнему сечению элементов. В связи с этим проволоку укрупняют в канаты или пучки. Канаты обычно изготовляют из 7 или 19 проволок одного диаметра (обозначение К-7 или К-19), навивая на центральную прямолинейную проволоку остальные в один или несколько слоев. Диаметр проволок канатов К-7 от 2….5 мм. В тяжело нагруженных элементах конструкции применяют спирально-витые многопрядевые канаты: двухпрядевые класса К2х7, трехпрядевые класса К3-м, многопрядевые Kн *m, где:

Пучки состоят из параллельных высокопрочных проволок (14,18,24) или канатов. Пучки могут иметь по концам анкеры, а по длине обматываются мягкой проволокой.

Бетон для предварительного напряжения конструкций применяют обычной или повышенной марки.

Сцепление напряжений арматуры с бетоном. Самозаанкеривание арматуры. Анкерные устройства.

В предварительно напряженных конструкциях должно быть обеспечено надежное сцепление напрягаемой арматуры с бетоном. Если на какой-либо стадии изготовления предварительного напряжения конструкции надежное сцепление не может быть обеспечено, на концах напрягаемой арматуры необходимо устанавливать анкеры. Так, например, в конструкциях с натяжением на бетон установка анкеров обязательна во всех случаях, так как напрягаемая арматура, расположенная в каналах, не имеет сцепления с бетоном, пока не затвердеет раствор, инъецированный в каналы или заполняющий пазы. В конструкциях с натяжением на упоры при напрягаемой арматуре периодического профиля имеет место самозаанкеривание арматуры, обеспечивающее надежное сцепление арматуры с бетоном без применения анкеров.

Напрягаемая арматура из гладкой высокопрочной проволоки должна быть всегда снабжена анкером.

Типы анкеров разнообразные:

Это могут быть трубки, надетые на штыри и остающиеся в теле бетона. Стрежневая арматура анкеруется с помощью коротышей, приваренных шайб, гаек.

Предварительно – напряженный железобетон.Сущность предварительного натяжения

Конструирование и расчет элементов предварительно напряженных конструкций.

Традиционные железобетонные элементы иногда заменяются в строительстве более прочными аналогами, тоже выполненными из железобетона, но предварительно напряжёнными. Результатом становится улучшение характеристик и расширение функциональности материала. Благодаря особой технологии производства, преднапряженная арматура в бетоне лучше защищает материал от деформаций, дольше служит и может применяться для конструкций большого размера.

технология предварительного напряжения железобетона

Особенности изготовления

Прочность бетона повышают с помощью арматуры, которая может быть ненапрягаемой и напрягаемой. Однако первый вариант представляет собой пассивное армирование бетона, не защищающие конструкции от изгибающих и особенно динамических нагрузок. Обеспечить более эффективную защиту позволяет растягивание арматурной стали в железобетонном изделии и её избавление от натяжения в процессе застывания бетонного раствора. Сжимаясь, арматура влияет на железобетон, увеличивая предел его растяжимости, благодаря суммированию двух деформаций – предсжатия и растяжения.

Существует 3 способа натяжения арматуры.

  1. Механический – напряжение арматуры с помощью винтовых или гидравлических домкратов.
  2. Электротермический – применяется электроток, с его помощью стальные пруты разогреваются и удлиняются.
  3. Электротермомеханический – это одновременное применение механического и электротермического способа.

Требования к арматуре

В роли преднапряженной необходимо использовать классы арматуры с высокой прочностью и незначительной текучестью. С учётом небольших потерь преднапряжения при изготовлении железобетонных конструкций значение этого показателя устанавливается выше. Распространённые виды арматуры – холоднодеформированная и горячекатаная упрочнённая, арматурная проволока, сварные каркасы и канаты. Профиль арматурных элементов может быть периодическим и гладким. Какую арматуру использовать для армирования, зависит от того какую роль она играет в железобетонной конструкции.

  1. Напряженная арматура. Располагается в продольном направлении. Применяют горячекатаную и термомеханически упрочнённую арматуру класса А800, А600 и А1000 периодического профиля, холоднодеформированную сталь класса Вр1200 до Вр1500, а так же канатную К1400, К1500 (К-7, К-19).
  2. Ненапрягаемая. Она укладывается поперек продольной. Используют арматуру класса А500С, В500С, А1 (А240), А400, А300 и арматурную проволоку Вр-1.

классы арматуры

Напрягаемая арматура должна быть в виде цельных стержней.

Рекомендации по бетону

Для создания предварительно напряженных конструкций применяются бетоны с такими характеристиками:

  • плотность в пределах 2200–2500 кг/куб. м;
  • класс прочности на осевое растяжение – не меньше 0,8;
  • уровень прочности – не меньше 250–260 кг/кв. см (класс B20);
  • марка водонепроницаемости – W2 и выше;
  • морозостойкость – не ниже F50.

Какой класс бетона использовать зависит от класса напрягаемой арматуры. При отсутствии необходимых данных о бетоне, его класс можно определить спустя 28 дней после его заливки.

Преимущества и недостатки материала

Причинами использования предварительно напряжённого железобетона могут стать такие преимущества армированных конструкций:

  • высокий уровень защиты материала от образования трещин и коррозии – важный параметр для сооружений, постоянно находящихся в контакте с водой;
  • уменьшение сечения и веса железобетона в пределах 30%;
  • снижение расхода стальной арматуры на 40%;
  • повышение сопротивления динамическим нагрузкам;
  • увеличение огнестойкости построек;
  • повышение эксплуатационного срока конструкций – особенно, при использовании сборно-монолитных блоков.

плюсы напрягаемой арматуры в бетоне

Кроме плюсов, у конструкций с применением предварительного напряжения есть и несколько серьёзных минусов. В том числе – сложность контроля армирования готовых элементов, трудоёмкий процесс изготовления и необходимость привлечения квалифицированных мастеров. Вес конструкций увеличивается по сравнению с железобетоном, изготовленным по традиционной технологии, но этот недостаток устраняется использованием пустотных конструкций и лёгких заполнителей.

Применение в строительстве

Предварительно напряжённый железобетон применяют в разных сферах строительства, изготавливая из него такие объекты:

  • высотные башни, в том числе телевизионные;
  • перекрытия с большим пролётом производственных и жилых зданий;
  • резервуары для очистных сооружений;
  • гидротехнические сооружения, в том числе, плотины, каналы и шлюзы;
  • мосты с широкими пролётами;
  • колонны и столбы электропередач;
  • корпуса атомных реакторов и ограждения атомных электростанций.

Из этого же материала изготавливают подпорные стены и ограждающие панели. Подходит он и при необходимости усиления фундаментов зданий и лестничных маршей, построек и помещений, расположенных в сейсмоопасных и взрывоопасных районах. А для дополнительного повышения прочности каркасов зданий и тоннелей пользуются сборно-монолитными конструкциями, собранными из отдельных железобетонных элементов.

мост построенный с помощью преднапряженного железобетона

Изделия из преднапряжённого железобетона характеризуются большим количеством плюсов, что позволяет широко применять их в строительстве. А недостатки в основном связаны с недостаточным качеством изготовления, и могут компенсироваться ответственным отношением к производству. Чтобы избежать проблем и получить не только повышенную прочность, но и длительный срок эксплуатации, стоит доверять создание таких железобетонных конструкций профессионалам.


Оборудование для натяжения арматурного каната от активно применяется в строительcтве объектов гражданского и промышленного назначения.

Предварительное напряжение железобетонных конструкций увеличивает их жесткость и сопротивление к образованию трещин, повышает выносливость при работе под воздействием многократно повторяющихся нагрузок. Преднапряженные конструкции и здания возводятся в сейсмоопасных зонах, а технология преднапряжения используется при строительстве объектов с повышенными коэффициентами безопасности и надежности.

Инновационные методы возведения зданий, используемые в каркасном строительстве, базируются на технологии предварительного напряжения железобетонных конструкций в процессе строительства. Под предварительно напряженными понимают железобетонные конструкции, напряжение в которых создаётся искусственно во время изготовления путём натяжения части или всей рабочей арматуры на заданную величину.

Строительство включает установку колонн, их фиксацию и соединение с напрягаемой канатной арматурой. Фиксацию колонн осуществляют в нагруженном состоянии натяжением канатов с последующим бетонированием и отпуском канатов с образованием предварительно-напряженных ячеек каркаса здания. Применение такой технологии обеспечивает повышенную несущую способность здания с минимальными затратами арматуры и бетона, в среднем экономия до 50%.

Определение

Предварительно напряженные железобетонные конструкции — строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Вернуться к оглавлению

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать расход арматуры (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.

Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент — преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Вернуться к оглавлению

Преимущества технологии преднапряжения

  • Повышение трещиностойкости, жесткости и несущей способности ж/б конструкций;
  • Увеличение водонепроницаемости бетона, высокая коррозийная стойкость;
  • Повышение выносливости и долговечности конструкции, сопротивления динамическим нагрузкам;
  • Повышение сейсмостойкости железобетонной конструкции;
  • Сокращение толщины перекрытий или балок – увеличение полезной площади помещения;
  • Сокращение количества деформационных швов и увеличение размера сетки колонн;
  • Снижение расхода бетона и арматуры;
  • Возможность натяжения канатной арматуры сложной формы, возможность реализации сложных архитектурных проектов.

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Сейчас читают: Вибратор глубинный для бетона своими руками на основе дрели и перфоратора

Вернуться к оглавлению

Материалы для конструкций

Железобетон — многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Вернуться к оглавлению

Бетон

Формы для заливки бетона с прутьями для передачи предварительного напряжения.

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Вернуться к оглавлению

Арматура

Стальная начинка должна оставаться напряженной в железобетонном изделии на всем интервале эксплуатации, выдерживая без вытяжения длительно приложенные нагрузки. В преднапряженных изделиях из железобетона используется высокопрочная сталь с незначительной текучестью, соответствующей параметрам ползучести бетона.

С целью компенсирования эксплуатационной потери некоторой величины преднапряжения при изготовлении ее значение устанавливают чуть выше, чем предусмотрено строительными требованиями для конструкционного элемента. В продукции применяют горячекатаную упрочненную, холоднодеформированную арматуру, арматурную проволоку (пучки, пакеты, пряди), канаты, сварные каркасы и пр. Поперечное сечение арматуры может быть гладким, периодическим, а укладка проволоки и канатов серповидной и кольцевой.

Сталь должна гарантированно соответствовать установленному классу относительно прочности по преднапряженному растяжению (текучесть металла должна находиться в пределах 0,2% относительного удлинения) с вероятностью от 0,95 и выше. Арматуре необходимо быть пластичной, хладостойкой, свариваемой и пр. Надежное сцепление с бетонной смесью обеспечивается формированием арматурой сложных пространственных поверхностей.

Вернуться к оглавлению

Основные методы преднапряжения арматуры

В современном строительстве практикуется несколько методов получения преднапряженного железобетона:

  • механический;
  • электротермический;
  • электротермомеханический.

Выбор конкретного решения осуществляется на основании имеющегося бюджета, технологических потребностей и функционального назначения объекта.

Первый способ может осуществляться на упоры поддона или формы, а также непосредственно на бетон конструкции (конструктивного элемента). Производится гидравлическими и винтовыми домкратами, а также более простым методом — лебедками и полиспастами. Контролируя процесс натяжения арматуры динамометром, усилие плавно доводят до половины от проектных значений. После проверки правильности размещения деталей его кратковременно повышают на 110% от нормы, через 3–5 мин возвращая к 100%.

Электротермический способ получения преднапряженного бетона производят током, фиксируя на упорах поддона (формы) разогретые стержни. После остывания заданные растягивающие усилия воспринимаются затвердевшим материалом. Что касается электротермомеханического способа преднапряжения бетона, то предварительное натяжение канатов (проволоки, прядей) осуществляется армирующими машинами, которые навивают арматуру на упоры стенда. Метод применим для изготовления радиальных и сферических ЖБИ. Навивка чаще всего осуществляется посекционно.

Если во время натяжения арматуры приложить слишком большое усилие, это способствует образованию трещин (обрывов) напрягаемых элементов, а его понижение снижает трещиностойкость и несущую способность конструкции. Поэтому девианта должна быть в пределах 10% от проектных значений. Учитывая, что эти показатели при создании преднапряженного железобетона электротермическим способом можно проконтролировать только после остывания напрягаемого элемента, усилие натяжения арматуры должно находиться в пределах 20% от проектного.

В зависимости от способа физико-механические параметры арматуры можно проконтролировать динамометром или манометром методами измерения удлинения, поперечной оттяжки или измерения частот.

Области использования конструкций

Предварительно напряженный бетон позволяет сократить до 50% расхода арматурной стали.

Преднапряженные изделия используются, когда применение обычного железобетона нецелесообразно (перерасход материалов, рост веса и стоимости, невозможность обеспечить несущую прочность и пр.). Сферами их использования являются гражданское, промышленное, специальное и гидротехническое строительство. Объекты — каркасы и мосты с широкими пролетами, напорные трубопроводы, плотины, водонепроницаемые емкости и пр.

А также из них создают подпорные стены, ограждающие панели, лестничные марши, подкрановые балки, фундаменты, колонны, столбы ЛЭП, каркасы тоннелей, междуэтажные перекрытия и пр. Такая продукция незаменима и при возведении построек в условиях взрыво- и сейсмоопасности. Особенно эффективна она при формировании сборно-монолитных конструкций, когда отдельные преднапряженные сборные элементы соединяются в проектном положении арматурой так, что работают как одно целое.

Вернуться к оглавлению

Способы натяжения арматуры.Арматурные канаты и пучки.Сцепление напряжений арматуры с бетоном.

Методов изготовления предварительно напряженного ж/бетона много, но все они по своей принципиальной схеме могут быть классифицированны, какнатяжение на упоры и на натяжения на бетон.

А) 1. Натяжение на упоры.

Изготовление элементов с натяжением на упоры производится следующим образом. Арматуру укладывают в форму до бетонирования элемента. Один ее конец закрепляется в упоре, а другой в натяжном приспособлении (домкрате). После натяжения арматуры до заданных напряжений (в пределах упругих деформаций) закрепляют ее второй конец. Затем элемент бетонируют. Когда бетон наберет необходимую прочность (Ro>0,7R), арматуру отпускают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает окружающий ее бетон, благодаря сцеплению с ним. При этом арматура теряет часть предварительного напряжения. Если в конструкции была уложена не подвергаемая предварительному натяжению арматура, то и она при обжатии бетона получает сжимающие напряжения.

Укладку арматуры в форму и ее натяжение совмещается в одной операции. Имеем поддон, снабженный штырями, расположенными в соответственными проектным положением арматуры.

6) поддон; 7) штыри поддона;

8)

трубки; 9) зажим;

На штыри надевают стальные трубки. Специальной навивочной машиной проволочную арматуру навивают на трубки с заданной величиной напряжений, и конец ее закрепляют пластичным зажимом. Штырями поддона проволока удерживается в натянутом состоянии. Когда бетон наберет достаточную прочность, изделие с поддона снимают, и арматура обжимает бетон. Трубки остаются в теле бетона и играют роль анкеров.

Натяжение арматуры может быть создано также электротермическим способом.

Заготовленные стержни разогревают электрическим током до t=300-400 градусов, вследствие что они удлиняются. Нагретые стержни укладывают в форму, и концы их закрепляют на упорах, расположенных на форме, или вне ее. Остывая, арматура стремится восстановить свою первоначальную длину, но поскольку она удерживается упорами, в ней возникают растягивающие напряжения. После бетонирования и отвердения бетона арматуру отпускают с упоров и происходит обжатие бетона.

Б)Натяжение на бетон.

При натяжении на бетон сначала изготовляют бетонный или мало армированный элемент; затем при достижении бетоном прочности не менее 0,7 R, создают предварительное напряжение.

Напрягаемая арматура располагается в каналах и при натяжении не имеет сцепления с бетоном. Обжатие бетона происходит в процессе натяжения арматуры. Напряжения в бетоне контролирует после обжатия бетона. Каналы элемента имеют диаметр на 5-15мм больше диаметра арматуры и выполняются при бетонировании элемента путем укладки гофрированных стальных трубок (оболочек) или пустотообразователей, извлекаемых из бетона. Арматуру пропускают сквозь канал. Один ее конец, снабженный соответствующим анкером, закрепляют в торце элемента, а другой захватывают домкратом на противоположном торце. Домкрат, упираясь в торец бетонного элемента производит натяжение арматуры и одновременно обжимает бетон. После натяжения арматуры до заданного напряжения, ее анкеруют со стороны расположения домкрата. Натяжение арматуры может производиться с 2х сторон.

Для повышения прочности бетона на местное сжатие у торцов элемента устанавливают поперечные сетки. Сцепление арматуры с бетоном создается в результате последующего заполнения канала цементным тестом или раствором, нагнетаемым под давлением через отверстия в концевых анкерах или через специальные отводы, расположенные по длине канала через 6м. Такое заполнение каналов называется инъецированием.

В последние годы для создания предварительного натяжения в конструкциях начинают усилено применять бетоны, приготовляемые на специальных напрягаемых цементах. Бетоны на таком цементе при твердении увеличиваются в объеме, и вследствие сцепления с арматурой растягивают ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения.

Арматуру можно располагать в элементе в двух и даже трех направлениях, тогда создается соответственные двухосное или трехосное предварительное напряжение.

МАТЕРИАЛЫ.

В качестве напрягаемой арматуры используют преимущественно сталь классов Ат-VI; Aт-V длинной до 12м, допускается сталь классов А-Vl, A-V, A-IV, а при большей длине- сталь классов B-II, Bp-II, K-7, K-19. Для конструкций, работающих в агрессивных средах, используют арматуру классов А-IV, термически упрочненную арматуру всех классов (кроме Aт-IVc) и высокопрочную проволоку. Сваривать или приваривать к ней закладные детали запрещается.

Экономичность напряженной арматуры возрастает по мере увеличения ее прочности, так как требуемое по расчету количество арматуры уменьшается пропорционально увеличению ее расчетного сопротивления

K=Ц/Rs – отсюда видно, что с увеличением прочности арматуры

(с увеличением Rs), снижается ее удельная стоимость и, следовательно, растет ее эффективность.

Арматурные канаты и пучки.

Армирование конструкций отдельными высокопрочными проволоками вследствие их большого числа трудоемко и часто приводит к излишнему сечению элементов. В связи с этим проволоку укрупняют в канаты или пучки. Канаты обычно изготовляют из 7 или 19 проволок одного диаметра (обозначение К-7 или К-19), навивая на центральную прямолинейную проволоку остальные в один или несколько слоев. Диаметр проволок канатов К-7 от 2….5 мм. В тяжело нагруженных элементах конструкции применяют спирально-витые многопрядевые канаты: двухпрядевые класса К2х7, трехпрядевые класса К3-м, многопрядевые Kн *m, где:

Пучки состоят из параллельных высокопрочных проволок (14,18,24) или канатов. Пучки могут иметь по концам анкеры, а по длине обматываются мягкой проволокой.

Бетон для предварительного напряжения конструкций применяют обычной или повышенной марки.

Сцепление напряжений арматуры с бетоном. Самозаанкеривание арматуры. Анкерные устройства.

В предварительно напряженных конструкциях должно быть обеспечено надежное сцепление напрягаемой арматуры с бетоном. Если на какой-либо стадии изготовления предварительного напряжения конструкции надежное сцепление не может быть обеспечено, на концах напрягаемой арматуры необходимо устанавливать анкеры. Так, например, в конструкциях с натяжением на бетон установка анкеров обязательна во всех случаях, так как напрягаемая арматура, расположенная в каналах, не имеет сцепления с бетоном, пока не затвердеет раствор, инъецированный в каналы или заполняющий пазы. В конструкциях с натяжением на упоры при напрягаемой арматуре периодического профиля имеет место самозаанкеривание арматуры, обеспечивающее надежное сцепление арматуры с бетоном без применения анкеров.

Напрягаемая арматура из гладкой высокопрочной проволоки должна быть всегда снабжена анкером.

Типы анкеров разнообразные:

Это могут быть трубки, надетые на штыри и остающиеся в теле бетона. Стрежневая арматура анкеруется с помощью коротышей, приваренных шайб, гаек.

Читайте также: