Спектральный состав солнечной радиации кратко

Обновлено: 07.07.2024

Спектр Солнца

Перед вами — видимая часть солнечного спектра в интервале от 4000 до 7000 Å (ангстрем — это внесистемная единица длины, равная 10 −10 м, то есть 10 Å=1 нм). Изображение создано на основе данных цифрового атласа, полученных при помощи фурье-спектрографа обсерватории McMath-Pierce Solar Observatory, расположенной в пустыне Сонора (штат Аризона, США). Эта обсерватория является частью комплекса Национальной обсерватории Китт-Пик (Kitt Peak National Observatory).

При взгляде на Солнце невооруженным глазом мы видим его ярким желтым или белым раскаленным диском. Но еще Исаак Ньютон, разложив солнечный свет в спектр при помощи стеклянной призмы, показал, что в нем присутствуют, плавно переходя друг в друга, все видимые нами цвета от красного до фиолетового. На самом деле диапазон солнечного излучения, конечно, гораздо шире. Видимый нами свет — это узкая часть электромагнитного спектра, простирающегося от гамма-излучения до многокилометровых радиоволн (подробнее можно посмотреть на нашем интерактивном плакате).

Видимый и невидимый свет

Солнце светит, не ограничивая себя узкой полосой видимого света: внеатмосферные наблюдения зафиксировали излучение в диапазоне от 0,001 Å до 1 км (атмосфера поглощает часть солнечного излучения). Излучает Солнце и в рентгене, и в инфракрасной области, и в ультрафиолете, и даже в области радиоволн.

Солнечное излучение вне атмосферы и на уровне моря

Солнечный спектр, как видно на главном фото, сплошной, но перекрывается темными провалами линий поглощения. Что это значит? Любое вещество, как мы знаем со времен Демокрита, состоит из атомов. Сами же атомы, чего не знал Демокрит, состоят из ядра и электронов и имеют свои энергетические уровни — фиксированные значения энергии, которыми могут обладать электроны, находящиеся вокруг ядра. Переход электрона с уровня на уровень сопровождается испусканием (или поглощением) энергии в виде света.

Рассмотрим этот процесс на примере атома водорода. Переходы могут происходить и со второго уровня на первый, и с пятого на третий. Все возможные переходы с вышележащих уровней на какой-то один называются спектральной серией. Так, переходы на первый уровень — это серия Лаймана, на второй — серия Бальмера и так далее. При этих переходах излучаются кванты света (фотоны) определенной частоты и длины волны.

Спектральные серии водорода

Электроны, уровни и испускаемый свет

Спектры излучения атомов имеют, таким образом, четкие раздельные светящиеся линии, частота которых соответствует частотам излученных фотонов. Такой спектр называется линейчатым. В 1859 году физик Густав Кирхгоф и химик Роберт Бунзен показали, что спектрам излучения атомов различных веществ соответствуют различные наборы линий в спектрах. Иными словами, линейчатый спектр каждого элемента уникален, как отпечаток пальца, и по этому отпечатку его можно идентифицировать. Так появился спектральный анализ.

Благодаря этим уникальным портретам атомов стало возможным выявить присутствие вещества в любом теле, смеси жидкостей или газов, спектр которого мы получили и можем рассмотреть. Но чтобы обладать линейчатым спектром, вещество должно состоять из таких отдельных атомов, то есть быть разреженным атомарным газом. Например, в хромосфере (части атмосферы) Солнца присутствует в виде очень разреженного газа ионизированный кальций.

Спектр кальция

Виды спектров излучения

Виды спектров излучения: а) линейчатый, атомный: состоит из отдельных узких линий. b) молекулярный: полосы молекулярного газа состоят из множества узких полос, таких же, как у линейчатых спектров, просто они расположены очень плотно друг к другу. с) сплошной: излучение происходит на всех частотах

В 2014 году был создан искусственный материал из углеродных нанотрубок, больше всего приближающийся по своим свойствам к гипотетическому АЧТ, — vantablack. В видимом диапазоне он поглощает 99,965% падающего на него света (см. картинку дня Самый черный материал). В прошлом году был создан еще более черный материал с коэффициентом поглощения 99,995%, что в 10 раз чернее vantablack.

Наше Солнце по своему спектру очень близко к излучению АЧТ, нагретого до температуры 6000 К. Однако природа его излучения совсем другая, чем у твердого нагретого тела. Ответственность за изображение Солнца, каким мы его видим, несет фотосфера — часть атмосферы Солнца, где и формируется непрерывный спектр солнечного излучения. Это небольшой слой глубиной порядка 300–400 км. Фотосфера представляет собой вовсе не твердое тело — это газ, раскаленный и очень сильно разреженный (плотность фотосферы равна в среднем 10 −9 г/см 3 — одна миллиардная грамма на кубический сантиметр, в миллион раз меньше плотности воздуха). Газ этот состоит из водорода (74%), гелия (25%), а также кислорода и находящихся в газообразном состоянии прочих элементов (железа, углерода, магния, серы и других), на долю которых приходится примерно 1% от общей массы. Тем не менее спектр его излучения вовсе не линейчатый.

Спектр излучения Солнца и спектр абсолютно черного тела

Однако остается атом в этом состоянии недолго. По сотне миллионов раз в секунду он испускает фотоны, переводя электроны на более низкие энергетические уровни, сталкивается с новыми электронами, поглощает фотоны и так далее. Жизнь кипит: атом водорода постоянно излучает и поглощает фотоны, теряет электроны, сталкивается с новыми, снова излучает, но уже в другом месте спектра. Из-за обилия таких актов излучения, а также из-за огромного количества атомов все длины волн в спектре излучения оказываются занятыми. Фотосфера излучает во всем диапазоне, образуя таким образом сплошной спектр.

Спектр натрия

Линии поглощения в солнечном спектре

Со времен Фраунгофера, открывшего и описавшего свыше 500 линий поглощения, их число выросло более чем до 25 000 — это, конечно, уже во всем спектре, не только в видимой его части. По этим спектральным провалам можно делать выводы о строении и составе Солнца (так, например, был открыт гелий, в честь Солнца и названный).

Увеличенная часть главного изображения

Увеличенная часть главного изображения. Так выглядит знакомый нам дублет натрия. Длина волны (в ангстремах) подписана под спектральной лентой. Название элемента, которому принадлежит линия, — над ней. Рассмотреть весь спектр Солнца в подробностях, где каждая линия поглощения подписана, можно, скачав файл по ссылке

Солнце в рентгене и ультрафиолете

Линии поглощения помогают получать информацию о солнечной структуре из разных слоев. С высотой меняются физические характеристики солнечной атмосферы и, соответственно, состояние элементов, что сказывается на их спектрах. Линии поглощения позволяют рассматривать Солнце без ослепляющей засветки фотосферы — для этого нужно использовать светофильтр, имеющий узкую полосу пропускания именно на частоте линии поглощения. Так рассматривают свет, идущий от хромосферы, обычно невидимой в ярком свете фотосферного слоя.

Читайте также: