Соотношение неопределенностей гейзенберга кратко

Обновлено: 05.07.2024

Невозможно одновременно с точностью определить координаты и скорость квантовой частицы.

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности, названный теперь его именем:

математическое выражение которого называется соотношением неопределенностей Гейзенберга:

Δx х Δv > h/m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt. За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация, — и выявить ее мы не можем. Обозначим погрешность измерения энергии Δ Е. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для Δ Е и неопределенности времени, которым квантовая частица этой энергией обладала:

Δ Е Δt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.


Квантовая механика имеет дело с объектами микромира, с наиболее элементарными составляющими материи. Поведение их определяется вероятностными законами, проявляющимися в форме корпускулярно-волновой двойственности – дуализма. Кроме того, важную роль в их описании играет такая фундаментальная величина, как физическое действие. Естественной единицей, задающей масштаб квантования этой величины, является постоянная Планка. Она же управляет и одним из основополагающих физических принципов – соотношением неопределенностей. Это простое на вид неравенство отражает естественный предел, до которого природа может ответить одновременно на некоторые наши вопросы.

Предпосылки вывода соотношения неопределенностей

Вероятностная интерпретация волновой природы частиц, введенная в науку М. Борном в 1926 г., четко указывала на то, что к явлениям на масштабах атомов и электронов неприменимы классические представления о движении. В то же время и некоторые аспекты матричной механики, созданной В. Гейзенбергом как метод математического описания квантовых объектов, потребовали выяснения их физического смысла. Так, этот метод оперирует дискретными наборами наблюдаемых величин, представляемыми в виде особых таблиц – матриц, а их перемножение обладает свойством некоммутативности, проще говоря, A×B ≠ B×A.

Вернер Гейзенберг

Применительно к миру микрочастиц это можно интерпретировать следующим образом: результат операций по измерению параметров A и B зависит от порядка их проведения. Кроме того, неравенство означает, что эти параметры нельзя измерить одновременно. Гейзенберг исследовал вопрос о взаимосвязи измерения с состоянием микрообъекта, поставив мысленный эксперимент по достижению предела точности одновременного измерения таких параметров частицы, как импульс и координата (подобные переменные называют канонически сопряженными).

Формулировка принципа неопределенности

Соотношение неопределенностей координата - импульс

Вышеприведенное соотношение носит обобщенный характер. Необходимо учитывать, что оно справедливо лишь для каждой пары координата – компонента (проекция) импульса на соответствующую ось:

Кратко соотношение неопределенностей Гейзенберга можно выразить так: чем меньше область пространства, в которой движется частица, тем более неопределенным является ее импульс.

Мысленный опыт с гамма-микроскопом

В качестве иллюстрации к открытому им принципу Гейзенберг рассмотрел воображаемое устройство, позволяющее измерять положение и скорость (а через нее импульс) электрона сколь угодно точно путем рассеяния на нем фотона: ведь любое измерение сводится к акту взаимодействия частиц, без этого частицу вообще невозможно обнаружить.

Чтобы повысить точность измерения координаты, нужен более коротковолновый фотон, значит, он будет обладать большим импульсом, значительную часть которого при рассеянии передаст электрону. Эту часть определить нельзя, поскольку фотон рассеивается на частице случайным образом (притом что импульс – величина векторная). Если же фотон характеризуется малым импульсом, то у него большая длина волны, следовательно, координата электрона будет измерена с существенной погрешностью.


Принципиальный характер соотношения неопределенностей

В квантовой механике постоянная Планка, как уже отмечалось выше, играет особую роль. Эта фундаментальная константа входит практически во все уравнения данного раздела физики. Ее присутствие в формуле соотношения неопределенностей Гейзенберга, во-первых, указывает на масштаб, в котором эти неопределенности проявляются, и, во-вторых, говорит о том, что это явление связано не с несовершенством средств и методов измерения, а со свойствами самой материи и носит универсальный характер.

Может показаться, что в действительности частица все-таки обладает конкретными значениями скорости и координаты одновременно, а неустранимые помехи в их установление вносит акт измерения. Однако это не так. Движение квантовой частицы связано с распространением волны, амплитуда которой (точнее, квадрат ее абсолютного значения) указывает на вероятность нахождения в той или иной точке. Это означает, что у квантового объекта отсутствует траектория в классическом смысле. Можно сказать, что он обладает набором траекторий, и все они, соответственно их вероятности, осуществляются при движении (это подтверждено, например, экспериментами по интерференции электронной волны).

Интерференция в двухщелевом эксперименте

Неопределенность и действие в микро- и макромире

Физическое действие частицы выражается через фазу волны вероятности с коэффициентом ħ = h/2π. Следовательно, действие, как фаза, управляющая амплитудой волны, связано со всеми вероятными траекториями, и вероятностная неопределенность в отношении параметров, образующих траекторию, принципиально неустранима.

Действие пропорционально координате и импульсу. Эту величину можно представить и как разность между кинетической и потенциальной энергией, проинтегрированную по времени. Короче говоря, действие – это мера того, как изменяется движение частицы за некоторое время, и оно зависит, в частности, от ее массы.

В случае если действие значительно превышает постоянную Планка, наиболее вероятной становится траектория, определяемая такой амплитудой вероятности, которой соответствует наименьшее действие. Соотношение неопределенностей Гейзенберга кратко выражает то же самое, если его видоизменить с учетом того, что импульс равен произведению массы m на скорость v: Δx∙Δvx ≥ ħ/m. Сразу становится видно, что с увеличением массы объекта неопределенности становятся все меньше, и при описании движения макроскопических тел вполне применима классическая механика.

Атом в представлении художника

Энергия и время

Принцип неопределенности справедлив и для других сопряженных величин, представляющих динамические характеристики частиц. Таковыми, в частности, являются энергия и время. Они тоже, как уже было отмечено, определяют действие.

Соотношение неопределенностей энергия – время имеет вид ΔE∙Δt ≥ ħ и показывает, как связаны точность значения энергии частицы ΔE и промежуток времени Δt, на протяжении которого нужно эту энергию оценить. Так, нельзя утверждать, что частица может обладать строго определенной энергией в некоторый точный момент времени. Чем более короткий период Δt мы будем рассматривать, тем в больших пределах будет флуктуировать энергия частицы.

Электрон в атоме

Можно оценить, используя соотношение неопределенностей, ширину энергетического уровня, например, атома водорода, то есть разброс значений энергии электрона в нем. В основном состоянии, когда электрон пребывает на низшем уровне, атом может существовать бесконечно долго, иначе говоря, Δt→∞ и, соответственно, ΔE принимает нулевое значение. В возбужденном же состоянии атом пребывает лишь некоторое конечное время порядка 10 -8 с, а значит, обладает неопределенностью энергии ΔE = ħ/Δt ≈ (1,05∙10 -34 Дж∙с)/(10 -8 с) ≈ 10 -26 Дж, что составляет около 7∙10 -8 эВ. Следствием этого является неопределенность частоты излучаемого фотона Δν = ΔE/ħ, проявляющаяся как наличие у спектральных линий некоторой размытости и так называемой естественной ширины.

Мы можем также путем несложных вычислений, используя соотношение неопределенностей, оценить и ширину разброса координаты электрона, проходящего через отверстие в препятствии, и минимальные размеры атома, и величину его низшего энергетического уровня. Соотношение, выведенное В. Гейзенбергом, помогает в решении множества задач.

Линии в спектре водорода

Философское осмысление принципа неопределенности

Наличие неопределенностей часто ошибочно трактуется как свидетельство полного хаоса, якобы царящего в микромире. Но их соотношение говорит нам совсем другое: всегда выступая попарно, они как бы налагают друг на друга вполне закономерное ограничение.

Соотношение, взаимно увязывающее неопределенности динамических параметров, является естественным следствием двойственной – корпускулярно-волновой – природы материи. Поэтому оно послужило основой для идеи, выдвинутой Н. Бором с целью интерпретации формализма квантовой механики – принципа дополнительности. Всю информацию о поведении квантовых объектов мы можем получать только посредством макроскопических приборов, и неизбежно вынуждены пользоваться понятийным аппаратом, выработанным в рамках классической физики. Таким образом, мы имеем возможность исследовать либо волновые свойства таких объектов, либо корпускулярные, но никогда – одновременно те и другие. В силу этого обстоятельства мы должны рассматривать их не как противоречащие, а как дополнительные друг к другу. А простая формула соотношения неопределенностей указывает нам на границы, вблизи которых необходимо подключать принцип дополнительности для адекватного описания квантово-механической реальности.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат, импульса, энергии и т.д. (перечисленные величины называются динамическими переменными). Строго говоря, микрообъекту не могут быть приписаны указанные динамические переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами, представляющими собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, т.е. через значения динамических характеристик. В соответствии с этим измеренные значения динамических переменных приписываются микрочастицам. Например, говорят о состоянии электрона, в котором он имеет такое-то значение энергии, и т.д.

Волновые свойства частиц и возможность задать для частицы лишь вероятность ее пребывания в данной точке пространства приводят к тому, что сами понятия координаты частицы и ее скорости (или импульса) могут применяться в квантовой механике в ограниченной мере. В этом, вообще говоря, нет ничего удивительного. В классической физике понятие координаты в ряде случаев тоже непригодно для определения положения объекта в пространстве. Например, не имеет смысла говорить о том, что электромагнитная волна находится в данной точке пространства или что положение фронта волновой поверхности на воде характеризуется координатами x, y, z.

Корпускулярно-волновая двойственность свойств частиц, изучаемых в квантовой механике, приводит к тому, что в ряде случаев оказывается невозможным, в классическом смысле, одновременно характеризовать частицу ее положением в пространстве (координатами) и скоростью (или импульсом). Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты x и компоненты импульса . Неопределенности значений x и удовлетворяют соотношению:

Из (4.2.1) следует, что чем меньше неопределенность одной величины (x или ), тем больше неопределенность другой. Возможно, такое состояние, в котором одна их переменных имеет точное значение ( ), другая переменная при этом оказывается совершенно неопределенной ( – ее неопределенность равна бесконечности), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременного измерения координаты и импульса микрообъекта с любой наперед заданной точностью.

Соотношение, аналогичное (4.2.1), имеет место для y и , для z и , а также для других пар величин (в классической механике такие пары называются канонически сопряженными). Обозначив канонически сопряженные величины буквами A и B, можно записать:


.
(4.2.2)

Соотношение (4.2.2) называется соотношением неопределенностей для величин A и B. Это соотношение ввёл в 1927 году Вернер Гейзенберг.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку меньше постоянной Планка h, называется соотношением неопределенностей Гейзенберга.

Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей:


Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный, по меньшей мере,


.

Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличии у нее волновых свойств. Т.к. в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей указывает, в какой мере возможно пользоваться понятиями классической механики применительно к микрочастицам, в частности с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (4.2.1) вместо произведение , получим соотношение:

Из этого соотношения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости, следовательно тем с большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой кг и линейными размерами м, координата которой определена с точностью до 0,01 ее размеров ( м), неопределенность скорости, по (4.2.4),


т.е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться.

Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координаты и скорости могут быть измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Предположим, что пучок электронов движется вдоль оси x со скоростью м/с, определяемой с точностью до 0,01% ( м/с). Какова точность определения координаты электрона?

По формуле (4.2.4) получим:


.

Таким образом, положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории иными словами, описывать их движения законами классической механики.


Применим соотношение неопределенностей к электрону, двигающемуся в атоме водорода. Допустим, что неопределенность координаты электрона м (порядка размеров самого атома), тогда, согласно (4.2.4),


.

Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса приблизительно м его скорость м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электронов в атоме по определенной траектории. Иными словами, для описания движения электронов в атоме нельзя пользоваться законами классической физики.


Разбираем принцип неопределенности Гейзенберга с пояснениями и примерами.

Что такое принцип неопределенности Гейзенберга

Если говорить простым языком, это фундаментальный закон квантовой механики, который гласит, что невозможно точно определить скорость и местонахождение частицы.

В чем заключается сущность и смысл

Легче всего этот принцип можно представить с помощью примера. Представим, что электрон — это баскетбольный мяч, а фотоны — это бильярдные шары. За счет фотонов мы видим мир и расположение объектов на том или ином месте. Происходит это, когда фотоны отскакивают от объекта и попадают к нам в глаз (проще говоря, это свет).

Так вот, кидая бильярдные шары в баскетбольный мяч, мы будем следить за шарами, которые отскакивают, чтобы понять его местонахождение. Вот только шары довольно тяжелые относительно баскетбольного мяча, поэтому каждый раз будут придавать ему импульс, и тот будет отдаляться. Таким образом, чем сильнее мы пытаемся определить местоположение электрона, тем усиленнее кидаем в него фотоны и ненароком двигаем.

По принципу неопределенности Гейзенберга ни один доступный сегодня метод определения положения электрона не пройдет бесследно для импульса, и мы не сможем определить оба фактора одновременно.

Формула выглядит следующим образом:

\(\Delta x\;\Delta p\;\geq\;ħ /2\) , где

\(ħ\) — постоянная Планка;

\(Δx\) — среднеквадратическое отклонение координаты;

\(Δp\) — среднеквадратическое отклонение импульса.

График

Необычные последствия соотношения неопределенностей

Нулевые колебания гармонического осциллятора

При точном решении задач об уровнях гармонического осциллятора появляется еще половина кванта энергии, из-за чего уравнение выглядит следующим образом: \(E=ħ\omega(n+1/2).\)

Размах делокализации частицы в пространстве называют амплитудой нулевых колебаний. Можно ее оценить для гармонического осциллятора.

Энергия основного состояния \( \;E0=ħ\omega\) может быть соотнесена с энергией растянутой пружины \(\;kx²/2\) . Амплитуда отклонения от положения равновесия \(x=\surd(ħ\omega/k).\) Зная, что частота пружинного маятника \(\omega=\surd(k/m),\) получаем для амплитуды колебаний \(x=4^\surd(ħ²/km)\) . Таким образом, чем легче грузик и чем мягче пружина, тем больше амплитуда нулевых колебаний.

Квантовые кристаллы гелия

Очевидно, что амплитуда нулевых колебаний больше, если легче атомы. А чем она больше, тем слабее воздействие между ними. В пример можно привести кристаллы, которые формируются при экстремально низких температурах из атомов гелия. Эти атомы в четыре раза легче кислорода и очень слабо взаимодействуют друг с другом, так как являются инертными. В том случае амплитуда нулевых колебаний близка к межатомному расстоянию. Из-за такой делокализации атомов кристалл не держится: жидкий гелий не замерзает при температурах до абсолютного нуля. Чтобы стабилизировать жесткую фазу, нужно ко всему прочему приложить давление в ~30 атмосфер.

Остались вопросы? Ленитесь разобраться в сложной теме? Заходи на сервис ФениксХелп. Лучшие специалисты помогут решить любую задачу, написать контрольную, курсовую или дипломную работу любой сложности.

Соотношение неопределенностей Гейзенберга. Два пути развития квантовой механики

На уроке рассматриваются следующие вопросы: неприемлемость понятий и законов классической механики для описания объектов микромира; влияние способов измерения на значения параметров микрообъектов; соотношения неопределенностей значений канонически сопряженных физических величин, характеризующих микрообъект; волновая функция микрообъекта и принципы определения собственных значений физических параметров частиц в квантовой механике.

Читайте также: