Следствия из преобразований лоренца кратко

Обновлено: 28.06.2024

1. Если в одной системе отсчета некоторые события происходят в точках x1 и x2 в один и тот же момент времени t, то в другой системе отсчета эти события происходят в точках x'1 и x'2 в разные моменты времени t'1 и t'2:

Понятие одновременности оказывается зависящим от выбора системы отсчета.

2. Если в одной системе отсчета между двумя событиями, происходящими в одной и той же точке, проходит время t, то в другой системе отсчета между этими же событиями проходит время

Это соотношение выражает релятивистский эффект замедления времени в движущихся объектах.

3. Если в одной системе отсчета покоящаяся линейка имеет длину l, то в системе отсчета, в которой линейка движется со скоростью u вдоль своей оси, ее длина

Этот эффект называется релятивистским сокращением продольных размеров тела. Поперечные размеры тела не изменяются при переходе в другие инерциальные системы отсчета.

4. Если в одной системе отсчета тело имеет скорость v = (vx, vy, vz), то его скорость v' = (v'x, v'y, v'z) в другой системе отсчета равна

или в трехмерной векторной форме

5. Из соотношений (n4), (n5) следует постоянство скорости c в различных системах отсчета. Действительно, если вычислить сумму квадратов левых частей этих равенств при условии

Т. е. скорость c одинакова по величине во всех инерциальных системах отсчета (независимо от направления). Заметим, что направления скоростей v и v' в общем случае различны в разных системах отсчета.

1. Относительность одновременности. Пусть в системе К в точках с координатами х1 и х2 в моменты времени t1 и t2 происходят два события. В системе К΄ им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (х12) и являются одновременными (t1=t2), то, согласно преобразованиям Лоренца,

т.е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х1 ≠ х2), но одновременны (t1=t2), то в системе К΄, согласно преобразованиям Лоренца,

Таким образом, в системе К΄ эти события, оставаясь пространственно разобщенными, оказываются и неодновременными.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке А с координатой х, покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К΄

Таким образом, или ,

т.е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т.е. ход часов замедляется в системе отсчета, относительно которой часы движутся.

3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси и покоящийся относительно системы К΄. Длина стержня в системе К΄ равна , где , - не изменяющиеся со временем координаты начала и конца стержня; индекс 0 показывает, что в системе К΄ стержень покоится. Определим длину стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты концов стержня х1 и х2 в системе К в один и тот же момент времени t. Их разность и даст длину стержня в системе К:

Таким образом, размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. лоренцево сокращение длины тем больше, чем больше скорость движения.

4. Релятивистский закон сложения скоростей. Пусть материальная точка движется в системе К΄ вдоль оси , а система К΄ движется относительно К со скоростью v (оси х и совпадают). Тогда

Произведя вычисления, получим релятивистский закон сложения скоростей:

Если скорости v, малы по сравнению со скоростью света, то эти формулы переходят в привычный закон сложения скоростей в классической механике. Релятивистский закон сложения скоростей не противоречит второму постулату Эйнштейна: если то , т.е. скорость с – предельная скорость, которую невозможно превысить.

1. Относительность одновременности. Пусть в системе К в точках с координатами х1 и х2 в моменты времени t1 и t2 происходят два события. В системе К΄ им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (х12) и являются одновременными (t1=t2), то, согласно преобразованиям Лоренца,

т.е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х1 ≠ х2), но одновременны (t1=t2), то в системе К΄, согласно преобразованиям Лоренца,

Таким образом, в системе К΄ эти события, оставаясь пространственно разобщенными, оказываются и неодновременными.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке А с координатой х, покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К΄

Таким образом, или ,

т.е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т.е. ход часов замедляется в системе отсчета, относительно которой часы движутся.




3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси и покоящийся относительно системы К΄. Длина стержня в системе К΄ равна , где , - не изменяющиеся со временем координаты начала и конца стержня; индекс 0 показывает, что в системе К΄ стержень покоится. Определим длину стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты концов стержня х1 и х2 в системе К в один и тот же момент времени t. Их разность и даст длину стержня в системе К:

Таким образом, размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т.е. лоренцево сокращение длины тем больше, чем больше скорость движения.

4. Релятивистский закон сложения скоростей. Пусть материальная точка движется в системе К΄ вдоль оси , а система К΄ движется относительно К со скоростью v (оси х и совпадают). Тогда

Произведя вычисления, получим релятивистский закон сложения скоростей:

Если скорости v, малы по сравнению со скоростью света, то эти формулы переходят в привычный закон сложения скоростей в классической механике. Релятивистский закон сложения скоростей не противоречит второму постулату Эйнштейна: если то , т.е. скорость с – предельная скорость, которую невозможно превысить.

Ранее мы уже изучили формулы, называемые классическими преобразованиями Галилея, однако они несовместимы с постулатами специальной теории относительности (СТО). Поэтому в данном случае нам нужно использовать другие положения. Благодаря новым преобразованиям мы сможем установить, какая связь существует между некоторым моментом события t , наблюдаемого в системе отсчета K в точке с координатами ( x , y , z ) и показателями того же события, которое наблюдается в системе отсчета K ' .

Преобразования Лоренца представляют собой кинематические формулы, с помощью которых происходит преобразование координат и времени в специальной теории относительности.

Они были впервые сформулированы еще в 1904 году в качестве преобразований, относительно которых были инвариантны уравнения электродинамики.

Обозначим основные системы K и K ' , скорость их движения – υ , а ось, вдоль которой они движутся – x . В таком случае преобразования Лоренца примут следующий вид:

K ' → K x = x ' + υ t ' 1 - β 2 , y = y ' , z = z ' , t = t ' + υ x ' / c 2 1 - β 2 . K → K ' x ' = x - υ t 1 - β 2 , y ' = y , z ' = z , t ' = t - υ x / c 2 1 - β 2 .

Используя эти формулы, мы можем вывести из них множество следствий. Так, именно из системы преобразований Лоренца следует лоренцево сокращение длины и релятивистский эффект замедления времени.

Возьмем случай, когда в системе K ' происходит некий процесс, длительность которого составляет τ 0 = t ' 2 – t ' 1 (по собственному времени). Здесь t ' 1 и t ' 2 – это время на часах в начале данного процесса и в его конце. Чтобы вычислить его общую продолжительность в точке x , необходимо взять для расчета следующую формулу:

τ = t 2 - t 1 = t ' 2 + υ x ' / c 2 1 - β 2 - t ' 1 + υ x ' / c 2 1 - β 2 = t ' 2 - t ' 1 1 - β 2 = τ 0 1 - β 2 .

Формула релятивистского сокращения длины выводится из преобразований Лоренца точно таким же образом.

Принцип относительности одновременности

Еще одно важное следствие, которое необходимо знать, – это положение о том, что любая одновременность относительна.

Например, если в системе отсчета K ' взять две разные точки, в которых некий процесс будет протекать одновременно (с позиции стороннего наблюдателя), то в системе наблюдатель будет иметь следующее:

x 1 = x ' 1 + υ t ' 1 - β 2 , x 2 = x ' 2 + υ t ' 1 - β 2 ⇒ x 1 ≠ x 2 , t 1 = t ' + υ x ' 1 / c 2 1 - β 2 , t 2 = t ' + υ x ' 2 / c 2 1 - β 2 ⇒ t 1 ≠ t 2 .

Из этого вытекает пространственная разобщенность данных событий в системе K , следовательно, они не могут считаться одновременными. Нельзя сразу сказать, какое событие будет происходить первым, а какое вторым, поскольку это определяется особенностями системы отсчета – знак разности будет определен знаком выражения υ ( x ' 2 – x ' 1 ) .

Если между событиями имеется причинно-следственная связь, то данный вывод специальной теории относительности для них использовать нельзя. Однако мы можем показать, что при этом не нарушается принцип причинности, и события следуют в нужном порядке в любой инерциальной системе отсчета.

Разберем пример, показывающий, что одновременность разобщенных в пространстве событий является относительной.

Возьмем систему отсчета K ' и расположим в ней длинный жесткий стержень. Его положение будет неподвижным и ориентированным вдоль оси абсцисс. Установим на оба его конца часы, синхронизированные между собой, а в центр поместим импульсную лампу. Также у нас будет система K ' , совершающая движение вдоль оси x в системе K .

В определенный момент времени лампа включится и пошлет световые сигналы в направлении обоих концов жесткого стержня. Поскольку она находится точно в центре, эти сигналы должны дойти до концов в одно и то же время t , которое должно быть зафиксировано расположенными на них часами. Однако концы стержня движутся относительно системы K так, что один конец стремится навстречу световому сигналу, а другой конец свету приходится догонять. Скорость света, распространяющегося в оба направления, одинакова, но сторонний наблюдатель скажет, что до левого конца свет дошел быстрее, чем до правого.

Принцип относительности одновременности

Рисунок 4 . 4 . 1 . Иллюстрация принципа относительности одновременности: достижение световым импульсом концов стержня в системе K ' в одно и то же время и в системе K в разное.

Инвариантные величины в СТО

Данные преобразования нужны нам для выражения относительного характера временных промежутков и промежутков расстояний. Вместе с тем в специальной теории относительности помимо утверждения относительного характера времени и пространства очень важно установить инвариантные физические величины, не изменяющиеся при смене системы отсчета. Подобной величиной является скорость света в вакууме, чей характер в рамках СТО становится абсолютным. Также важна такая величина, как интервал между событиями, поскольку именно она выражает абсолютность пространственно-временной связи.

Для вычисления пространственно-временного интервала необходимо использовать следующую формулу:

s 12 = c 2 t 12 2 - l 12 2 .

В ней с помощью параметра l 12 выражено расстояние между точками одной системы, где совершаются события, а t 12 – это временной промежуток между теми же самыми событиями. Если местом одного из событий является начало координат, т.е. x 1 = y 1 = z 1 = 0 и ( t 1 = 0 ) , а второе происходит в точке с координатами x , y , z в некоторое время t , то формула вычисления пространственно-временного интервала между ними записывается так:

s = c 2 t 2 - x 2 - y 2 - z 2 .

Преобразования Лоренца дают нам возможность доказать неизменность пространственно-временного интервала между событиями при смене инерциальной системы.

Если величина интервала не зависит от того, какая система отсчета используется, т.е. является объективной при любых относительных расстояниях и временных промежутках, то такой интервал называется инвариантным.

Допустим, что у нас есть событие (вспышка света), которое произошло в точке начала координат в некоторой системе во время, равное 0 , а потом свет переместился в другую точку с координатами x , y , z во время t . Тогда мы можем записать следующее:

x 2 + y 2 + z 2 = c 2 t 2 .

У нас получилось, что интервал этой пары событий будет равен нулю. Если мы поменяем систему координат и возьмем другое время для второго события, то результаты окажутся точно такими же, поскольку:

x 2 + y 2 + z 2 = c 2 t 2

Иначе говоря, любые два события, которые связывает между собой световой сигнал, будут иметь нулевой пространственно-временной интервал.

Также формулы Лоренца для времени и координат можно использовать для выведения релятивистского закона сложения скоростей.

Например, у нас есть частица, которая находится в системе отсчета K ' и движется в ней вдоль оси абсцисс со скоростью u ' x = d x ' d t ' . Параметры скорости u ' x и u ' равны 0 . В системе K , соответственно, скорость будет равна u x = d x d t .

Применим к одной из формул преобразования Лоренца операцию дифференцирования и получим следующее:

u x = u ' x + υ 1 + υ c 2 u ' x , u y = 0 , u z = 0 .

Данные отношения являются выражением релятивистского закона сложения скоростей. Он применим в случае движения частицы параллельно относительной скорости υ → в системах отсчета K и K ' .

Если υ ≪ c , то релятивистские отношения могут быть преобразованы в формулы классической механики:

u x = u ' x + υ , u y = 0 , u z = 0 .

Если мы имеем дело со световым импульсом, распространяющимся в системе K ' вдоль оси x ' со скоростью u ' x = c , то в этом случае применима следующая формула:

u x = c + υ 1 + υ / c = c , u y = 0 , u z = 0 .

Иначе говоря, скорость распространения светового импульса в системе K вдоль оси x также будет равна c , что соответствует постулату об инвариантности скорости света.

Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x’, y’, z’) и моментом времени t’ этого же события, наблюдаемого в системе отсчета K’.

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K’ движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:





Из преобразований Лоренца вытекает целый ряд следствий. В частности, из них следует релятивистский эффект замедления времени и лоренцево сокращение длины. Пусть, например, в некоторой точке x’ системы K’ происходит процесс длительностью τ0 = t’2t’1 (собственное время), где t’1 и t’2 – показания часов в системе K’ в начале и конце процесса. Длительность τ этого процесса в системе K будет равна


Аналогичным образом, можно показать, что из преобразований Лоренца вытекает релятивистское сокращение длины. Одним из важнейших следствий из преобразований Лоренца является вывод об относительности одновременности. Пусть, например, в двух разных точках системы отсчета K’ (x’1x’2) одновременно с точки зрения наблюдателя в K’ (t’1 = t’2 = t’) происходят два события. Согласно преобразованиям Лоренца, наблюдатель в системе K будет иметь



Следовательно, в системе K эти события, оставаясь пространственно разобщенными, оказываются неодновременными. Более того, знак разности t2t1 определяется знаком выражения υ(x’2x’1), поэтому в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Этот вывод СТО не относится к событиям, связанным причинно-следственными связями, когда одно из событий является физическим следствием другого. Можно показать, что в СТО не нарушается принцип причинности, и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

Относительность одновременности пространственно-разобщенных событий можно проиллюстрировать на следующем примере.

Пусть в системе отсчета K’ вдоль оси x’ неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизированных часов(рис. 4.4.1(a)), система K’ движется вдоль оси x системы K со скоростью υ. В некоторый момент времени лампа посылает короткие световые импульсы в направлении концов стержня. В силу равноправия обоих направлений свет в системе K’ дойдет до концов стержня одновременно, и часы, закрепленные на концах стержня, покажут одно и то же время t’. Относительно системы K концы стержня движутся со скоростью υ так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны c, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рис. 4.4.1(b)).

Относительность одновременности. Световой импульс достигает концов твердого стержня одновременно в системе отсчета K’ (a) и не одновременно в системе отсчета K (b)

Преобразования Лоренца выражают относительный характер промежутков времени и расстояний. Однако, в СТО наряду с утверждением относительного характера пространства и времени важную роль играет установление инвариантных физических величин, которые не изменяются при переходе от одной системы отсчета к другой. Одной из таких величин является скорость света в вакууме c, которая в СТО приобретает абсолютный характер. Другой важной инвариантной величиной, отражающей абсолютный характер пространственно-временных связей, является интервал между событиями.

Пространственно-временной интервал определяется в СТО следующим соотношением:


где t12 – промежуток времени между событиями в некоторой системе отсчета, а l12 – расстояние между точками, в которых происходят рассматриваемые события, в той же системе отсчета. В частном случае, когда одно из событий происходит в начале координат (x1 = y1 = z1 = 0) системы отсчета в момент времени t1 = 0, а второе – в точке с координатами x, y, z в момент времени t, пространственно-временной интервал между этими событиями записывается в виде


С помощью преобразований Лоренца можно доказать, что пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. Инвариантность интервала означает, что, несмотря на относительность расстояний и промежутков времени, протекание физических процессов носит объективный характер и не зависит от системы отсчета.

Если одно из событий представляет собой вспышку света в начале координат системы отсчета при t = 0, а второе – приход светового фронта в точку с координатами x, y, z в момент времени t (рис. 4.1.3), то

и, следовательно, интервал для этой пары событий s = 0. В другой системе отсчета координаты и время второго события будут другими, но и в этой системе пространственно-временной интервал s’ окажется равным нулю, так как


Для любых двух событий, связанных между собой световым сигналом, интервал равен нулю.

Из преобразований Лоренца для координат и времени можно получить релятивистский закон сложения скоростей. Пусть, например, в системе отсчета K’ вдоль оси x’ движется частица со скоростью Составляющие скорости частицы u’x и u’z равны нулю. Скорость этой частицы в системе K будет равна

С помощью операции дифференцирования из формул преобразований Лоренца можно найти:



Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K’.

Читайте также: