Сколько молекул днк образуют одну хромосому кратко

Обновлено: 02.07.2024

Строение хромосом человека. Особенности организации

Все гены в геноме человека, а также детерминанты их экспрессии организованы в 46 хромосом, расположенных в ядре, плюс митохондриальная хромосома. Каждая хромосома состоит из единственной двойной спирали непрерывной ДНК; т.е. каждая хромосома в ядре — длинная, линейная спиральная двойная молекула ДНК, и ядерный геном состоит, следовательно, из 46 молекул, включающих более чем 6 млрд нуклеотидов.

Хромосомы, тем не менее, не просто двойная спираль ДНК. В каждой клетке геном упакован в виде хроматина, в котором ДНК объединена с несколькими классами хромосомных белков. За исключением фазы деления клетки, хроматин распределен по всему ядру и под микроскопом представляется сравнительно гомогенным. Когда клетка приступает к делению, геном конденсируется и появляются видимые под микроскопом хромосомы. Хромосомы, таким образом, видны как дискретные структуры только в ходе деления клеток, хотя они сохраняют свою целостность и между делениями.

В хромосоме молекула ДНК существует в виде хроматина, в комплексе с семейством основных хромосомных белков, называемых гистонами, и с разнородной группой негистоновых белков, значительно хуже охарактеризованных, но, как установлено, определяющих соответствующие условия для нормального поведения хромосом и влияющих на экспрессию генов.

В упаковке хроматина важнейшую роль играют пять основных типов гистонов. По две копии каждого из четырех основных гистонов — Н2А, Н2В, НЗ и Н4 — составляют октамер, вокруг которого, подобно нити вокруг катушки, обматывается сегмент двойной спирали ДНК. Вокруг каждого октамера гистоновых белков ДНК делает два оборота, что составляет приблизительно 140 пар оснований. После короткого (20-60 пар оснований) промежуточного участка ДНК вновь формируется виток и так далее, что придает хроматину вид бусинок, нанизанных на нитку.

Каждый комплекс ДНК с основными гистонами называется нуклеосомой, представляющей основную структурную единицу хроматина, и каждая из 46 хромосом человека содержит от нескольких сот тысяч до более миллиона нуклеосом. Пятый гистон, HI, как установлено, связывается с ДНК в ребре каждой нуклеосомы, в области межнуклеосомного промежутка. Объем ДНК, связываемой с нуклеосомой вместе с промежуточной областью, — почти 200 пар оснований.

строение хромосом человека

Дополнительно к основным типам гистоновых белков множество специализированных гистонов могут заменять Н3 и Н2А, придавая при этом геномной ДНК специфические характеристики. Гистоны НЗ и Н4 также могут модифицироваться в закодированные белки. Эти так называемые посттрансляционные модификации могут изменять свойства нуклеосом. Набор основных и специализированных гистоновых белков и их модификаций часто называют гистоновым кодом, который может изменяться в разных типах клеток, вследствие чего полагают, что он определяет характер упаковки ДНК и доступность ее для регулирующих факторов, определяющих экспрессию генов или другие функции генома.

В течение клеточного цикла хромосомы проходят через последовательность конденсаций и деконденсаций. Тем не менее даже когда хромосомы находятся в наиболее деконденсированном состоянии, на этапе клеточного цикла, называемом интерфазой, ДНК упакована в хроматине в значительно большей степени, чем свободная от белков двойная спираль. Более того, длинные цепочки нуклеосом самоорганизуются во вторичную спиральную структуру хроматина, которая проявляется под электронным микроскопом как толстое волокно диаметром 30 нм, что почти в три раза толще, чем диаметр нуклеосом.

Огромный объем геномной ДНК, упакованной в хромосоме, можно оценить после специальной обработки хромосомы для того, чтобы освободить ДНК от белковой основы. При этом могут быть визуализированы длинные петли ДНК, а остатки белкового матрикса могут воспроизводить контуры типичной хромосомы.

Митохондриальная хромосома

Как упоминалось ранее, небольшое, но важное подмножество генов генома человека находится в цитоплазме в митохондриях. Митохондриальные гены наследуются строго по материнской линии. Клетки человека могут иметь сотни тысяч митохондрий, каждая из которых содержит множество копий небольшой циклической молекулы, митохондриальной хромосомы. Митохондриальная молекула ДНК всего 16 килобаз длиной (менее чем 0,03% длины наименьшей ядерной хромосомы!) и кодирует только 37 генов. Продукты этих генов функционируют в митохондриях, хотя большинство белков в митохондрии — фактически продукты ядерных генов.

Возможность мутаций в генах митохондрий продемонстрирована при нескольких заболеваниях с материнским типом наследования, а также как спорадическое нарушение.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021


Геном человека – термин, используемый при описании всей генетической информации, закодированной в виде ДНК клеток человека. Клетка человека имеет два генома: сложный ядерный геном (хромосомная ДНК), содержащей более 99,9995 % всей генетической информации, и простой митохондриальный геном, в составе которого находится менее 0,0005 % ДНК. Ядерный геном распределен между 24-мя различными двуспиральными молекулами ДНК, которые в комплексе с различными гистоновыми и негистоновыми белками формируют хромосомы человека. С молекулярной точки зрения каждая хромосома клетки является сложно организованной структурой. Диплоидная клетка человека с интерфазным ядром при диаметре 5–10 мкм содержит около двух метров молекул ДНК, которые образуют 23 пары хромосом. Гаплоидный геном человека, который характеризуют половые клетки с хромосомами Х или Y, включает 23 различные хромосомы – 22 аутосомы и одну половую хромосому (гоносому) в зависимости от пола: Х – женский или Y – мужской пол. Индивидуальные хромосомы различаются своими морфологическими характеристиками. В среднем, хромосома человека содержит около 130 млн пар нуклеотидов (пн), однако содержание ДНК в разных хромосомах варьирует от 40 до 260 млн пн.

Данные о структуре, размерах и количестве митотических хромосом в клеточном ядре определяются как кариотип. Морфологическое строение хромосом на всех уровнях организации (молекулярном, микроскопическом и субмикроскопическом) определяется упаковкой нитей ДНК, организующих хромосому. На микроскопическом уровне нити ДНК формируют спирализованные хромонемы митотических хромосом. Упаковка хромонем по длине хромосом неравномерна. В них закономерно дифференцируются участки с резко выраженной и резко сниженной степенью спирализации хромонем. Последние формируют хромосомные перетяжки. Важным элементом структуры хромосом является первичная перетяжка, в участке которой расположена центромера. Она делит хромосому на два плеча – короткое (р) и длинное (q).

Структура хромосом претерпевает значительные изменения в ходе клеточного деления (клеточного цикла) и, следовательно, не является постоянной. Хромосомы интерфазных ядер (интерфазные хромосомы) в отличие от метафазных хромосом (см раздел, посвященный делению клетки) представляют собой более расправленные и диффузные клеточные структуры. Интерфазные хромосомы содержат одну хроматиду, в составе которой имеется одна двуспиральная молекула ДНК, в то время как метафазные хромосомы образованы двумя хроматидами и двумя молекулами ДНК. Хромосома как функционирующая клеточная органелла должна содержать минимум три типа последовательностей ДНК, формирующих её структурные компоненты: центромеру, теломеры и участок начала репликации ДНК.

Другими структурными элементами хромосом являются теломеры. Это специализированные структуры, содержащие особые типы ДНК и белки, которые образуют концевые участки хромосом. Теломеры выполняют несколько функций:

1) поддержание структурной целостности хромосомы;

2) обеспечение полной репликации концевых участков хромосомы;

3) поддержание организации хромосом в интерфазном ядре.

Рис. 4. Организация ДНК

Теломеры хромосом человека представляют собой повторы нуклеотидной последовательности ТТАГГГ, общий размер которой варьирует от 3 до 20 тыс. пн. Стабильность теломер поддерживается с помощью фермента теломеразы, нарушение функциональной активности которой приводит к нарушению структуры хромосом и, как следствие, к клеточной гибели. Укорочение последовательностей теломер, которому противодействует теломераза, связано с процессами старения и малигнизации.

Рис. 5. Метафазные хромосомы:
1 – метацентрическая хромосома; 2 – субметацентрическая хромосома; 3 – акроцентрическая хромосома. Видны:
а – центромеры; б – длинные плечи (q), в – короткие плечи (p);г – теломерные участки; д – спутники; е – спутничные нити

ДНК хромосом реплицируется в ходе периода синтеза ДНК клеточного цикла. Каждая хромосома содержит множество элементарных единиц репликации – репликонов, представляющих собой участки автономной репликации. Каждый репликон имеет одну точку инициации репликации, с которой начинается двунаправленный синтез ДНК (см предыдущий раздел, посвященный синтезу ДНК). Размеры репликонов могут различаться друг от друга. Репликоны у человека могут быть очень большими, достигая более чем 1 млн пн.


Хромосомы: строение, функции. Число хромосом

Раздел ЕГЭ: 2.7. Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Клетка — генетическая единица живого

Клетка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов и вироидов — форм жизни, не имеющих клеточного строения). Обладает собственным обменом веществ, способна к самовоспроизведению.

Содержимое клетки отделено от окружающей среды плазматической мембраной. Внутри клетка заполнена цитоплазмой, в которой расположены различные органеллы и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждая из органелл клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.


Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Хромосомы

Хромосомы— нуклеопротеидные структуры клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митоза или мейоза. Набор всех хромосом клетки, называемый кариотипом.

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит группу множества генов. Комплекс белков, связанных с ДНК, образует хроматин. Хроматин — нуклеопротеид, составляющий основу хромосом, находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

строение хромосомы

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид, удерживаемых центромерой в области первичной перетяжки.

Под микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение светлых и темных полос (чередование АТ и ГЦ — пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например, у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчетам, у человека около 120 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Число хромосом и их видовое постоянство

Каждый вид растений и животных в норме имеет строго определенное и постоянное число хромосом, которые могут различаться по размерам и форме. Поэтому можно сказать, что число хромосом и их морфологические особенности являются характерным признаком для данного вида. Эта особенность известна как видовое постоянство числа хромосом.

Число хромосом в одной клетке у разных видов: горилла – 48, макака – 42, кошка – 38, собака – 78, корова – 120, ёж -96, горох – 14, береза – 84, лук – 16, пшеница – 42. Наименьшее число у муравья – 2, наибольшее у одного из видов папоротника – 1260 хромосом на клетку.

В кариотипе человека 46 хромосом — 22 пары аутосом и одна пара половых хромосом. Мужчины гетерогаметны (половые хромосомы XY), а женщины гомогаметны (половые хромосомы XX). Y-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Например, в Y-хромосоме нет аллеля свертываемости крови. В результате гемофилией болеют, как правило, только мальчики.


Хромосомы одной пары называются гомологичными. Гомологичные хромосомы в одинаковых локусах (местах расположения) несут аллельные гены (гены, отвечающие за один признак).

Хромосомная теория наследственности

Хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866—1945):

  1. ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.
  2. аллельные гены расположены в строго определенных местах (локусах) гомологических хромосом.
  3. гены располагаются в хромосомах линейно, т. е. друг за другом.
  4. в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т.е. может происходить кроссинговер. Гены одной хромосомы не наследуются сцепленно.

Явление кроссинговера помогло ученым установить расположение каждого гена в хромосоме, создать генетические карты хромосом (хромосомные карты). Вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме.

К настоящему времени при помощи подсчета кроссинговеров и других, более современных методов построены генетические карты хромосом многих видов живых существ; гороха, томата, дрозофилы, мыши. Кроме того, успешно продолжается работа по составлению генетических карт хромосом человека, что может помочь в борьбе с различными неизлечимыми пока болезнями.

Что такое ДНК, и из чего она состоит? Кто и когда открыл эту молекулу в клетках человека и других живых организмов? Чем уникален открытый учеными механизм наследования, и какие последствия ждал весь мир после этого открытия? Всю необходимую информацию Вы можете узнать, прочитав эту статью.

ДНК и хромосомы

Иоганнес Фридрих Фишер – врач и биолог-исследователь родом из Швейцарии, стал первым в мире ученым, выделившим нуклеиновую кислоту. Открытие случилось в 1869 году, когда он занимался изучением животных клеток, а именно лейкоцитов, которых много содержалось в гное. Совершенно случайно молодой ученый заметил, что при отмывании лейкоцитов с гнойных повязок от них остается загадочное соединение. Под микроскопом Иоганн обнаружил, что оно содержится в ядрах клеток. Это соединение Мишер назвал нуклеином, а в процессе изучения его свойств переименовал в нуклеиновую кислоту, из-за наличия свойств, как у кислот.

Роль и функции только открытой нуклеиновой кислоты были неизвестны. Однако многие ученые того времени уже высказывали свои теории и предположения о существовании механизмов наследования.

Нынешние взгляды на состав молекулы ДНК ассоциируются у людей с именами английских ученых Джорджа Уотсона и Фрэнсиса Крика, которые открыли структуру данной молекулы в 1953 году. За несколько лет до этого, в тридцатые годы, ученые из советского союза А.Н. Белозерский и А.Р. Кезеля доказали наличие ДНК в клетках во всех живых организмах, тем самым они опровергли теорию о том, что молекула ДНК находится только в клетках животных, а в клетках растений присутствует только РНК. Лишь спустя несколько лет, в 1944 году, группой освальдских ученых было установлено, что молекула ДНК является механизмом сохранения наследственной информации клетки. Таким образом, благодаря совместным усилиям и трудам исследователей человечество познало тайну процесса эволюции и его основных принципов.

ДНК в медицине

Открытие состава молекулы дезоксирибонуклеиновой кислоты позволило перейти медицине на новый уровень развития. Появилось большое количество новых направлений практической медицины, стали доступны новые методы лечения, диагностики. Благодаря этому фундаментальному открытию для науки и современным технологиям, человечеству стали доступны:

  • Возможность поставить диагноз на ранней стадии заболевания, когда оно еще находится в скрытом периоде, и никаких симптомов не проявляется. у человека.
  • Тесты на наличие у человека аллергии или непереносимости некоторых пищевых продуктов. Индивидуальные исследования помогут выявить, какая пища хорошо усваивается организмом, а какая плохо или вообще не усваивается, и что может стать причиной аллергической реакции у исследуемого. Возможность узнать, какие этносы формируют Вашу внешность, и из каких народов были Ваши далекие предки
  • Тест на наличие врожденных заболеваний, передающиеся через поколения, оценка риска их возникновения у тестируемого человека.

И это еще не все доступные для людей услуги, которые может предложить медицина, изучающая генетику. Выше были представлены только самые популярные среди людей тесты. Перспективой для многих ученых-генетиков является создание таких лекарств, способных победить все болезни на Земле и даже смертность.

Строение молекулы ДНК

Молекула ДНК состоит из органических соединений - нуклеотидов, которые скручиваются в две спиралевидные цепи. Нуклеотиды в этих цепях – это базовые элементы, с помощью которых потом будут кодироваться и выстраиваться гены. В составе одного гена возможны несколько вариантов расположения некоторых нуклеотидов, поэтому вместе с тем, как меняется структура гена, меняется и его функциональность.

От цепочки к хромосоме

В каждом живом организме находится миллионы клеток, а внутри этих клеток находится ядро. Клетки, содержащие в себе ядро, называются эукариотами или ядерными. У древних одноклеточных нет оформленного ядра. К таким безъядерным одноклеточным, или прокариотам, относятся бактерии и археи, например, кишечная палочка или серая анаэробная бактерия. Также ядро отсутствует в клетках вирусов и вироидов, однако причисление вирусов к живым организмам – вопрос спорный, о котором по сей день дискуссируют ученые.

В ядре находятся хромосомы – структурный элемент, в котором содержится молекула ДНК в виде спирали, хранящая внутри себя всю генетическую информацию клетки.

Процесс упаковки ДНК спиралей

Количество нуклеотидов в ДНК велико, и нужны длинные цепочки, чтобы вместить все их число, поэтому нити ДНК закручиваются в две спирали, что позволяет укоротить цепочки в 5 раз, сделав их более компактными. Нити ДНК могут также закручиваться в форму суперспирали. Двойная спираль пересекает свою ось и накручивается на специальные гистоновые белки – гиразы, образуя при этом супервитки. Таким образом, двойная спираль закручивается в спираль более высокого порядка. Сокращение цепочек в этом случае произойдет в 30 раз.

Как гены связаны с ДНК

Ген – самый изученный на сегодняшний день участок ДНК. Гены являются структурной единицей наследственности всех живых организмов. Цепочки нуклеотидов в ДНК состоят из генов, которые определяют генотип особи, например, цвет и разрез глаз, тип кожи, рост, группу и резус фактор крови и другие физиологические качества и особенности внешности.

Еще много отраслей генетики до конца не изучены, и до конца не раскрыты все функции генома, но ученые до сих пор продолжают изучение генов, чтобы добиться новых открытий в области генетики.

Хромосома: определение и описание

Хромосомы

Хромосомы – структурный элемент клетки, находящийся внутри ядра. Они содержат в себе молекулы ДНК, в которых содержится вся наследственная информация.

Строение и виды хромосом:

Отсюда возникают различные типы хромосом:

  • Равноплечая – центромера перетягивает хроматиды точно посередине;
  • Неравноплечая – центромера неточно перетягивает хроматиды, из-за чего одно плечо хромосомы будет длиннее, а другое – короче. К этому типу относится Y-хромосома;
  • Палочковидная – центромера перетягивает хроматиды практически на их концах, из-за чего по форме хромосома напоминает палочку;
  • Точковые – очень мелкие хромосомы, форму которых трудно определить. В науке существуют 3 основные формы хромосом:
  • Х-хромосома, встречающаяся у особей женского и мужского пола;
  • Y-хромосома, встречающаяся только у мужских особей;
  • В-хромосома, которая очень редко встречается в клетках растений. Обычно их число доходит до 6, редко – до 12. Ее наличие обуславливает различные болезни и побочные эффекты в организме

Всего в клетке человека находится 46 хромосом: 22 пары аутосом, встречающиеся у обоих полов, и одна пара половых хромосом: XY – у мужчин, XX – у женщин. Забавно, что если прибавить к количеству хромосом хотя бы одну пару, то человек мог бы быть шимпанзе или тараканом, а если отнять, то – кроликом.

Еще интересно то, что человек и ясень имеют одинаковое количество хромосом, несмотря на принадлежность к разным видам и царствам.

Генетический код – система записи генетической информации в ДНК и РНК в виде определенной последовательности в цепочке нуклеотидов. Он должен сохранять наследственную информацию в первоначальном виде, восстанавливая повреждения цепочки в последующем поколении с помощью ДНК. Однако ген может каким-то образом быть поврежден, либо в нем может произойти мутация.

Генные мутации – изменение в последовательности нуклеотидов, например выпадение, замена, вставка другого нуклеотида в цепочку. Последствия этих мутаций могут быть полезные, вредные или нейтральные. Примером полезных мутаций является устойчивость к минусовым температурам, увеличенная плотность костей, меньшая потребность во сне, устойчивость к ВИЧ и другие. Примером вредных мутаций является аллергия на солнечный свет, глухота слепота и так далее. К нейтральным мутациям относятся те мутации, которые не влияют на жизнеспособность, например, гетерохромия.

Существуют также летальные и полулетальные мутации. Летальные мутации несовместимы с жизнью и приводят к гибели организма на ранних этапах его развития, например, при рождении у особи отсутствует головной мозг. Полулетальные мутации не приводят к смерти особи, но значительно уменьшают ее жизнеспособность. К таким мутациям относятся заболевания человека, передающиеся по наследству. Например, наличие 47-й хромосомы может вызвать у человека синдром Дауна, а, наоборот, отсутствие 46-й парной хромосомы – сидром Шерешевского-Тернера.

Расшифровка цепочки ДНК

Расшифровка цепочки ДНК в клетке – это исследование всех известных генов в клетках человека. Хоть цена за такую услугу значительно упала за последние десять лет, однако такое исследование по-прежнему остается дорогим удовольствием, и не каждый человек сможет позволить себе оплатить такую услугу. Чтобы уменьшить цену этого исследования, расшифровку ДНК стали делить по тематикам. Таким образом, появились различные тесты, которые исследуют интересующую человека группу генов и ее функции.

Как происходит расшифровка цепочки ДНК?

  • Взятые на пробу образцы ДНК нагревают, чтобы двойная спираль раскрутилась и распалась на две нити.
  • К интересующему участку цепочки генов прилепляется полимераза - фермент, синтезирующий полимеры нуклеиновых кислот. Процедура проходит при низких температурах.
  • С помощью полимеразы в интересующих участков происходит синтезов генов, необходимых для изучения.
  • Участки пропитывают светящейся краской, которая светится при лазерном воздействии.

Таким образом, ученые получают картину гена, которую можно изучить и расшифровать. Синтез РНК Нуклеотиды делятся на четыре базовых элемента, служащими основой для формирования генов: АТГЦ, или аденин, тимин, гуанин, цитозин. В их состав входят фосфорные остатки, азотистые основания и пептоза.

В ДНК эти нуклеотиды располагаются строго по парам параллельно друг другу строгими парами: аденин - с тимином, гуанин - с цитозином.

Важно, что молекула дезоксирибонуклеиновой кислоты не должна выходить за пределы мембраны ядра. С помощью РНК, которая играет роль копии участка цепи с генетическим кодом, генетическая цепочка может покинуть ядро, попасть вовнутрь клетки и воздействовать на ее внутренние процессы.

Как это происходит:

  • Один конец генной спирали раскручивается, формируя две развернутые нити с цепочкой генов.
  • К развернутому участку спирали подходит специальный фермент-строитель и поверх этого участка синтезирует его копию.
  • У копии в структуре нуклеотидов тимин во всех парах заменяется на урацил, что позволяет копии генетической цепи покинуть ядро клетки. Синтез белка при помощи генов Основное взаимодействие, происходящее между генами и клеткой, состоит в том, что различные гены могут заставлять клетку производить синтез разных белков с самыми непредсказуемыми свойствами.

Итак, группа генов, участвующих в процессе старения клеток может, как заставить процесс старения идти быстрее, так и вовсе его остановить и запустить процесс омолаживания. То есть, каждый из генов может спровоцировать синтез нескольких видов белка.

Генетик Сутягина Дарья

Сутягина Дарья Сергеевна

Эксперт-генетик

В нашей ДНК содержится очень много информации, но пока мы можем расшифровать лишь небольшой процент генов. Добавлю несколько интересных фактов о ДНК: возможность двойной ДНК у человека. Такое явление случается, когда при беременности в утробе развиваются близнецы, но в процессе развития плода они сливаются в одного человека. Длина одной молекулы ДНК человека равна 2 метрам, а общая длина цепочки ДНК всех клеток тела человека равна 16 млрд. километрам, что равно расстоянию от Земли до Плутона. ДНК человека и кенгуру всего лишь 150 млн. лет назад были одинаковыми. Все знания и информация во всем мире могла бы уместиться всего лишь в 2 граммах дезоксирибонуклеиновой кислоты.





Введение

Когда в середине 19 века первый на свете генетик Грегор Мендель открывал свои законы, он ничего не знал о том, что такое хромосомы и гены, и поэтому был вынужден обходиться довольно абстрактным термином "наследственный признак".

В начале 20 века американский ученый Томас Морган доказал, что гены, определяющие наследственные признаки, находятся именно в хромосомах. В лаборатории Моргана было тщательно описано поведение хромосом, включая сцепленность многих генов, а также кроссинговер - обмен хромосом участками. Этот обмен является основой генетической рекомбинации (об этом важнейшем для генетики и селекции явлении у нас запланирована отдельная публикация).

Однако только к середине 20 века стало окончательно понятно, что гены располагаются в молекулах ДНК, являющихся основой хромосом. С этого момента началась эпоха молекулярной биологии и современной генетики, и конца этой эпохи не видно! Поэтому для понимания базовых генетических процессов важно понимать, как устроены гены в ДНК хромосом.

Что такое хромосомы?

Изначально хромосомы наблюдали под микроскопом в делящихся клетках. Хромосомы располагаются в ядре клетки, удваиваются перед делением и поровну распределяются между дочерними клетками. Основу каждой хромосомы образует одна длинная молекула ДНК, в которой записаны гены, как слова в книге. Каждая хромосома - это отдельная книга со своим набором слов (генов).

Молекула ДНК в хромосоме тщательно свернута и связана с огромным количеством белков, которые помогают копировать ДНК перед делением клетки, а также регулируют активность генов.

В клетках организма каждая хромосома представлена в двух экземплярах, один из которых достался от отца, а другой - от матери, так сказать, две резервные копии. У человека 23 пары хромосом, у кошки – 19 пар, а у собаки – 39 пар.

Что такое ДНК?

ДНК (ДезоксирибоНуклеиновая Кислота ) - это очень длинная линейная полимерная молекула. Например, общая длина ДНК всех 46 хромосом в каждой клетке человека составляет около двух метров!

Молекула ДНК в составе каждой хромосомы состоит из двух нитей, которые, переплетаясь между собой, формируют двойную спираль, структура которой была определена в 1953 году английскими учеными Джеймсом Уотсоном и Френсисом Криком на основе экспериментального материала другого английского ученого - Розалинд Франклин.

Как происходит взаимодействие нитей в молекуле ДНК и почему это важно? Формирование двойной спирали определяется взаимодействием специальных химических групп в составе каждой нити ДНК. Эти группы называются азотистыми основаниями и именно они формируют алфавит ДНК, который используется генетическим кодом (о том, что такое генетический код, будет подробно рассказано в одной из следующих статей).

К счастью, азотистые основания в ДНК любого организма на нашей планете бывают всего четырех типов: аденин (A), гуанин (G), тимин (T) и цитозин (C). Азотистые основания способны формировать взаимодействия: A-T и G-C, а другие комбинации невозможны. Этот закон называется принципом комплементарности.

Таким образом, если на одной нити ДНК находится A, то в нити напротив - всегда T, а если G, то на второй нити - C. Таким образом, последовательность букв ДНК-алфавита в одной цепи однозначно соответствует последовательности букв во второй цепи, а сама ДНК начинает напоминать застежку-молнию, например:

Взаимодействия между азотистыми основаниями играют ключевую роль в генетической наследственности. Перед делением клетки каждая хромосома удваивается. При этом двойная спираль ДНК расплетается и напротив каждой нити специальными ферментами достраивается новая нить, с соблюдением правила комплементарности. Таким образом получаются две копии ДНК, которые при делении передаются в две новые клетки. Этот процесс называется репликацией.

Что такое гены?

Проще всего сравнить гены со словами, записанными алфавитом ДНК из 4 букв: A, T, G и C. Как и в современной литературе, не любая последовательность букв ДНК имеет смысл, так что ген - это полноценное осмысленное слово, у которого есть начало, конец и, что самое главное - значение. Значение гена - это его биологическая функция. Как эта функция осуществляется, мы обсудим в статье про генетический код.

Читайте также: