Синтаксис в информатике это кратко

Обновлено: 04.07.2024

Недавно, один мой друг сказал мне, что я пишу интересные темы, но как бы я не старался писать максимально просто, некоторым всё равно не понятно. Что же делать? На этот счет, у меня появилась идея писать так, чтобы было не просто понятно, о чем речь, но и интересно). Сегодня поговорим о том, что такое синтаксис языка программирования.

Как вы знаете, на земле существует множество национальностей и у каждой из них, есть свой разговорный язык. На сегодняшний день, в мире существует 7174 языка. Некоторые из них похожи друг на друга по синтаксису, буквами или даже звучанием, а некоторые (например, как Китайский или Японский) вообще не имеют аналогов. Но общее у языков то, что как бы определенное слово не звучало, на всех языках, смысл этого слова или словосочетания один и тот же. Просто звучит все по-разному.

Основа основ

Примерно также и с языками программирования. В них синтаксис означает набор правил, описывающий комбинации символов алфавита, считающиеся правильно структурированной программой (документом) или её фрагментом. Сейчас приведу самые простые примеры:

Язык PHP: echo ‘Пример комментария’;

Язык Python: print (“Пример комментария”);

В этих примерах, смысл один и тот же: вывести на экран слово “Пример комментария”. Кстати, на это потребовалось менее 30 символов. Синтаксис этих языков разный, но смысл один и тот же. В каждом языке программирования, есть набор определенных правил и символов, которые во взаимодействии друг с другом дают определенный результат. И таких языков программирования примерно около 9 тысяч.

Конечно, совсем не обязательно знать каждый ведь, во-первых, в этом нет никакого смысла, а во-вторых, это просто не возможно. Языки имеют свои категории, такие как: Полнофункциональные, Аспектно-ориентированные, Структурные, Процедурные, Логические, Объектно-ориентированные, Функциональные, СУБД и многие другие.

В общем, начинаем изучать вселенную iT-индустрии полностью с 0. Надеюсь, всем все понятно)

Синтаксис в информатике — это комплекс правил, которые описывают символьные комбинации, являющиеся правильно оформленным программным приложением или его частью.

Введение

Языки программирования предназначены для написания программ по строго формализованным правилам конкретного языка. Язык программирования описывается правилами:

Синтаксис в информатике и программировании

Целью составителя программы является получение необходимого итогового результата, который получается при выполнении программы на каком-то устройстве. Но при работе над программой, для программиста она является некой абстракцией, которая никак не связана с конкретным оснащением. Поэтому моделированием вычислительных особенностей языка программирования может считаться абстрактный вычислитель, заданный синтаксическим описанием языка. Это положение можно так же подкрепить тем, что компиляция и выполнение программы возможно произвести на различном конкретном оборудовании. По этой логике моделью программы считается её синтаксический абстрактный образ, а не конкретное вычислительное устройство. Прагматика уже определяет конкретику абстрагированного вычисления под данную вычислительную систему.

Синтаксис программного языка является комплексом правил, которые описывают различные комбинационные варианты алфавитных символов. Они считаются программой или её компонентом с правильной структурой. Синтаксису языка может быть противопоставлена его семантика. Языковый синтаксис представляет собой голый язык, а семантика описывает действия разных синтаксических выражений. Все языки программирования обладают синтаксическим описанием, как разделом грамматики. Проверка синтаксиса программы осуществляется на первых этапах её трансляции. Если используется интерпретируемый язык программирования, то синтаксическая проверка осуществляется при её выполнении или при выполнении компиляции в промежуточные коды. Также проверку синтаксиса возможно делать прямо при коррекции исходного текста программы.

Готовые работы на аналогичную тему

Синтаксические ошибки могут появиться, например, при неверном введении уравнений в программу, выполняющую вычисления. К примеру, открытые скобки не завершаются символом их закрытия, или вводятся подряд несколько десятичных разделителей(запятых).

Соблюдение строгих правил программного синтаксиса требуется главным образом для программы трансляции. Транслятором является исполняемая в формализованном режиме программа. К примеру, в качестве разделителя переменных в списке всегда обязана использоваться запятая, и если там стоит любой другой знак препинания, то транслятор посчитает это ошибкой. Или если операторы должна разделять точка с запятой, то программа трансляции будет считать оператором весь текстовый фрагмент между одной и другой точкой с запятой. Если этот знак не установлен по каким-либо причинам между парой операторов, то они будут восприняты транслятором как один оператор, что ведёт к появлению ошибки.

У каждого языка программирования есть синтаксис и семантика. Синтаксис — это совокупность формальных правил написания про­грамм на данном языке, семантика — это смысловое значение напи­санного.

Важным элементом синтаксиса является алфавит языка, который представляет собой набор всех допустимых в языке символов.

Зарезервированными являются такие слова, смысл которых одно­значно трактуется компилятором языка и другим быть не может. Вот почему их нельзя использовать иначе, чем по прямому назначению. В отличие от зарезервированных слова пользователя задаются самим программистом и им же определяется смысл их использования.

Например, в Turbo Pascal используются следующие зарезервиро­ванные слова: and, asm, array, begin, case, const, constructor, destructor, div, do, downto, else, end, file, for и др.

При наборе программы эти слона отображаются на экране белым цветом, напоминая нам, что они являются ключевыми.

Идентификаторы, или имена, могут присваиваться константам, переменным, меткам, типам, объектам, процедурам, функциям, модулям, программам, полям записей, иными словами, всему тому, что может быть поименовано. Важно познакомиться с правилами оформ­ления идентификаторов. Любые ошибки в написании имен приведут к синтаксической ошибке, и программа не будет выполняться.

Правила оформления констант также играют важную роль в син­таксисе языка программирования. Например, при записи десятичных дробей используется десятичная точка, а не запятая, символьные дан­ные оформляются в кавычках, аргумент функции всегда оформляется в скобках, следующих за именем функции, и т. д.

Любой язык программирования имеет целый ряд встроенных функ­ций, т.е. готовых программ, одно обращение к которым по их имени приводит к получению результата, например sin (х), cos(x), log(x) и т.д. Напомним, что функция sqrt (х) обеспечивает нахождение квадратно­го корня из указанного аргумента.

Алгоритм, записанный на языке программирования, называется программой.

Каждый шаг алгоритма представлен некоторой командой. Команды в программе оформляются по правилам языка программирования и на­зываются операторами языка программирования. Заметим, что для любой программы характерен естественный порядок исполнения ко­манд, т.е. команды исполняются в порядке их написания в программе. Этот порядок может быть нарушен командами передачи управления (операторами перехода), которые относятся к управляющим командам, т.е. таким, которые не выполняют непосредственно обработку инфор­мации, а управляют работой программы.

Любая программа выполняется в результате ее трансляции — пере­вода записи операторов на язык компьютера. Каждый оператор в про­грамме после трансляции будет представлен набором кодов команд. Эти команды выполняются в оперативной памяти компьютера.

Все константы и переменные размещаются в своих ячейках памяти в соответствии с присвоенными им идентификаторами — именами.

Код команды содержит не только эти имена данных, но и адреса ячеек оперативной памяти, в которых размещается значение соот­ветствующих данных, а также код самой операции, предусмотренной в операторе. Операция может быть арифметической (сложение, вы­читание, умножение, деление), встроенной функцией (которые сами являют собой набор команд), логической (сравнения) или управления (переход, ввод, вывод, старт, стоп, конец, пауза или задержка).

Интересно отметить еще одну особенность выполнения команд в компьютере. Например, основной арифметической командой явля­ется сложение. Операция вычитания представлена в компьютере как сложение с отрицательным числом, а операция умножения — как многократное сложение, соответственно операция деления — как многократное вычитание. Выполняет эти операции в компьютере сум­матор. При этом важнейшую роль играет способ представления чисел в компьютере: целых, дробных, положительных и отрицательных. Правила записи этих чисел есть в синтаксисе языка и их следует не­укоснительно выполнять.




Операторы языка программирования позволяют приступить к на­писанию простейших программ с использованием типовых алгорит­мических конструкций.

Математическая запись формулы, записанная по правилам языка программирования справа от знака присваивания, называется арифметическим выражением. Арифметические выражения используются повсеместно при работе с компьютером — в программах-калькуляторах, электронных таблицах, что будет рассмотрено в дальнейшем. Важную роль в записи арифметического выражения играют встроенные функции, которые сами представляют собой команды для компьютера, требующие вы­числения, а также скобки, позволяющие четко определить порядок операций в арифметическом выражении, в том числе для оформления дробного выражения с помощью деления числителя на знамена­тель.

Оператор присваивания. Этот оператор работает так: результат вычисления выражения в правой части требуется присвоить в качестве значения переменной Y. Именно потому, что данный оператор выполняет функции не толь­ко вычисления, но и присваивания, в левой его части не может быть выражения, а только имя одной переменной — ячейки памяти ком­пьютера, в которую производится запись результата вычисления.

Оператор ввода данных. Этот оператор размещает данные в опе­ративной памяти компьютера. Имена переменных, записанных в опе­раторе INPUT в произвольном порядке, получают значения, вводимые с клавиатуры в этом же порядке, т.е. первой переменной соответству­ет первое введенное значение, второй — второе и т.д. Синтаксис опе­ратора в общем виде будем называть его форматом.

Оператор вывода. Этот оператор предназначен для вывода резуль­татов или на экран монитора или на принтер.

Существуют два вида операторов (команд) перехода. Оператор безусловного перехода передает управление к другой команде всегда, вне зависимости от каких бы то ни было условий.

Оператор условного перехода передает управление только в случае истинности некоторого условия, а в противном случае — просто игно­рируется.

Смысл этого оператора состоит в том, что если условие истинно, то выполняется оператор или группа операторов, следующих за словом THEN, а если условие ложно, то выполняется оператор или группа операторов, следующих за словом ELSE (иначе). Конструкция ELSE здесь заключена в квадратные скобки. По правилам описания форматов это означает ее необязательность. В случае отсут­ствия в формате конструкции ELSE оператор выполняет также дей­ствия: если условие истинно, то выполняется оператор или группа операторов, следующих за словом THEN, а в противном случае — опе­ратор, следующий за оператором IF в программе. Если используется группа операторов, то они разделяются двоеточиями.

У каждого языка программирования есть синтаксис и семантика. Синтаксис — это совокупность формальных правил написания про­грамм на данном языке, семантика — это смысловое значение напи­санного.

Важным элементом синтаксиса является алфавит языка, который представляет собой набор всех допустимых в языке символов.

Зарезервированными являются такие слова, смысл которых одно­значно трактуется компилятором языка и другим быть не может. Вот почему их нельзя использовать иначе, чем по прямому назначению. В отличие от зарезервированных слова пользователя задаются самим программистом и им же определяется смысл их использования.

Например, в Turbo Pascal используются следующие зарезервиро­ванные слова: and, asm, array, begin, case, const, constructor, destructor, div, do, downto, else, end, file, for и др.

При наборе программы эти слона отображаются на экране белым цветом, напоминая нам, что они являются ключевыми.

Идентификаторы, или имена, могут присваиваться константам, переменным, меткам, типам, объектам, процедурам, функциям, модулям, программам, полям записей, иными словами, всему тому, что может быть поименовано. Важно познакомиться с правилами оформ­ления идентификаторов. Любые ошибки в написании имен приведут к синтаксической ошибке, и программа не будет выполняться.

Правила оформления констант также играют важную роль в син­таксисе языка программирования. Например, при записи десятичных дробей используется десятичная точка, а не запятая, символьные дан­ные оформляются в кавычках, аргумент функции всегда оформляется в скобках, следующих за именем функции, и т. д.

Любой язык программирования имеет целый ряд встроенных функ­ций, т.е. готовых программ, одно обращение к которым по их имени приводит к получению результата, например sin (х), cos(x), log(x) и т.д. Напомним, что функция sqrt (х) обеспечивает нахождение квадратно­го корня из указанного аргумента.

Алгоритм, записанный на языке программирования, называется программой.

Каждый шаг алгоритма представлен некоторой командой. Команды в программе оформляются по правилам языка программирования и на­зываются операторами языка программирования. Заметим, что для любой программы характерен естественный порядок исполнения ко­манд, т.е. команды исполняются в порядке их написания в программе. Этот порядок может быть нарушен командами передачи управления (операторами перехода), которые относятся к управляющим командам, т.е. таким, которые не выполняют непосредственно обработку инфор­мации, а управляют работой программы.

Любая программа выполняется в результате ее трансляции — пере­вода записи операторов на язык компьютера. Каждый оператор в про­грамме после трансляции будет представлен набором кодов команд. Эти команды выполняются в оперативной памяти компьютера.

Все константы и переменные размещаются в своих ячейках памяти в соответствии с присвоенными им идентификаторами — именами.

Код команды содержит не только эти имена данных, но и адреса ячеек оперативной памяти, в которых размещается значение соот­ветствующих данных, а также код самой операции, предусмотренной в операторе. Операция может быть арифметической (сложение, вы­читание, умножение, деление), встроенной функцией (которые сами являют собой набор команд), логической (сравнения) или управления (переход, ввод, вывод, старт, стоп, конец, пауза или задержка).

Интересно отметить еще одну особенность выполнения команд в компьютере. Например, основной арифметической командой явля­ется сложение. Операция вычитания представлена в компьютере как сложение с отрицательным числом, а операция умножения — как многократное сложение, соответственно операция деления — как многократное вычитание. Выполняет эти операции в компьютере сум­матор. При этом важнейшую роль играет способ представления чисел в компьютере: целых, дробных, положительных и отрицательных. Правила записи этих чисел есть в синтаксисе языка и их следует не­укоснительно выполнять.

Операторы языка программирования позволяют приступить к на­писанию простейших программ с использованием типовых алгорит­мических конструкций.

Математическая запись формулы, записанная по правилам языка программирования справа от знака присваивания, называется арифметическим выражением. Арифметические выражения используются повсеместно при работе с компьютером — в программах-калькуляторах, электронных таблицах, что будет рассмотрено в дальнейшем. Важную роль в записи арифметического выражения играют встроенные функции, которые сами представляют собой команды для компьютера, требующие вы­числения, а также скобки, позволяющие четко определить порядок операций в арифметическом выражении, в том числе для оформления дробного выражения с помощью деления числителя на знамена­тель.

Оператор присваивания. Этот оператор работает так: результат вычисления выражения в правой части требуется присвоить в качестве значения переменной Y. Именно потому, что данный оператор выполняет функции не толь­ко вычисления, но и присваивания, в левой его части не может быть выражения, а только имя одной переменной — ячейки памяти ком­пьютера, в которую производится запись результата вычисления.

Оператор ввода данных. Этот оператор размещает данные в опе­ративной памяти компьютера. Имена переменных, записанных в опе­раторе INPUT в произвольном порядке, получают значения, вводимые с клавиатуры в этом же порядке, т.е. первой переменной соответству­ет первое введенное значение, второй — второе и т.д. Синтаксис опе­ратора в общем виде будем называть его форматом.

Оператор вывода. Этот оператор предназначен для вывода резуль­татов или на экран монитора или на принтер.

Существуют два вида операторов (команд) перехода. Оператор безусловного перехода передает управление к другой команде всегда, вне зависимости от каких бы то ни было условий.

Оператор условного перехода передает управление только в случае истинности некоторого условия, а в противном случае — просто игно­рируется.

Смысл этого оператора состоит в том, что если условие истинно, то выполняется оператор или группа операторов, следующих за словом THEN, а если условие ложно, то выполняется оператор или группа операторов, следующих за словом ELSE (иначе). Конструкция ELSE здесь заключена в квадратные скобки. По правилам описания форматов это означает ее необязательность. В случае отсут­ствия в формате конструкции ELSE оператор выполняет также дей­ствия: если условие истинно, то выполняется оператор или группа операторов, следующих за словом THEN, а в противном случае — опе­ратор, следующий за оператором IF в программе. Если используется группа операторов, то они разделяются двоеточиями.

Языки программирования это формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя.


Классификация языков программирования

Языки низкого уровня

Языки высокого уровня

Машинно-ориентированные языки

(машинные коды, Ассемблер)

Алгоритмические языки

Каждый язык программирования предназначен для решения определенного класса задач:

  • Фортран – старейший язык программирования, предназначен для решения математических задач .
  • Кобол – для решения экономических задач
  • Бейсик,Pascal – для обучения
  • Java (джава) – язык сетевого программирования.

Для системного программирования наиболее подходят языки C, C++ и Ассемблер. C и – язык разработанный для написания операционной системы UNIX (обычно ядро операционных систем писали на Assembler ).

2. Системы программирования

Системы программирования – это комплексы программ и прочих средств, предназначенных для разработки и их эксплуатации на конкретном языке программирования для конкретного вида ЭВМ.

Система программирования включает:

Текстовый редактор

программа-отладчик

Транслятор – программа переводчик с конкретного алгоритмического языка на машинного ориентированный.

компоновщик (редактор связей)

Программа, обеспечивающая запуск программы

Текст программы, написанный на конкретном алгоритмическом языке.

отладка исходного текста программы (поиск и устранение ошибок)

Программа на машинно-ориентированном языке

объединяются оттранслированные модули в единые загрузочные, готовые к выполнению

+ библиотека подпрограмм, + Help

Выделяют два вида трансляторов: интерпретаторы и компиляторы .

Интерпретатор переводит на язык машинных кодов поочередно каждый оператор исходной программы, проверяет правильность записи оператора и немедленно выполняет его.

В отличие от интерпретатора компилятор осуществляет перевод на машинный язык всей исходной программы.

Преимуществом компиляторов по сравнению с интерпретаторами является быстродействие, а недостатком – громоздкость.

Большинство современных компиляторов работают в режиме трансляции.

Например: Программы на Java выполняются в два этапа. Сначала исходный текст компилятором переводится на промежуточный аппаратно-независимый язык. В таком виде полуфабрикат программы (байт-код) хранится на интернет-сервере, откуда по запросу клиента пересылается ему по сети. У клиента байт-код исполняется специальным интерпретатором, этот интерпретатор называется виртуальной Java-машиной, он встроен во все современные браузеры.

Среда визуальной разработки — среда разработки программного обеспечения, в которой наиболее распространённые блоки программного кода представлены в виде графических объектов. Применяются для создания прикладных программ и любительского программирование.

3. Синтаксис и семантика

Каждый язык программирование обладает своими лексическими, синтаксическими и семантическими правилами, которые необходимо соблюдать при составлении компьютерной программы.

Синтаксис – описывает структуру программ как наборов символов (обычно говорят — безотносительно к содержанию).

Пример синтаксической ошибки : употребление оператора цикла For без To или Next, или отсутствие знака равенства в приведенной на рисунке программе.

Синтаксические ошибки распознаются встроенным синтаксическим анализатором.

Семантика – определяет смысловое значение предложений алгоритмического языка.

Пример семантической ошибки :

1) For i As Integer = 1 To 10 Step -2

2) Если надо вычислить , то запись x = a / b * c содержит семантическую ошибку, т.к. приоритет операций деления и умножения одинаков, то вначале а делиться на b , а затем полученный результат умножает на с .

Поиск этих ошибок происходит с помощью логического анализа работы программы и ее тестирования.

4. Классы языков программирования

Программирование

Императивное

Декларативное

Императивные языки программирования – Бейсик, Паскаль, Си и прочие (включая объектно-ориентированные).

Императивное программирование наиболее популярное. Характеризуются последовательным, пошаговым изменением состояния вычислителя. При этом управление изменениями полностью определено и полностью контролируемо.

Одна из характерных черт императивного программирования – наличие переменных с операцией "разрушающего присвоения". То есть, была переменная А, было у нее значение Х. Алгоритм предписывает на очередном шаге присвоить переменной А значение Y. То значение, которое было у А, будет "навсегда забыто".

Если задача описывается последовательным исполнением операций ("открыть кран, набрать воды"), то такие задачи идеальные кандидаты на императивную реализацию.

Декларативные языки программирования:

Функциональные языки программирования – LISP , ISWIM ( If you See What I Mean ), ML ( Meta Language ), Miranda

Способ решения задачи описывается при помощи зависимости функций друг от друга (в том числе возможны рекурсивные зависимости) без указания последовательности шагов.

Функциональное программирование, как и другие модели "неимперативного" программирования, обычно применяется для решения задач, которые трудно сформулировать в терминах последовательных операций. Практически все задачи, связанные с искусственным интеллектом, попадают в эту категорию. Среди них следует отметить задачи распознавания образов, общение с пользователем на естественном языке, реализацию экспертных систем, автоматизированное доказательство теорем, символьные вычисления. Эти задачи далеки от традиционного прикладного программирования, поэтому им уделяется не так много внимания в учебных программах по информатике.

Логические языки программирования – Prolog.

Если в функциональном программировании программы - это выражения, и их исполнение заключается в вычислении их значения, то в логическом программировании программа представляет из себя некоторую теорию (описанную на достаточно ограниченном языке), и утверждение, которое нужно доказать. В доказательстве этого утверждения и будет заключаться исполнение программы.

Логическое программирование и язык Пролог появились в результате исследования группы французских ученых под руководством Колмерье в области анализа естественных языков. В последствии было обнаружено, что логическое программирование столь же эффективно в реализации других задач искусственного интеллекта, для чего оно в настоящий момент, главным образом, и используется. Но логическое программирование оказывается удобным и для реализации других сложных задач; например, диспетчерская система лондонского аэропорта Хитроу в настоящий момент переписывается на Прологе. Оказывается, логическое программирование является достаточно выразительным средством для описания сложных систем.

Программирование

Процедурное

Объектно-ориентированное

Процедурные языки программирования – используют процедуры (подпрограммы, методы или функции). Процедуры содержат последовательность шагов для выполнения. В ходе выполнения программы любая процедура может быть вызвана из любой точки.

Объектно-ориентированные подход к программированию - это подход к разработке программного обеспечения, основанный на объектах, а не на процедурах.

При процедурном программировании программа разбивается на части в соответствии с алгоритмом: каждая часть ( подпрограмма , функция , процедура ) является составной частью алгоритма. При объектно-ориентированном программировании программа строится как совокупность взаимодействующих объектов .

Объект – это базовое понятие ООП. Любой объект принадлежит одному или нескольким классам, которые в свою очередь определяют, описывают поведение объекта.

Примеры объектов : "хоббит по имени Фродо Бэггинс", "маг по имени Гэндальф".

Каждый объект характеризуется свойствами, методами и событиями .

Свойства – описание объекта. Примеры атрибутов: "имя", "рост". Набор конкретных значений определяет текущее состояние объекта.

Метод – это действие объекта, изменяющее его состояние или реализующее другое его поведение. Пример методов: "назвать свое имя", "стать невидимым".

Объект, класс, метод, свойства, события – это базовые понятия ООП.

Рассмотрим ситуацию из обыденной жизни. Например, Вам надо сообщить поздравить своего родственника, живущего в другом городе с днем рождения. Для это Вы идете на почту и посылаете телеграмму. Вы сообщаете оператору, что хотите переслать данный текст по некоторому адресу. И Вы можете быть уверены, что ваше поздравление попадет по нужному адресу.

К концепции ООП относится:

Наследование - возможность порождать один класс от другого с сохранением всех свойств и методов класса-предка (иногда его называют суперклассом) и добавляя, при необходимости, новые свойства и методы. Наследование призвано отобразить такое свойство реального мира, как иерархичность.

Пример наследования : на основании класса "Личность" создаются его подклассы "Хоббит", "Маг", "Эльф" и "Человек", каждый из которых обладает свойствами и поведением "Личности", но добавляет собственные свойства и меняет поведение.

Инкапсуляция — это принцип, согласно которому любой класс должен рассматриваться как чёрный ящик — пользователь класса должен видеть и использовать только интерфейс (от английского interface — внешнее лицо, т. е. список декларируемых свойств и методов) класса и не вникать в его внутреннюю реализацию. Этот принцип (теоретически) позволяет минимизировать число связей между классами и, соответственно, упростить независимую реализацию и модификацию классов. Свойство объекта скрывать некоторые свои свойства и методы. Смысл инкапсуляции состоит в том, что внешний пользователь не знает детали реализации объекта, работая с ним путём предоставленного объектом интерфейса.

Программирование

Неструктурное

Структурное

Неструктурное программирование допускает использование в явном виде команды безусловного перехода (в большинстве языков GOTO). Типичные представители неструктурных языков - ранние версии Бейсика и Фортрана. Однако в языках высокого уровня наличие команды перехода влечет за собой массу серьезных недостатков: программа превращается в "спагетти" с бесконечными переходами вверх-вниз, ее очень трудно сопровождать и модифицировать. Фактически неструктурный стиль программирования не позволяет разрабатывать большие проекты. Ранее широко практиковавшееся первоначальное обучение программированию на базе неструктурного языка (обычно Бейсика) приводило к огромным трудностям при переходе на более современные стили. Как отмечал известный голландский ученый Э. Дейкстра, "программисты, изначально ориентированные на Бейсик, умственно оболванены без надежды на исцеление".

Структурное программирование

задача разбивается на большое число мелких подзадач, каждая из которых решается своей процедурой или функцией (декомпозиция задачи). При этом проектирование программы идет по принципу сверху вниз: сначала определяются необходимые для решения программы модули, их входы и выходы, а затем уже эти модули разрабатываются. Такой подход вместе с локальными именами переменных позволяет разрабатывать проект силами большого числа программистов.

как доказал Э. Дейкстра, любой алгоритм можно реализовать, используя лишь три управляющие конструкции:

Читайте также: