Сила натяжения нити кратко

Обновлено: 05.07.2024

Под силой натяжения понимают силу, приложенную к концам объекта и образующую внутри него упругую деформацию. Длина данного объекта обычно в несколько раз превышает его толщину (нить, веревка, проволока, бечева, трос, шнур и другие похожие объекты).

Увидеть силу натяжения можно в различных областях жизнедеятельности, к примеру, альпинистское снаряжение, вытаскивание ведра из колодца, подвесной мост, ремень безопасности, гитара, буксировка автомобиля, перетягивание каната и в других.

Чему равна сила натяжения нити

Если в натянутой нити верхний конец крепко закреплен, а нижний находится под действием груза, то определение сила тяжести рассчитывается, как масса груза, умноженная на ускорение свободного падения:

Где m - масса, g - ускорение свободного падения.

Если в натянутой нити верхний конец крепко закреплен, а нижний находится под действием груза, то определение сила тяжести рассчитывается, как масса груза, умноженная на ускорение свободного падения:

Существует и такой случай, когда нить находится под заданным углом, следовательно, формула силы натяжения примет такой вид:

\[\mathrm_<\Pi>=\mathrm \cdot \mathrm \cdot \cos (\alpha)\], где α-угол отклонения нити.

Бывает, когда натяжение нити происходит вверх, посредством вертикально закрепленного груза, то в формулу необходимо добавить еще и ускорение, с которым осуществляется это движение:

Сила натяжения образуется и во вращающихся системах, к примеру, если процесс раскручивания происходит вокруг оси и на ней закреплен конец нити. Такая сила характерна для качелей, центрифуги, маятника и других подобных устройств. В таком разе напряжение вокруг подвесного груза помогает создавать центробежная сила. Величина центробежной силы прямым образом зависит от массы, радиуса от центра вращения до центра тяжести, а также от скорости движения центра тяжести системы.

Вращение может производиться непосредственно в вертикальной площади, а значит, сила натяжения изменяется циклическим образом. При приближении к земле, ее значение увеличивается, а при отдалении от нее, уменьшается. Главным образом, напряжение внутри нити связано с углом отклонения от вертикали (см. пример).

Соавтор(ы): Bess Ruff, MA. Бесс Руфф — аспирантка Университета штата Флорида, работает над получением степени PhD по географии. Получила степень магистра экологии и менеджмента в Калифорнийском университете в Санта-Барбаре в 2016 году. Проводила исследования для проектов по морскому пространственному планированию в Карибском море и обеспечивала научную поддержку в качестве дипломированного участника Группы устойчивого рыболовства.

В физике, сила натяжения — это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Сила натяжения - сила, приложенная к концам объекта и создающая внутри него упругую деформацию. Длина такого объекта, как правило, многократно превышает толщину (веревка, канат, трос, леска, проволока).

Наблюдать силу натяжения можно, на таких примерах, как строительный отвес, растяжки, удерживающие радиоантенны, арматура внутри напряженного бетона, корабельный такелаж и т.п.

В простейшем случае, чтобы определить силу в натянутой под действием веса висящего на ней груза нити с неподвижно закрепленным верхним концом, следует рассчитать силу тяжести как массу груза, умноженную на ускорение свободного падения:

$F = F_ = m \cdot g$

Если подвешенный груз действует на нить не вертикально, а под углом (например, в маятнике), то формула примет вид

$F_п = m \cdot g \cdot cos(\alpha)$

, где $\alpha$ - угол отклонения.

Когда нить тянет вертикально подвешенный груз вверх, то в формуле следует учесть еще и ускорение, с которым производится это движение:

$F = F_ + m \cdot a$

Сила натяжения возникает также во вращающейся системе, например, если ее раскручивают вокруг оси, на которой закреплен один из концов нити (например, центрифуга, маятник, качели). В этом случае напряжение внутри подвеса создает еще и центробежная сила. Ее величина зависит от массы, скорости, с которой движется центр тяжести системы, и радиуса от центра вращения до центра тяжести:

Если вращение производится в вертикальной плоскости, то сила натяжения меняется циклически - нарастает при приближении к земле и ослабевает при удалении от нее, т.е. напряжение внутри нити зависит от угла отклонения от вертикали (см. пример).

Маятник длиной 1 м отклонен от вертикали на двадцать градусов и движется со скоростью 2 м/с. Найти силу натяжения нити маятника при массе подвешенного груза 2 кг.

На груз, подвешенный к маятнику, действуют 2 силы:

Задача сводится к тому, чтобы найти их сумму.

Силу притяжения найдем как

$F_п = m \cdot g \cdot cos(\alpha)$

, где $m$ - масса, $g$ - ускорение свободного падения, $\alpha$ - угол отклонения. Подставив числовые значения, получаем:

$F_п = 2 \cdot 9,8 \cdot 0,95 = 18,64 Н$

Центробежная сила определяется как

, где $v$ - cкорость, $r$ - радиус (в данном случае длина подвеса). Подставив числовые значения, получаем:

Ответ: сила натяжения нити маятника равна $18,64 + 8 = 26,64 Н$.

Силу натяжения определяют как равнодействующую сил $(\bar)$, приложенных к нити, равную ей по модулю, но противоположно направленную. Устоявшегося символа (буквы), обозначающего силу натяжения нет. Ее обозначают и просто $\bar$ и $\bar$, и $\bar$ . Математически определение для силы натяжения нити можно записать как:

где $\bar$ = векторная сумма всех сил, которые действуют на нить. Сила натяжения нити всегда направлена по нити (или подвесу).

Чаще всего в задачах и примерах рассматривают нить, массой которой можно пренебречь. Ее называют невесомой.

Еще одним важной характеристикой нити при расчете силы натяжения является ее растяжимость. Если исследуется невесомая и нерастяжимая нить, то такая нить считается просто проводящей через себя силу. В том случае, когда необходимо учитывать растяжение нити, применяют закон Гука, при этом:

где k – коэффициент жесткости нити, $\Delta l$ – удлинение нити при растяжении.

Единицы измерения силы натяжения нити

Основной единицей измерения силы натяжения нити (как и любой силы) в системе СИ является: [T]=Н

Примеры решения задач

Задание. Невесомая, нерастяжимая нить выдерживает силу натяжения T=4400Н. С каким максимальным ускорением можно поднимать груз массой m=400 кг, который подвешивают на эту нить, чтобы она не разорвалась?

Решение. Изобразим на рис.1 все силы, действующие на груз, и запишем второй закон Ньютона. Тело будем считать материальной точкой, все силы приложенными к центру масс тела.


где $\bar$ – сила натяжения нити. Запишем проекцию уравнения (1.1) на ось Y:

Из выражения (1.2) получим ускорение:

Все данные в задаче представлены в единицах системы СИ, проведем вычисления:

Ответ. a=1,2м/с 2


Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Шарик, имеющий массу m=0,1 кг прикрепленный к нити (рис.2) движется по окружности, расположенной в горизонтальной плоскости. Найдите модуль силы натяжения нити, если длина нити l=5 м, радиус окружности R=3м.


Решение. Запишем второй закон Ньютона для сил, приложенных к шарику, который вращается по окружности с центростремительным ускорением:

Найдем проекции данного уравнения на обозначенные на рис.2 оси X и Y:

$$ \begin X: \quad T \sin \alpha=m a=m \omega^ R(2.2) \\ Y: \quad-m g+T \cos \alpha=0 \end $$

Из уравнения (2.3) получим формулу для модуля силы натяжения нити:

Из рис.2 видно, что:

Подставим (2.5) вместо $\cos \alpha$ в выражение (2.4), получим:

Так как все данные в условиях задачи приведены в единицах системы СИ, проведем вычисления:

Читайте также: