Сила масса единица массы кратко

Обновлено: 05.07.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.


Лекция по естествознанию.

Масса и сила

Основное утверждение механики состоит в том, что ускорения тел определяются действиями на них других тел.

Это определение основано на главном утверждении механики:

1) ускорения тел вызываются силами;

2) силы, действующие на тело, обусловлены действиями на него других тел.

Важно
Сила — мера взаимодействия тел.

С какими телами взаимодействует ребёнок, катающийся на карусели?

Понятие силы относится к двум телам. С самого начала нужно отчётливо представить себе, что понятие силы относится именно к двум телам, а не к одному. Всегда можно указать тело, на которое действует сила, и тело, со стороны которого она действует. Так, сила тяжести действует на камень со стороны Земли, а на шарик, подвешенный на пружине, действует сила упругости со стороны пружины.

Сила имеет направление. Так, сила упругости растянутой пружины действует вдоль её оси. Сила трения останавливает скользящую по льду шайбу и направлена против скорости её движения.

Важно
Сила — векторная величина.

Сравнение сил. Для количественного определения силы мы должны уметь её измерять. Только при этом условии можно говорить о силе как об определённой физической величине. Но ведь действия на данное тело могут быть самыми разнообразными. Что общего, казалось бы, между силой притяжения Земли к Солнцу и силой, которая, преодолевая тяготение, заставляет взмывать вверх ракету, или между этими двумя силами и силой, сжимающей мяч в руке, определяемой сокращением мускул? Ведь они совершенно различны по своей природе! Можно ли говорить о них как о чём-то физически родственном? Можно ли сравнивать их?

Важно
Две силы независимо от их природы считаются равными и противоположно направленными, если их одновременное действие на тело не меняет его скорости (т. е. не сообщает телу ускорение).

Это определение позволяет измерять силы, если одну из них принять за единицу измерения.

Измерение сил. Для измерения сил необходим эталон единицы силы. В качестве эталона единицы силы выберем силу 0 , с которой некоторая определённая (эталонная) пружина при фиксированном растяжении Δх действует на прикреплённое к ней тело (рис. 2.1). Сила упругости пружины направлена вдоль оси пружины.

Установим способ сравнения сил с эталонной силой.

hello_html_m5e5ce6f6.jpg

По определению две силы считаются равными и противоположными по направлению, если при одновременном действии они не сообщают телу ускорение. Следовательно, измеряемая сила 1 равна по модулю эталонной силе 0 и направлена в противоположную сторону, если под воздействием этих сил тело не получает ускорение (см. рис. 2.1). Причём сила 1 может быть любой природы: силой давления, силой трения и т. д.

Если к телу прикрепить две пружины и растянуть их также на Δх (рис. 2.2), то равнодействующая сила будет равна 2 0 . Сила 2 , направленная в противоположную сторону, по модулю также равна 2 0 , если все три силы, действуя одновременно на тело, не сообщают ему ускорение.

Таким образом, располагая эталоном силы, мы можем измерять силы, кратные эталону. Для этого к телу, на которое действует измеряемая сила, прикладывают в сторону, противоположную её направлению, такое количество эталонных сил, чтобы тело не получило ускорение, и подсчитывают число эталонных сил. Естественно, что при этом мы можем измерить силу не меньше эталонной силы 0 и ошибка измерения будет также не меньше ошибки измерения эталонной силы.

Выбрав эталонную силу достаточно малой, можно в принципе производить измерения разных сил с требуемой точностью.

Можно ли при задании эталонной силы не растягивать, а сжимать пружину?

hello_html_3e106b86.jpg

Динамометр. На практике для измерения сил применяют динамометр (рис. 2.3). Использование динамометра основано на том, что при упругой деформации удлинение пружины прямо пропорционально приложенной к ней силе. Поэтому по длине пружины можно судить о значении силы.

О силах в механике. В механике не рассматривается природа тех или иных сил и не делаются попытки выяснить, вследствие каких физических процессов появляются те или иные силы. Это задача других разделов физики.

В механике важно лишь знать, при каких условиях возникают силы, каковы их направления и чему равны их модули, т. е. знать, как силы зависят от расстояний между телами и от скоростей их движения. А знать модули сил, определять, когда и как они действуют, можно, не вникая в природу сил, а лишь располагая способами их измерения.

В механике имеют дело с тремя типами сил: гравитационными силами, силами упругости и силами трения. Модули и направления этих сил определяются опытным путём. Важно, что все рассматриваемые в механике силы зависят либо только от расстояний между телами или от расположения частей тела (гравитация и упругость), либо только от относительных скоростей тел (трение).

Инертность тела. Мы уже говорили о явлении инерции. Именно вследствие инерции покоящееся тело приобретает заметную скорость под действием силы не сразу, а лишь за некоторый интервал времени.

Запомни
Инертность — свойство тел по-разному изменять свою скорость под действием одной и той же силы.

Ускорение возникает сразу, одновременно с началом действия силы, но скорость нарастает постепенно. Даже очень большая сила не в состоянии сообщить телу сразу значительную скорость. Для этого нужно время. Чтобы остановить тело, опять-таки нужно, чтобы тормозящая сила, как бы она ни была велика, действовала некоторое время.

Именно эти факты имеют в виду, когда говорят, что тела инертны , т. е. одним из свойств тела является инертность, а количественной мерой инертности является масса .

Приведём примеры простых опытов, в которых очень отчётливо проявляется инертность тел.

1. На рисунке 2.4 изображён массивный шар, подвешенный на тонкой нити. Внизу к шару привязана точно такая же нить.

Если медленно тянуть за нижнюю нить, то порвётся верхняя нить: ведь на неё действуют и шар своей тяжестью, и сила, с которой мы тянем шар вниз. Однако если за нижнюю нить очень быстро дёрнуть, то оборвётся именно она, что на первый взгляд довольно странно.

Но это легко объяснить. Когда мы тянем за нить медленно, то шар постепенно опускается, растягивая верхнюю нить до тех пор, пока она не оборвётся. При быстром рывке с большой силой шар получает большое ускорение, но скорость его не успевает увеличиться сколько-нибудь значительно за тот малый промежуток времени, в течение которого нижняя нить сильно растягивается и обрывается. Верхняя нить поэтому мало растягивается и остаётся целой.

2. Интересен опыт с длинной палкой, подвешенной на бумажных кольцах. Если резко ударить по палке железным стержнем, то палка ломается, а бумажные кольца остаются невредимыми.

3. Наконец, самый, пожалуй, эффектный опыт. Если выстрелить в пустой пластмассовый сосуд, пуля оставит в стенках правильные отверстия, но сосуд останется целым. Если же выстрелить в такой же сосуд, заполненный водой, то сосуд разорвётся на мелкие части. Это объясняется тем, что вода малосжимаема и небольшое изменение её объёма приводит к резкому возрастанию давления. Когда пуля очень быстро входит в воду, пробив стенку сосуда, давление резко возрастает. Из-за инертности воды её уровень не успевает повыситься, и возросшее давление разрывает сосуд на части.

Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться или, наоборот, остановить его движение.

Понаблюдайте за различными телами и определите, как зависит инертность тела от его массы.

Единица массы. В кинематике мы пользовались двумя основными физическими величинами — длиной и временем. Для единиц этих величин установлены соответствующие эталоны, сравнением с которыми определяются любая длина и любой интервал времени. Единицей длины является метр, а единицей времени — секунда. Все другие кинематические величины не имеют эталонов единиц. Единицы таких величин называются производными.

При переходе к динамике мы должны ввести ещё одну основную единицу и установить её эталон.

Приведите примеры производных единиц физических величин в кинематике.

В Международной системе единиц (СИ) за единицу массы — один килограмм (1 кг) — принята масса эталонной гири из сплава платины и иридия, которая хранится в Международном бюро мер и весов в Севре, близ Парижа. Точные копии этой гири имеются во всех странах. Приближённо массу 1 кг имеет вода объёмом 1 л при комнатной температуре. Легко осуществимые способы сравнения любой массы с массой эталона путём взвешивания мы рассмотрим позднее.

Мы знаем, что тело может двигаться равномерно и прямолинейно. В таком случае его скорость постоянна и не меняется по величине и направлению. Если же скорость тела меняет величину или величину и направление, то тело движется с определенным ускорением a → .

С точки зрения кинематики нас не интересует, почему тело движется тем или иным образом. Динамика в физике, наоборот, рассматривает взаимодействие тел как причину, которая определяет характер движения.

Взаимодействие тел определяет характер движения.

Динамика - раздел механики, в котором изучаются законы взаимодействия тел.

1 закон Ньютона

Законы динамики были сформулированы Исааком Ньютоном и опубликованы в 1687 году. Три закона Ньютона составляют основу классической механики, которая на протяжении нескольких столетий (вплоть до 20 века) главенствовала, как основная научная парадигма.

Классическая механика справедлива для тел, движущихся с малыми скоростями (скоростями, которые значительно меньше скорости света). Вообще законы Ньютона были выведены путем эмпирических наблюдений и обобщения опытных фактов.

Представим изолированное тело, на которое не действуют никакие другие тела. Это самая простая механическая система. Для описания движения тела необходима система отсчета.

Напомним, что система отсчета - это тело отсчета и связанные с ним системы координат и часов (отсчета времени). Причем в разных системах отсчета движение тела будет разным.

Сформулируем первый закон Ньютона. Он говорит о существовании так называемых инерциальных систем отсчета (ИСО) и называете также законом инерции. Существуют разные определения первого закона Ньютона.

Первый закон Ньютона

Существуют системы отсчета, называемые инерциальными. В таких системах отсчета тела движутся равномерно и прямолинейно или покоятся, если на них не действуют другие тела или если их действие скомпенсировано.

Инерция - это свойство тел сохранять свою скорость при отсутствии на него воздействий со стороны других тел. Именно поэтому второе название первого закона Ньютона - закон инерции.

Первая формулировка закона инерции была выведена еще Галилео Галилеем в 1632 году. Ньютон лишь обобщил его выводы.

В классической механике законы движения формулируются для инерциальных систем отсчета.

При описании движения тел у поверхности Земли системы отсчета, связанные с Землей, можно приблизительно считать и инерциальными. Отклонения от закона инерции обнаруживаются при повышении точности экспериментов и обусловлены вращением Земли вокруг своей оси.

Приведем пример, иллюстрирующий неинерциальность системы отсчета, связанной с Землей. Рассмотрим колебания маятника Фуко. Это массивный шар, подвешенный на длинной нити и совершающий малые колебания относительно положения равновесия.

Плоскость колебаний маятника Фуко относительно Земли не остается неизменной вследствие вращения Земли. Проекция траектории маятника на поверхность Земли имеет вид розетки. Будь система инерциальной, плоскость качения маятника относительно Земли оставалась бы неизменной.

1 закон Ньютона

Еще одна система, которую можно приближенно принять за инерциальную - гелиоцентрическая система отсчета. Начало координат в ней помещено в центр Солнца, а оси направлены на отдаленные звезды. Эта система отсчета еще называется системой Коперника. Именно ее использовал Ньютон при выводе закона Всемирного тяготения (1682 г.).

Система отсчета, связанная с поездом, который с постоянной скоростью движется по прямым рельсам, также может считаться инерциальной. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно.

Что является причиной изменения скорости тела в инерциальной системе отсчета? Согласно первому закону Ньютона, это взаимодействие с другими телами. Чтобы количественно описать движение тела и взаимодействие его с другими телами, необходимо ввести понятия массы и силы.

Масса

Масса - физическая величина, мера инертности тела. Чем больше масса, тем больше инертность.

Единица измерения массы в международной системе СИ - килограмм (кг).

Масса в физике - скалярная и аддитивная величина.

Это значит, что если тело состоит из нескольких частей массами m 1 , т 2 , т 3 , . . , т n , то его общая масса будет равна сумме масс составных частей: m = m 1 + т 2 + т 3 + . . + т n .

Вы наверняка замечали, что разные тела по-разному меняют свою скорость. Тяжелый грузовик остановить гораздо сложнее, чем игрушечную машинку, так как он обладает большей массой и, соответственно, инертностью.

В результате взаимодействия двух тел меняются их скорости. Это значит, что в процессе взаимодействия тела приобретают ускорения. При любых воздействиях отношение ускорений двух тел остается постоянным. При этом, массы тел обратно пропорциональны ускорениям, которые они приобретают.

m 1 m 2 = - a 2 a 1

Масса

Здесь a 1 и a 2 - проекции векторов ускорений a 1 → и a 2 → на ось OX. Знак минус означает, что ускорения тел направлены в противоположные стороны.

Какие есть способы измерения массы тела? Самый простой и очевидный - сравнить массу тела с массой эталона. В системе СИ, как уже говорилось, m э т = 1 к г .

Сила - векторная физическая величина, количественная мера взаимодействия тел.

В системе СИ сила измеряется в Ньютонах (Н).

Именно сила - причина изменения движения тела. На тело может действовать несколько сил, которые имеют различную физическую природу. Например, сила тяжести, сила трения скольжения и сила трения качения, сила упругости и т.д.

Равнодействующая сила - векторная сумма всех сил, действующих на тело.

Как измерить силу? Необходимо установить эталон силы и найти способ сравнить другие силы с этим эталоном.

В качестве эталона можно использовать, например, силу, с которой растянутая до определенной величины пружина действует на прикрепленное к ней тело. Способ сравнения сил очень прост: если под действием двух сил (измеряемой F → и эталонной F → 0 ) тело движется равномерно или покоится, то эти силы равны по модулю.

Сила

Если измеряемая сила больше эталонной, то можно добавить еще одну эталонную пружину. При соблюдении условий, указанных выше, можно сказать, что в таком случае

Сила

Для сравнения сил, меньших чем 2 F 0 , можно использовать схему, приведенную ниже.

Сила

Эталон силы (единица измерения)

За эталон силы в международной системе СИ принята сила в 1 Ньютон. Это такая сила, которая сообщает телу массой 1 килограмм ускорение, равное 1 м с 2 .

Прибор для измерения силы - динамометр. По сути, это пружина, откалиброванная специальным образом. При растяжении пружины приложенная сила указывается на шкале динамометра.

Инертность тела.

Мы уже говорили о явлении инерции.
Именно вследствие инерции покоящееся тело приобретает заметную скорость под действием силы не сразу, а лишь за некоторый интервал времени.

Инертность — свойство тел по-разному изменять свою скорость под действием одной и той же силы.

Ускорение возникает сразу, одновременно с началом действия силы, но скорость нарастает постепенно.
Даже очень большая сила не в состоянии сообщить телу сразу значительную скорость.
Для этого нужно время.
Чтобы остановить тело, опять-таки нужно, чтобы тормозящая сила, как бы она ни была велика, действовала некоторое время.

Именно эти факты имеют в виду, когда говорят, что тела инертны, т. е. одним из свойств тела является инертность.

Масса.

Количественной мерой инертности является масса.


Приведём примеры простых опытов, в которых очень отчётливо проявляется инертность тел.

1. На рисунке 2.4 изображён массивный шар, подвешенный на тонкой нити.
Внизу к шару привязана точно такая же нить.

Если медленно тянуть за нижнюю нить, то порвётся верхняя нить: ведь на неё действуют и шар своей тяжестью, и сила, с которой мы тянем шар вниз.
Однако если за нижнюю нить очень быстро дёрнуть, то оборвётся именно она, что на первый взгляд довольно странно.

Но это легко объяснить.
Когда мы тянем за нить медленно, то шар постепенно опускается, растягивая верхнюю нить до тех пор, пока она не оборвётся.
При быстром рывке с большой силой шар получает большое ускорение, но скорость его не успевает увеличиться сколько-нибудь значительно за тот малый промежуток времени, в течение которого нижняя нить сильно растягивается и обрывается.
Верхняя нить поэтому мало растягивается и остаётся целой.


2. Интересен опыт с длинной палкой, подвешенной на бумажных кольцах (рис. 2.5).
Если резко ударить по палке железным стержнем, то палка ломается, а бумажные кольца остаются невредимыми.

3. Наконец, самый, пожалуй, эффектный опыт.
Если выстрелить в пустой пластмассовый сосуд, пуля оставит в стенках правильные отверстия, но сосуд останется целым.
Если же выстрелить в такой же сосуд, заполненный водой, то сосуд разорвётся на мелкие части.
Это объясняется тем, что вода малосжимаема и небольшое изменение её объёма приводит к резкому возрастанию давления.
Когда пуля очень быстро входит в воду, пробив стенку сосуда, давление резко возрастает.
Из-за инертности воды её уровень не успевает повыситься, и возросшее давление разрывает сосуд на части.

Чем больше масса тела, тем больше его инертность, тем сложнее вывести тело из первоначального состояния, т. е. заставить его двигаться или, наоборот, остановить его движение.

Единица массы.

В кинематике мы пользовались двумя основными физическими величинами — длиной и временем.
Для единиц этих величин установлены соответствующие эталоны, сравнением с которыми определяются любая длина и любой интервал времени.
Единицей длины является метр, а единицей времени — секунда.
Все другие кинематические величины не имеют эталонов единиц.
Единицы таких величин называются производными.

При переходе к динамике мы должны ввести ещё одну основную единицу и установить её эталон.

В Международной системе единиц (СИ) за единицу массы — один килограмм (1 кг) — принята масса эталонной гири из сплава платины и иридия, которая хранится в Международном бюро мер и весов в Севре, близ Парижа.
Точные копии этой гири имеются во всех странах.
Приближённо массу 1 кг имеет вода объёмом 1 л при комнатной температуре.
Легко осуществимые способы сравнения любой массы с массой эталона путём взвешивания мы рассмотрим позднее.

Динамика - Физика, учебник для 10 класса - Класс!ная физика


Одной из важнейших характеристик любого тела является его масса. Во многих физических законах и уравнениях масса тела играет одну из важнейших ролей, иногда совершенно меняя результат физического явления. Например, при равном объёме всплывание тела в одной и той же жидкости определяется исключительно массой. Поговорим о том, что это за величина, какие у неё свойства и особенности, на что влияет масса тела.

Масса тела

Для знакомства с физической природой массы проще всего провести опыт с телами одинаковой формы и размеров, но различной массы. Например, можно взять небольшой воздушный шарик, футбольный мяч и чугунное ядро тех же размеров (20—25 см диаметром).

Несмотря на одинаковые размеры, эти три тела при броске поведут себя совершенно по-разному. Воздушный шарик после удара по нему сразу приобретёт скорость, практически равную скорости руки. Но далее его скорость будет очень быстро уменьшаться из-за воздушного сопротивления. Футбольный мяч после удара пролетит гораздо дальше — на десятки метров. Но сообщить ему ту же начальную скорость, как воздушному шарику, будет труднее. Если же взять чугунное ядро, то силы мускулов хватит лишь на то, чтобы бросить его на пару метров.

Почему же в приведённых трёх примерах получается совершенно разный результат? Ответ заключается в разнице масс используемых предметов.

Масса тела

Рис. 1. Масса тела

Свойства массы

Масса — это свойство любого материального объекта. Из-за наличия массы телам невозможно сообщить скорость мгновенно. Потребуется некоторое время, за которое тело наберёт скорость — тем большее, чем больше инертность тела, то есть чем большей массой оно обладает.

Масса также участвует в гравитационных взаимодействиях, она входит в формулу закона всемирного тяготения, учитывается в расчётах движения небесных тел. Неоднократные опыты доказывают эквивалентность инертной и гравитационной массы. Однако причина этого равенства — вопрос, открытый в современной физике.

Гравитация в физике

Рис. 2. Гравитация в физике.

Единица измерения массы в СИ — килограмм (кг). Это базовая единица, то есть она не выводится из других, а сравнивается с некоторым эталоном. Изначально эталоном килограмма был вес воды объёмом 1 литр. Позже за эталон был принят специально изготовленный цилиндр диаметром и высотой 39,17 мм, сделанным из платино-иридиевого сплава. Сейчас килограмм определяется из фундаментальных физических констант (таких, как постоянная Планка, постоянная Больцмана).

Эталон килограмма

Рис. 3. Эталон килограмма

Что мы узнали?

Любой материальный объект обладает инертностью, то есть для того чтобы изменить его скорость, требуется некоторое время и силы. Мера инертности — это масса. Масса также участвует в гравитационном взаимодействии. Измеряется масса в килограммах.

Читайте также: