Режимы газовых залежей кратко

Обновлено: 01.07.2024

logo


Вы здесь: Разработка нефтяных и газовых месторождений Режимы газовых залежей

Режимы газовых залежей

Рейтинг: / 10

Определение и виды режимов. Под режимом газовой залежи или режимом работы пласта понимают проявления доминирующей формы пластовой энергии, вызывающей движение газа в пласте и обусловливающей прито к газа к скважинам в процессе разработки залежи.

На газовых месторождениях в основном проявляются газовый и водонапорный режимы.

Режим существенно влияет на разработку залежи и наряду с другими факторами определяет основные условия эксплуатации, к которым, например, относятся темп падения давления и дебитов газа, обводнение скважин и т. п.

Режим работы залежи зависит от геологического строения залежи; гидрогеологических условий, ее размеров и протяженности водонапорной системы; (физических свойств и неоднородности газовых коллекторов; темпа отбора газа из залежи; используемых методов поддержания пластового давления (для газоконденсатных месторождений).

Газовый режим (режим расширяющегося газа). При газовом режиме газонасыщенность пористой среды в процессе разработки не меняется, основным источником энергии, способствующим движению газа в системе пластгазопровод, является давление, создаваемого расширяющимся газом. На глубокозалегающих газовых месторождениях незначительное влияние может оказать упругость газоносного коллектора. Этот режим проявляется в том случае, если отсутствуют пластовые воды или если они практически не продвигаются в газовую залежь при снижении давления в процессе разработки.

Водонапорный режим. Основной источник пластовой энергии при этом режиме работы газовой залежи - напор краевых (подошвенных) вод. Водонапорный режим подразделяется на упругий и жесткий.

Упругий режим связан с упругими силами воды и породы. Жесткий режим газовой залежи связан с наличием активных пластовых вод и характеризуется тем, что при эксплуатации в газовую залежь поступают подошвенные или краевые воды, в результате чего не только уменьшается объем пласта, занятого газом, но и полностью восстанавливается пластовое давление.

На практике месторождения, как правило, разрабатываются при газоводонапорном (упруговодонапорном) режиме. В этом случае газ в пласте продвигается в результате его расширения и действия напора воды. Причем количество воды, внедряющейся за счет расширения газа, значительно меньше того количества, которое необходимо для полного восстановления давления. Главным условием продвижения воды в залежь является связь ее газовой части с водоносной. Продвижение воды может привести к обводнению скважин. Это следует учитывать при расположении скважин по площади и при проектировании глубины забоя новых добывающих скважин.

При упруговодонапорном режиме вода внедряется в разрабатываемую газовую залежь за счет падения давления в системе и связанного с этим расширения пород пласта, а также самой воды.

Газовые залежи с водонапорным режимом, в которых полностью восстанавливается давление при эксплуатации, встречаются довольно редко. Обычно при водонапорном режиме давление восстанавливается частично, т. е. пластовое давление при эксплуатации понижается, но темп понижения более медленный, чем при газовом режиме.

В большинстве своем газовые месторождения в начальный период разрабатываются по газовому режиму. Проявление водонапорного режима обычно замечается но сразу, а после отбора из залежи 20-50% запасов газа. На практике встречаются также исключения из этого правила, например для мелких газовых месторождений водонапорный режим может проявляться практически сразу после начала эксплуатации.

При эксплуатации газоконденсатных месторождений с целью получения наибольшего количества конденсата путем закачки в пласт сухого газа или воды иногда создают искусственный газонапорный или водонапорный режим.

В некоторых случаях на режим работы залежи в многопластовом месторождении могут влиять условия разработки выше или нижележащих горизонтов, например при перетоках газа.

Определение режима работы залежи. До начала разработки газового месторождения можно высказать только общие соображения о возможности проявления того или иного режима. Характер режима устанавливается по данным, полученным при эксплуатации месторождения.

Режим работы залежи можно определять по уравнению материального баланса

, (2.19)

где - начальное, текущее и добытое количество газа.

Исключения из этого правила

Заменяя в последнем уравнении G через объем W и плотность r газа, а также выражая плотность через давление из обобщенного уравнения состояния имеем

Режимы газовых залежей

, (2.20)

где рн и рт - пластовые средневзвешенные по объему порового пространства залежи абсолютные давления соответственно начальное и текущее; Wн , Wт - начальный, текущий объемы порового пространства, занятые газом; Wв - объем порового пространства, занятый водой (или другим агентом), поступившей в газовую залежь за время, соответствующее снижению давления с рн до рт ; Qд количество газа, добытое из залежи при снижении давления с рн до рт , приведенное к стандартным условиям; zн , zт , zст коэффициенты сжимаемости соответственно при начальных, текущих и стандартных условиях (zст =1), Rн , Rт , Rст газовая постоянная при начальных. текущих и стандартных условиях; Тн и Тк температура в залежки соответственно начальная и текущая; Тст=293К. Можно считать, что при движении газа в пласте

Режимы газовых залежей

Так как для чисто газовых месторождений в процессе эксплуатации не происходит изменения состава газа,

Режимы газовых залежей

Значение R. может изменяться в процессе эксплуатации газо-конденсатных месторождений.

При газовом режиме в уравнении (2.20) Wв=0 и Wн=W=const. В этом случае уравнение (2.20) перепишется в виде

, (2.21)

Режимы газовых залежей

где

Для газоводонапорного режима, при котором отмечается поступление воды в газовый пласт, зависимость (2.20) запишется несколько в другом виде

Режимы газовых залежей

. (2.22)

Газовый режим работы залежи характеризуется тем, что отношение количества газа Qд, добытого за определенный промежуток времени, к паданию давления в залежи за тот же промежуток времени согласно (2.21) есть величина постоянная

. (2.23)

Если a в процессе эксплуатации увеличивается, то режим залежи газоводонапорный. В этом случае возможен также приток газа в залежь из других горизонтов. При утечке газа из залежи, количество которого не учитывается, значение a со временем уменьшается.

Для многопластовых месторождений при перетоке газа из одного горизонта в другой для определения режима работы каждой залежи решают уравнение вида (2.21) или (2.23), в одно из которых добавляют, а из другого вычитают количество перетекшего газа.

Режимы газовых залежей

Режим работы газовой залежи можно определить графически путем построения зависимости изменения (приведенного средневзвешенного пластового давления газовой залежи) от суммарного отбора газа Qд во времени (рис. 2.8, кр.1). Как видно из данного рисунка при газовом режиме зависимость между приведенным пластовым давлением и количеством отобранного газа в процессе разработки носит линейный характер. При этом, если в зависимости (2.21) не учитывать коэффициент сжимаемости, то значение a не является постоянным, а увеличивается с падением давления (рис.2.8, кр.5). Поэтому режим разработки залежи ошибочно можно принять за газо-водонапорный.

При водонапорном режиме характер изменения приведенного пластового давления в зависимости от количества отобранного газа отличается от характера изменения этих параметров при газовом режиме. Теоретически при жестководонапорном режиме постепенно уменьшается объем залежи, занятый газом, и имеет место полное восстановление пластового давления, т. е. значение в процессе разработки залежи должно оставаться постоянным (кр.2).

При упруговодонапорном (газоводонапорном) режиме часть энергии сжатого газа в пласте по мере истощения залежи восполняется энергией внедряющейся воды. Как правило, в процессе разработки газовых месторождений в этом случае в начальной стадии характер падения пластового давления аналогичен характеру при газовом режиме (кр.3). Это объясняются незначительным поступлением воды в начальный период в газовую залежь. Различать газовый и упруговодонапорный режимы при прямолинейной зависимости от Qд можно лишь в том случае, если есть дополнительная информация. В частности: по данным изменения уровня воды в пьезометрических скважинах; по результатам ядерно-геофизических исследований скважин, вскрывших ГВК путем прослеживания положения ГВК в процессе разработки; по данным, полученным при обводнении и после гидрохимического анализа воды, добываемой с газом.

Твердотопливные котлы в Украине котлы в Украине

Полное описание первых признаков и выраженных симптомов при гепатите В здесь

Чем более открыта в гидрогеологическом отношении залежь, тем более высока вероятность ее разрушения за счет движения и обмы­вания водой. Знание геогидродинамической зоны (активного (сво­бодного) водообмена, затрудненного, отсутствие водообмена (весьма затрудненного)), в которой находится залежь или нефтегазовое ме­сторождение, дает объективный материал для составления обосно­ванных, рациональных и экономически выгодных проектов разра­ботки отдельных залежей и в целом месторождений.

Режимы 1—3 — режимы вытеснения, а 4 и 5 — режимы истощения пластовой энергии. Реально иногда одновременно сосуществует не­сколько режимов. В исследованиях устанавливают главный режим и сопутствующие ему режимы, но в процессе эксплуатации они не­прерывно изменяются вследствие изменения характера проявля­ющихся сил, физических свойств коллектора, свойств нефти, газа и вод, температурных условий, приятых технологических схем экс­плуатации, применяемых искусственных методов воздействия на за­лежь с целью интенсификации добычи нефти, Наконец, следует учитывать, что при эксплуатации нефтяной залежи режимы залежи могут меняться. Так, можно преобразовывать малоэффективные ре­жимы в режимы более эффективные, при которых возрастают коэф­фициенты нефтеотдачи за счет применения различных методов воздействия на нефтяную залежь. Следует всегда стремиться с макси­мальной полнотой использовать природные источники пластовой энергии, применяя для этого наиболее рациональные методы экс­плуатации.

1. Водонапорный режим залежей.

При данном режиме основной дви­жущей силой, вытесняющей нефть к забоям эксплуатационных скважин, является напор краевых вод. При таком режиме дебиты и давления в процессе эксплуатации скважины остаются посто­янными или несколько снижаются, если нарушается баланс между извлекаемой из пласта жидкостью и поступлением краевых вод в пласт. Газовые факторы обычно низкие и не изменяются во вре­мени, т.е. остаются постоянными, если давление не снижается менее давления насыщения нефти газом в залежи. В процессе эксплуа­тации и отбора жидкости (нефти и вод) происходит постоянное перемещение контура нефтеносности и, как следствие, обводнение эксплуатационных скважин краевыми водами. При появлении в эксплуатационных скважинах пластовых (краевых) вод непре­рывно увеличивается добыча вод, поступающих совместно с нефтью. Водонапорный режим нефтяной залежи будет весьма эф­фективным в случае, если водонапорная система, в пределах которой установлены нефтегазовые залежи, имеет значительные раз­меры, а в ее строении принимают участие высокопроницаемые песчаные пласты и отмечается большое гипсометрическое превы­шение области питания по отношению к гипсометрической отметке залегания нефтяной залежи.

2. Упруговодонапорный режим залежей.

При любом режиме, как правило, проявляются упругие силы, поэтому упругий режим надо рассмат­ривать не как самостоятельный, а как сопутствующую фазу водона­порного режима. При данной фазе основными источниками энергии являются расширение вод, заключенных в коллекторе, и уменьшение объема пор породы. Известно, что сама по себе упругость жидкости и пласта очень мала, но при значительных размерах водонапорных систем и больших пластовых давлениях в результате расширения жидкости и уменьшения объема пор (трещин) из пласта в скважины дополнительно вытесняется большое количество жидкости. Упругие свойства жидкости и пласта характеризуются коэффициентами сжи­маемости соответственно жидкости и пласта.

В связи с этим при изучении гидродинамических систем, к ко­торым приурочены нефтяные залежи, необходимо наряду с гидродинамическими характеристиками изучать их упругоемкость, что позволяет определять количество жидкости, которое может быть извлечено из залежей за счет сил упругости при снижении давления от Р0 до Р.

Наиболее эффективно упруговодонапорный режим проявляется при плохой или недостаточной связи с областью питания и в том случае, когда нефтяная залежь удалена от области питания на большое расстояние. При упруговодонапорном режиме в отличие от чисто водонапорного при одном и том же установившемся темпе отбора жидкости из залежи наблюдается непрерывное падение ди­намического давления. При этом режиме пластовое давления тесно связано с текущим и суммарным отбором жидкости из залежи.

3. Газонапорный режим залежей.

4. Режим залежей растворенного газа.

При данном режиме основным источником энергии, перемещающей нефть к забоям эксплуатаци­онных скважин, являются расширение пузырьков газа при его выде­лении из нефти. При эксплуатации нефтяной залежи, обладающей режимом растворенного газа, дебиты скважин и пластовые давления непрерывно снижаются и газовые факторы также не остаются постоянными, возрастая в первый период и затем резко снижаясь. При меньшем пластовом давлении в нефтяной залежи появляется сво­бодный газ, который значительно уменьшает фазовую проница­емость для нефти, что приводит к снижению эффективности режима растворенного газа.

В зонах весьма затрудненного водообмена или отсутствия водо­обмена нефтяные залежи могут находиться под воздействием различных режимов, но наиболее распространены режимы растворен­ного газа и газонапорные. Если в зонах отсутствия водообмена пласты хорошо проницаемы, прослеживаются на значительной пло­щади и имеют области питания, то в нефтяных залежах, приуро­ченных к ним, создаются условия, благоприятные для упруговодо­напорного режима. Там, где продуктивные пласты не выходят на дневную поверхность и не имеют области питания или она уда­лена на очень большое расстояние от нефтяной залежи, пластовые давления в процессе разработки залежей могут быстро снижаться и упруговодонапорный режим в режим перейдёт в режим растворенного газа.

5. Гравитационный режим залежей.

Гравитационный режим — такой режим, когда энергия напора обусловлена исключительно силой тяжести самой нефти. Как пра­вило, газ в нефтяной залежи отсутствует. Данный режим принято подразделять:

  • на напорно-гравитационный, проявляющийся в том случае, когда коллектор обладает высокой проницаемостью и имеет наклон; при этом продвижение нефти в сторону наклона в пониженные части пласта облегчается за счет действия силы тяжести. Дебиты скважин, забои которых расположены на наиболее низких гип­сометрических отметках пласта, довольно высокие, коэффициент нефтеотдачи повышенный;
  • на гравитационный режим со свободным зеркалом нефти, ко­торый наблюдается в пологозалегающих пластах с плохими кол­лекторскими свойствами. Уровни нефти в скважинах находятся, как правило, ниже кровли залежи. Дебиты скважин обычно низкие, так как нефть к забоям скважин притекает с ограни­ченной площади из зоны, прилегающей к данной скважине, вследствие чего образуется свободная поверхность нефти. Можно сказать, что на формирование гравитационного режима нефтяной залежи гидродинамические условия не оказывают заметного влияния.

Изложенное позволяет сделать вывод о том, что детальное гидро­геологическое изучение стратиграфических комплексов осадочных отложений позволяет предвидеть возможные режимы основных за­лежей, которые подлежат разведке.

Правильные прогнозы о режимах нефтяных залежей по новым районам, которые подлежат разведке с применением глубокого бу­рения, возможны только после детальных региональных гидрогео­логических, гидрохимических и геотермических исследований, изучения строения структур и фациально-литологических условий основных водоносных комплексов.

В зависимости от природы преимущественно действующих сил в настоящее время выделяют следующие основные режимы работы нефтяных залежей:

1) водонапорный режим;

2) упруго-водонапорный режим;

3) газонапорный режим (или режим газовой шапки);

4) режим растворенного газа;

5) гравитационный режим.

Первые три режима представляют собой режимы вытеснения, последние два -- режимы истощения пластовой энергии.

При водонапорном режиме основным видом энергии, продвигающей нефть по пласту, является напор краевых (или подошвенных) вод.

На начальном этапе разработки с увеличением числа скважин, вводимых в эксплуатацию, наблюдается рост добычи нефти вплоть до достижения намеченного проектного уровня. В дальнейшем, при поддержании добычи на достигнутом уровне наблюдается также стабилизация пластового давления, а затем, по мере появления наступающей краевой воды, количество воды в жидкости возрастает, а добыча нефти соответственно снижается. В результате обводнения часть скважин выбывает из эксплуатации, что приводит к снижению общего отбора жидкости и некоторому повышению пластового давления.

В связи с дальнейшим нарастанием обводнения и непрерывным снижением добычи нефти возникает необходимость в увеличении отбора жидкости (форсировке), вплоть до полного отбора нефти.

Пластовое давление в каждый данный момент зависит от текущего отбора жидкости. Газовые факторы остаются низкими и постоянными, соответствующими количеству растворенного газа в нефти, если в результате отбора жидкости давление не падает ниже давления насыщения нефти газом.

Эффективность водонапорного режима зависит от размеров водонапорной системы, коллекторских свойств пласта и гипсометрической разности между глубиной залегания продуктивных пород и высотой выхода их на поверхность. При эффективном водонапорном режиме ширина водонапорной системы (если считать от внешней границы залежи нефти до выхода пласта на поверхность) обычно составляет не менее 15--25 км, а проницаемость пород -- не менее 1,02 - 10-12 м2. При эффективном водонапорном режиме коэффициент нефтеотдачи колеблется в пределах 0,65--0,80, в зависимости от коллекторских свойств пород и других факторов. Интенсивность проявления водонапорного режима зависит не только от указанных выше природных факторов, но и от темпа отбора жидкости из пласта в целом, а также из отдельных его участков.

Упругие силы могут проявляться при любом режиме. Поэтому упругий режим правильнее рассматривать не как самостоятельный режим, а как фазу водонапорного режима. В период проявления этой фазы основным источником энергии является упругость жидкости (нефти и воды) и породы.

Упруго-водонапорному режиму свойственны те же характерные черты, что и водонапорному, однако при эффективном водонапорном режиме в случае неизменяющегося отбора жидкости установившееся динамическое давление в пласте остается также стабильным (до момента изменения режима отбора жидкости из пласта), а при упруго-водонапорном режиме даже в случае стабильного темпа отбора жидкости из пласта оно непрерывно снижается. Таким образом, пластовое давление при этом режиме в каждый момент эксплуатации зависит и от текущего, и от суммарного отбора жидкости из пласта.

Следовательно, рост добычи нефти при этом режиме зависит от темпа ввода скважин в эксплуатацию: чем он медленнее, тем ниже оказываются начальные дебиты скважин, так как скважины вскрывают залежь в условиях более низкого пластового давления. В этом случае достигнутая текущая добыча нефти будет ниже по сравнению с добычей при более быстром вводе скважин в эксплуатацию.

При этом режиме наблюдается быстрое снижение пластового давления и добычи нефти, несмотря на то что число эксплуатационных скважин еще продолжает увеличиваться.

Газовый фактор является постоянным до момента снижения пластового давления ниже давления насыщения. При снижении пластового давления ниже давления насыщения газовый фактор растет, нефть, теряя растворенный газ, становится более вязкой и вследствие этого общая добыча нефти начинает снижаться в более быстром темпе (см. приложение). По сравнению с водонапорным упруго-водонапорный режим менее эффективен: коэффициент нефтеотдачи колеблется в пределах 0,5--0,7. Для обеспечения соответствующих отборов нефти при этом режиме необходимо проводить мероприятия по воздействию на пласт.

ГАЗОНАПОРНЫЙ РЕЖИМ (РЕЖИМ ГАЗОВОЙ ШАПКИ)

Основным видом энергии, продвигающей нефть по пласту при газонапорном режиме, является напор газа газовой шапки. При наличии огромной газовой шапки по сравнению с залежью нефти в процессе эксплуатации последней некоторый период времени дебиты и давления остаются почти постоянными, если не нарушается баланс между отбором нефти и скоростью продвижения контакта газ--нефть.

Пластовое давление зависит от суммарного отбора нефти из пласта и по мере отбора непрерывно снижается.

Газовые факторы остаются постоянными в скважинах, расположенных вдали от газовой шапки. В процессе эксплуатации залежи наблюдается непрерывное перемещение контура газоносности (и контакта газ--нефть), которое сопровождается резким нарастанием газового фактора в скважинах (особенно расположенных вблизи контакта газ--нефть) и переходом их на фонтанирование чистым газом.




Эффективность газонапорного режима зависит от соотношения размеров газовой шапки и залежи нефти, а также от коллекторских свойств пласта и характера структуры. К благоприятным условиям для проявления этого режима относятся высокая проницаемость коллекторов (особенно вертикальная, вкрест напластования), большие углы наклона пластов (хорошая выраженность структуры) и малая вязкость нефти.

По мере извлечения нефти из пласта и снижения давления в нефтяной зоне газовая шапка расширяется и газ продвигает нефть в пониженные части пласта к забоям скважин. Даже при наличии в пониженной части пласта краевых вод газ, как источник энергии на первом этапе эксплуатации преобладает.

Однако при некотором напоре краевых вод по мере снижения давления в газовой шапке может начаться перемещение нефти из нефтяной зоны пласта в газовую шапку. Такое перемещение нежелательно, так как нефть, смачивающая сухие пески газовой шапки, может быть безвозвратно потеряна. Поэтому выпуск газа из газовой шапки, а также эксплуатация скважин с высоким газовым фактором при газонапорном режиме недопустимы; газ газовой шапки нужно всемерно беречь, а в случае необходимости закачивать газ в газовую шапку, чтобы предотвратить продвижение в нее нефти из нефтяной зоны пласта.

Коэффициент нефтеотдачи при газонапорном режиме колеблется в пределах 0,4--0,5, в отдельных случаях может достигать 0,6.

Типичным месторождением, имеющим огромную газовую шапку с оторочкой нефти, является, например, Бугурусланское (Новостепановский и Калиновский участки).

РЕЖИМ РАСТВОРЕННОГО ГАЗА

При режиме растворенного газа нефть продвигается по пласту к забоям скважин под действием энергии пузырьков расширяющегося газа при выделении его из нефти.

В процессе эксплуатации залежи дебит (после достижения некоторого максимума) и давление непрерывно снижаются. Давление в каждый момент зависит от суммарного отбора нефти и газа из пласта.

При этом режиме по мере нарастания числа скважин, вводимых в эксплуатацию, происходит одновременное снижение начальных и текущих дебитов скважин. После достижения максимальной проектной добычи, еще до ввода в эксплуатацию намеченного числа скважин, начинается значительное снижение дебитов. Прирост добычи за счет ввода новых скважин не покрывает снижения общей добычи.

Рис. 3. График эксплуатации пласта при режиме растворенного газа

А -- А -- гравитационный режим. Остальные условные обозначения см. на рис. 1

Газовые факторы уже в начальную стадию разработки быстро возрастают, а в дальнейшем по мере истощения залежи снижаются. Появление в пласте (в результате падения пластового давления) свободного газа даже в количестве 7 % (от объема пор) сильно уменьшает фазовую проницаемость для нефти, что приводит к резкому снижению эффективности рассматриваемого режима.

Далее добыча нефти продолжает снижаться и особенно быстро по мере выбытия из эксплуатации части скважины.

По мере истощения залежи газовый фактор резко снижается, дебиты скважин становятся низкими и продолжают медленно падать вследствие перехода на гравитационный режим. Коэффициент нефтеотдачи при режиме растворенного газа составляет 0,2--0,4.

При этом режиме контурные воды не продвигаются или же продвигаются и внедряются в залежь весьма незначительно по сравнению с отбором нефти из нефтяной зоны. Это обусловлено плохими коллекторскими свойствами пласта в приконтурной части залежи нефти и взаимодействием вод и пород в приконтурной зоне пласта. Поэтому даже в начальном положении контур нефтеносности не совпадает с изогипсами, а сечет их, что наблюдалось, например, в северо-восточной части залежи нефти (пласт С2) Апшеронского месторождения (Майкопский район). Обычно режим растворенного газа присущ пластам со значительной фациальной изменчивостью, в которых вертикальная проницаемость хуже горизонтальной и структура характеризуется небольшими углами наклона. Как уже указывалось, этот режим может частично проявляться в пластах с водонапорным режимом и режимом газовой шапки в том случае, когда высокие дебиты скважин не соответствуют скорости продвижения контурных вод или контакта газ--нефть, что приводит к снижению давления ниже давления растворимости газа и нефти.

При гравитационном режиме движение нефти по пласту к забоям скважин происходит за счет силы тяжести самой нефти.

Различают напорно-гравитационный режим и режим со свободным зеркалом нефти.

Напорно-гравитационный режим наблюдается в том случае, когда пласт характеризуется высокой проницаемостью и более или менее круто наклонен, что облегчает продвижение нефти

в его пониженные части. При этом режиме дебиты скважин, особенно тех, которые расположены далеко вниз по падению пласта, могут быть более или менее значительными, что соответственно обусловливает и более высокий коэффициент нефтеотдачи. Например, по пласту вилькокс (месторождение Оклахома-Сити, США), имевшему режим растворенного газа, к моменту истощения газовой энергии и началу гравитационного режима нефтеотдача составляла всего 23%; благодаря высоким коллекторским свойствам пласта и благоприятным условиям проявления гравитационного режима конечная нефтеотдача пласта достигла почти 50 %, т. е. за счет гравитационного режима получено 27 % от промышленного запаса нефти.

Гравитационный режим со свободным зеркалом нефти обычно наблюдается в пластах с пологим залеганием и плохими коллекторскими свойствами. В этом случае уровни в скважинах обычно находятся ниже кровли пласта.

Нефтеотдача при гравитационном режиме обычно колеблется в пределах 0,1--0,2 (например, для девонских отложений Ухтинского месторождения).

В нефтеносных пластах с недостаточным напором краевых вод (или при отсутствии его) в последней стадии эксплуатации сила тяжести обычно является единственным фактором, обусловливающим продвижение нефти по пласту к забоям скважин, т. е. наблюдается переход на гравитационный режим работы пласта.

19 Пластовое давление: определение, формула.

Пластовое давление, давление, под которым находятся жидкость (нефть, вода) и газ, насыщающие поровое пространство и (или) трещины коллекторов нефтяных и газовых месторождений. Пластовое давление.— важнейший параметр, характеризующий энергию нефтеносных, газоносных и водоносных пластов; до начала разработки залежи оно в большинстве случаев приблизительно равно гидростатическому давлению (давление столба воды, равного по высоте глубине залегания). Пластовое давление обычно увеличивается примерно на 0,1 Мн/м 2 через каждые 10 м глубины; однако встречается много месторождений, в которых начальное Пластовое давление не соответствует гидростатическому давлению. Образование, изменение и состояние пластовое давление в нефтяных и газовых месторождениях зависят в основном от гидростатического, геостатического (определяется массой вышележащей толщи горных пород), геотектонического (образуется в пластах в результате тектонических процессов) давлений, наличия путей, сообщающих пласты с различным давлением, химического взаимодействия вод и пород, а также вторичных явлений цементации пористых проницаемых пластов.

При эксплуатации скважин в зоне их забоев образуются области пониженного давления. Давление на забоях скважин при их работе называют динамическим, а при остановке — статическим. В процессе разработки залежи (если не применяются методы поддержания давления) пластовое давление снижается. Для сопоставления пластового давления в различных точках пласта его относят к какой-либо одной плоскости. За такую плоскость принимают обычно условную плоскость — первоначальное положение водонефтяного контакта в пласте. Начальное пластовое давление, т. е. давление в пласте до начала его разработки, имеет прямую связь с глубиной залегания данного нефтяного или газового пласта и приближенно может быть определено по формуле:

Н-глубина залегания пласта, м; р – плотность жидкости, кг/м 3 ; ускорение свободного падения = 9,81 м/с 2 . Точное определение пластового давления осуществляется при помощи глубинных манометров.

Изменения пластового давления тщательно регистрируются в процессе эксплуатации нефтяных и газовых месторождений. Это дает возможность судить о процессах, происходящих в пласте, и регулировать разработку месторождений.

Месторождение нефти или газа обычно представляет одну или несколько ловушек, в которых находится нефть или газ. Месторождение как правило состоит из нескольких залежей с похожими структурами.

Нефть и газ находятся в пласте под давлением, которое, как правило, зависит от многих факторов, и в первую очередь от глубины залегания пласта. Это давление, обусловлено весом пород, располагающихся над пластом. По виду пластовой энергии, другими словами, по источнику, используемому при эксплуатации нефтяной или газовой залежи, различают несколько режимов залежи (или несколько режимов дренирования).

При водонапорном режиме перемещение нефти к устью скважины зависит от давления краевой (контурной) воды. В данном случае объем вытесненной нефти компенсируется объемом воды, поступающей из поверхностных источников. Если нефтяная залежь не сообщается с поверхностными источниками или воды из них поступает меньше, чем отбирается нефти, то дебиты скважин будут постепенно снижаться, то есть давление и объемы получаемой нефти будут падать. При водонапорном режиме залежи эксплуатируют до тех пор, пока контурная вода не достигнет устья.

Сам флюид, пластовая жидкость и порода залежи находятся в сжатом (упругом) состоянии, под большим давлением. При вскрытии залежи, флюид выдавливается в скважину (в зону пониженного давления) силой упругого расширения пластовой жидкости, флюида и вмещающей его породы. Такой режим залежи называется упруговодонапорным (упругим).

Газонапорный режим работы наблюдается при наличии газовой шапки. При вскрытии пласта с нефтью, газ находящийся в газовой шапке над нефтью давит на нефть и выдавливает её в скважину.

Режим растворенного газа обусловлен выделением в пласте растворенного ранее в нефти газа, пузырьки которого расширяются и выталкивают нефть из области более высокого в область низкого давления, в скважину. Здесь уместно привести следующий пример: если открыть бутылку с газировкой, то можно пронаблюдать режим растворенного газа, когда содержащийся в воде растворенный газ начнет стремиться, расширяясь в большие пузыри, в область низкого давления, то есть из бутылки, попутно увлекая за собой воду. Данный режим позволяет эксплуатировать скважину так называемым бескомпрессорным газлифтом.

Гравитационный режим — режим нефтяной залежи, при котором нефть перемещается к забою под действием собственной силы тяжести — стекает в скважину. От забоя к устью скважины нефть выкачивается специальными насосами. Иногда гравитационный режим называют безнапорным.

Гравитационный режим имеет место во время разработки залежей лишённых газовой шапки, напора вод и растворенного в нефти газа. Гравитационный режим может возникнуть в любой залежи на последней стадии ее разработки.

Гравитационный режим имеет место при шахтных методах добычи нефти. При горизонтальном расположении пласта в пространстве эффективность этого режима чрезвычайно мала. При этом, в крутопадающих пластах эффективность гравитационного режима увеличивается значительно.

Нефтяную залежь разрабатывают при различных режимах, обычным явлением является переход от одного режима эксплуатации к другому. Отдельные части залежи могут разрабатываться на разных режимах.

В месторождениях газа отбор его из пласта производят за счет давления, создаваемого расширяющимся газом. При эксплуатации месторождений пластовое давление снижается пропорционально отбору газа вследствие отсутствия внешних источников его поддержания. Добычу газа продолжают до тех пор, пока его давление не становится близким к атмосферному.

При разработке месторождения стараются извлечь из пласта максимум флюида. Соотношение извлеченной из пласта нефти и первоначально имеющейся характеризуется коэффициентом нефтеотдачи. Коэффициент нефтеотдачи зависит от многих факторов, таких как проницаемость породы, вязкость нефти, пластовое давления, технология добычи. Повышение нефтеотдачи основная задача нефтедобывающей промышленности. Естественная пластовая энергия не обеспечивает требуемый отбор нефти в течение всего срока эксплуатации месторождения, а также не позволяет извлечь из пласта всей содержащейся в нем нефти.

Для увеличения нефтеотдачи применяют методы искусственного поддержания пластовой энергии на основной стадии разработки месторождения. К методам поддержания пластового давления относятся: закачка воды в пласт; или газа в газовую шапку. Воду закачивают в пласт через нагнетательные скважины, размещенные, за внешним контуром нефтеносности по периметру залежи, в результате чего создается искусственный контур питания залежи водой. По мере перемещения контура нефтеносности эксплуатационные скважины переводят в нагнетательные для закачки в них воды. Кроме технической воды в пласт закачивают воду, обработанную поверхностно-активными веществами (ПАВ), способствующими вымыванию нефти, остающейся в порах пласта, или другими химикатами. В ряде случаев в пласт закачивается сжиженный углекислый газ с его продавкой специально обработанной водой. Для уменьшения вязкости нефти в пласт закачивают горячую воду или пар. Для определенных месторождений, например с вязкой нефтью, закачка холодной воды не допускается вообще, так как это приводит к уменьшению температуры продуктивного пласта и резкому ухудшению его проницаемости.

Температуру пласта можно повысить путем поджога в нем нефти и создания в пласте фронта горения, перемещающегося по мере выгорания остатков нефти и закачки в пласт воздуха. Теплота, выделяющаяся в результате горения, а точнее, окисления нефти, приводит к снижению ее вязкости, а образующийся пар способствует вытеснению нефти. Наиболее эффективным, но и самым дорогим способом является вытеснение нефти растворителем, который растворяет и нефть, и воду. При этом исчезает граница раздела этих жидкостей и обеспечивается наиболее полный вынос нефти из пласта.

Читайте также: