Референц эллипсоид это кратко

Обновлено: 04.07.2024

В предыдущих статьях этого цикла я подробно останавливался на том, какой необходимой информацией нужно обладать, чтобы грамотно обрабатывать архивные карты, в том числе для целей навигации на местности, а также для того, чтобы стало возможным соотнести информацию, изображённую на архивной карте с современным состоянием местности.

В последней статье я подробно разобрал тему желательности (и даже, порой, необходимости) знания проекции карты. Однако геодезическая основа упоминалась вскользь, как правило только для понимания основной мысли материала, хотя именно геодезия — краеугольный камень картографии. Теперь пришло время подробно поговорить и об этом. Давайте разберём, насколько важным для операций со старыми картами является это понимание и знание и в каких случаях этими сведениями можно пренебречь.

Основную задачу, стоящую перед картографом при построении географической карты, можно сформулировать так: отобразить с наименьшими искажениями на плоском листе бумаги подлинную картину местности, которая на самом деле располагается на земной поверхности. Я здесь сознательно хочу подчеркнуть самый сложный вариант задачи, отображение именно на плоский лист. Именно в таком виде географические карты начали своё существование; лишь сравнительно недавно, уже в компьютерную эру, появились возможности изображения местности сразу на трёхмерных поверхностях (хотя и остаётся задача изображения этих трёхмерных поверхностей на плоском экране монитора, но она решается уже несколько иными способами).

Тем не менее, сегодня мы знаем, что наша планета имеет гораздо более сложную форму: она не является даже эллипсоидом с разными размерами своих полуосей (трёхосным эллипсоидом), и уж тем более не является простой сферой. Как же быть в этом случае?


Земля как двухосный эллипсоид


Поверхность геоида. Цифрами обозначены: 1 - мировой океан, 2 - земной эллипсоид, 3 - отвесные линии, 4 - тело Земли, 5 - геоид

По своему определению, поверхность геоида — это поверхность, перпендикулярная к направлению силы тяжести (отвесной линии) в каждой своей точке. Из рисунка видно, что в основном эта поверхность совпадает с поверхностью мирового океана, однако с поверхностью суши она уже совпадает лишь в некотором приближении. Ещё в большем приближении она совпадает с поверхностью эллипсоида, которая на рисунке изображена зелёной пунктирной линией.

Для того, чтобы понимать, как развивалась научная мысль в этом направлении, стоит вернуться на много веков назад.


Наконец, третье наблюдение — это то, что в самой первой строчке, относящейся к измерениям Деламбра, длина четверти меридиана (в данном случае, речь идёт о Парижском меридиане), в точности равна 10 000 км. Это прямо связано с историей создания эталона метра, немного об этой истории я расскажу чуть позже.


Таблица дополнена ещё двумя измерениями эллипсоида, относящимися к началу XX века. Но самая главная заслуга Ф.Н. Красовского в том, что именно им были предложены параметры ещё одного эллипсоида, который с успехом продолжает использоваться и в наши дни. Параметры эллипсоида его имени приведены в следующей таблице, взятой из популярного американского справочника 1987 года.


Из последней таблицы видно, что размеры полуосей эллипсоида начинают наконец-то сходиться к определённой величине, разница между последовательными данными становится уже меньше метра, да и параметр сжатия уже практически не меняется.

На этом месте я хочу прервать хронологический рассказ об изменениях в размерах эллипсоидов, потому что мы подошли к самой сути вопроса статьи: до какой степени точности нужно знать эти размеры и для чего это нужно?

КАКИЕ НУЖНЫ ЭЛЛИПСОИДЫ?

Задачу описания, или приближения к поверхности геоида для конкретной местности решают так называемые референц-эллипсоиды. Во всех приведённых таблицах все эллипсоиды, кроме двух последних, которые мы только что упомянули, и являются, фактически, референц-эллипсоидами. Исторически по-другому и не могло быть, вплоть до второй половины XX века измерения, направленные на создание моделей эллипсоидов, проводились, как правило, в каждой стране отдельно, случаи международной кооперации были единичны. Впрочем, некоторые эллипсоиды с успехом использовались и в разных странах, но понятно, что современной точности измерений при таком подходе достичь было сложно.

Из самой постановки задачи (точное описание конкретной местности: страны, региона и т.д.) следует смягчение требований к пространственному расположению эллипсоида относительно геоида. Действительно, есть тоже только два требования, но выраженные в гораздо менее жёсткой форме: по-прежнему минимизируются отклонения от геоида, но только для выбранной местности, и малая полуось обычно сохраняет параллельность оси вращения Земли (но уже не обязательно с ней совпадает). Понятно, что это смягчение приводит к следующим последствиям:

  • полуоси референц-эллипсоида уже не обязаны быть равными полуосям общеземного эллипсоида, то есть размер и форма эллипсоида отличаются от общеземного
  • сам референц-эллипсоид сдвинут относительно общеземного, а может быть, как мы увидим в дальнейшем, даже и повёрнут

Вышеописанные искажения и сдвиги референц-эллипсоидов относительно общеземных подробно мы рассмотрим, когда будем рассматривать системы координат. Пока же мы уже готовы ответить на вопрос, поставленный в начале главы: для чего нужны разные виды эллипсоидов?

Ясно, что для целей картографирования стран, даже самых больших, лучше всего использовать референц-эллипсоиды (вспомните ту оговорку, которую я сделал выше о том, что общеземной эллипсоид не обязан быть одинаково хорошим приближением для всех участков Земли). Никто не мешает разработать каждой стране свой референц-эллипсоид и успешно его использовать. Действительно, разработанный ещё в СССР в 40-е годы эллипсоид Красовского с успехом используется и в наши дни и по-прежнему хорош, если не требуется особая, прецизионная точность.

Если же нам нужно строить картографические изображения всей поверхности Земли или её континентов, то тут нам не обойтись без общеземных эллипсоидов. А самое главное применение они находят в разнообразных космических применениях: для расчета параметров орбит искусственных спутников Земли, задач навигации и т.д.

В следующей таблице приведены параметры самых современных общеземных эллипсоидов. Там же кратко обозначена основная цель его применения.


Хорошо видно, что и размеры, и сжатие эллипсоидов наконец-то практически сошлись к некоторым постоянным значениям. В самом деле, уже достигнута такая точность, что речь фактически идёт об уточнении оставшихся сантиметров полуосей (на уровне их общей величины порядка 6000 км!) и тысячных долей после запятой для параметров сжатия.

ДАВАЙТЕ ВЕРНЁМСЯ К СТАРЫМ КАРТАМ

Теперь самое время окинуть нашу обширную подборку эллипсоидов разного времени одним взглядом. Поскольку нас интересуют лишь карты, начиная от времён Российской империи до наших дней, то реальный выбор эллипсоидов у нас невелик: практически весь XIX-й век успешно использовался эллипсоид Вальбека, лишь с конца века и до 40-х годов века XX-го стал использоваться эллипсоид Бесселя. А с 40-х годов его уже сменил эллипсоид Красовского, который, как я уже упоминал, с успехом используется и в наши дни. Упомянутый в таблице эллипсоид Теннера, хотя и встречается довольно часто в литературе, по-видимому для картографических использований широкого применения не нашёл.

Референц-эллипсоид

Референц-эллипсоид (от лат. referens — сообщающий, вспомогательный) — земной эллипсоид, с определёнными размерами и положением в теле Земли, служащий вспомогательной математической поверхностью, к которой приводят результаты всех геодезических измерений на земной поверхности и на которую тем самым проектируются пункты опорной геодезической сети.

Референц-эллипсоид наилучшим образом согласуюется с поверхностью геоида на ограниченной части его поверхности.

Требования к референц-эллипсоиду:

1) Ось вращения должна быть параллельна оси вращения Земли
2) Плоскость экватора должна быть параллельна плоскости Земного экватора
3) Сумма квадратов отступлений геоида от общеземного эллипсоида должна быть наименьшей из всех возможных для данной территории:
S h 2 = min
4) Сумма квадратов уклонений отвесных линий должна быть наименьшей из всех возможных для данной территории:
S U 2 = min

Для приведения геодезических измерений к поверхности референц-эллипсоида необходимо знать высоты земной поверхности над его поверхностью и уклонение отвесной линии во всех точках, в которых эти измерения производились. Высоты земной поверхности над поверхностью референц-эллипсоида определяются методами геометрического и астрономо-гравиметрического нивелирования, но на топографических картах высоты земной поверхности указываются относительно уровня моря.

Размеры референц-эллипсоида задаются размерами его большой а и малой b полуосей или размером большой полуоси и величиной полярного сжатия a, определяемого равенством:

Положение референц-эллипсоида в теле Земли определяется так называемыми исходными геодезическими датами, т. е. заданием геодезических координат проекции на референц-эллипсоид нормалью к нему некоторой точки земной поверхности, а также геодезического азимута некоторого направления и высоты геоида над референц-эллипсоидом в той же точке.

В разных странах используются различные референц-эллипсоиды. В России в качестве референц-эллипсоида применяется референц-эллипсоид Красовского, который характеризуется величинами:

– большая полуось a 6378 245 м;
– сжатие Земли 1: 298,3.

Эллипсоид Красовского, принят за основу единой государственной системы координат СК-95 при производстве всех геодезических и картографических работ на территории РФ.

Земной эллипсоид с определёнными размерами и положением в теле Земли, служащий вспомогательной математической поверхностью, к которой приводят результаты всех геодезических измерений на земной поверхности и на которую тем самым проектируются пункты опорной геодезической сети (См. Опорная геодезическая сеть). К поверхности Р.-э. относят также топографические съёмки и составляемые по ним карты. Для приведения геодезических измерений к поверхности Р.-э. необходимо знать высоты земной поверхности над поверхностью Р.-э. и отклонения отвеса (См. Отклонение отвеса) во всех точках, в которых эти измерения производились. Высоты земной поверхности над поверхностью Р.-э. определяются методами геометрического и астрономо-гравиметрического нивелирования (См. Нивелирование), но на топографических картах высоты земной поверхности указываются относительно уровня моря.

Размеры Р.-э. задаются размерами его большой а и малой b полуосей или размером большой полуоси и величиной полярного сжатия α, определяемого равенством

Референц-эллипсоид

Положение Р.-э. в теле Земли определяется так называемыми исходными геодезическими датами (См. Исходные геодезические даты), т. е. заданием геодезических координат (См. Геодезические координаты) проекции на Р.-э. нормалью к нему некоторой точки земной поверхности, а также геодезического азимута некоторого направления и высоты Геоида над Р.-э. в той же точке.

В геодезических и картографических работах разных стран используются различные Р.-э. В СССР и других социалистических странах в качестве Р.-э. применяется Красовского эллипсоид, который характеризуется величинами:

Положение (ориентировка) эллипсоида Красовского в теле Земли определено геодезическими координатами центра круглого зала Пулковской обсерватории:

широта В = 59° 46’ 18’’, 55,

долгота L = 30° 19’ 42’’, 09,

азимут направления на пункт Бугры

Высота геоида над Р.-э. в Пулкове принята равной нулю.

Лит.: Красовский Ф. Н., Руководство по высшей геодезии, ч. 2, М., 1942; Изотов А. А., Новые исходные геодезические даты СССР, в книге: Сборник научно-технических и производственных статей по геодезии, картографии, топографии, аэросъёмке и гравиметрии, в. 17, М., 1948.

Земной овал— эллипсоид вращения, размеры которого подбираются при условии наилучшего соответствия фигуре квазигеоида для Земли в целом (общеземной эллипсоид) или отдельных её частей (референц-эллипсоид).

Поверхность геоида нельзя описать какой-либо математической формулой в связи с тем, что массы внутри Земли распределены неравномерно. Поэтому появилась необходимость создать как можно ближе подходящую к поверхности геоида и математически правильную модель поверхности. Выхода из сложившейся ситуации нашли два: заменить уровненную поверхность Земли на сферу определённого радиуса или принять за такую поверхность эллипсоид. В последнем случае путём сложных геодезических, гравиметрических и астрономических вычислений было установлено, что элипсоид наиболее точно подходит к математической поверхности геоида.

Размеры земного эллипсоида характеризуются такими величинами, как длины его полуосей a (большая полуось), b (меньшая полуось) и полярным сжатием α = (a — b)/a.

Читайте также: