Распределение энергии в спектре излучения абсолютно черного тела кратко

Обновлено: 04.07.2024

Распределение энергии в спектре излучения абсолютно черного тела было изучено экспериментально к концу прошлого столетия. В качестве абсолютно черного тела использовалась полость с малым отверстием (см. рис. 352), а также уголь.

На рис. 353 представлен график распределения энергии в спектре излучения абсолютно черного тела при температуре По оси абсцисс отложены длины волн к (в микрометрах); по оси ординат отложены (в условных единицах) отношения спектральной лучеиспускательной способности абсолютно черного тела к интервалу длины волн в котором определена

Таким образом, площадь, ограниченная кривой распределения и осью абсцисс, представляет собой полную лучеиспускательную способность 8 абсолютно черного тела при температуре 1259 К, т. е. величину энергии, испускаемой с единицы площади его поверхности за Из графика следует, что при данной температуре максимум излучения абсолютно черного тела приходится на длину волны (инфракрасное излучение).

Зависимость полной лучеиспускательной способности 8 от температуры описывается законом Стефана — Больцмана:

полная лучеиспускательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

где а — постоянная Стефана — Больцмана;

Зависимость длины волны от температуры выражается законом Вина:

длина волны, соответствующая максимуму излучения абсолютно черного тела, обратно пропорциональна его абсолютной температуре:

где постоянная Вина:

Для иллюстрации законов Стефана — Больцмана и Вина на рис. 354 показано распределение энергии в спектре излучения угля при различных температурах (спектр излучения угля близбк к спектру излучения абсолютно черного тела). На рисунке видно, что с повышением температуры лучеиспускательная способность возрастает (площадь, заключенная между кривой распределения и осью абсцисс, увеличивается), а длина волны соответствующая максимуму излучения, уменьшается (максимум кривой распределения смещается влево).

Следует, конечно, иметь в виду, что металл не является абсолютно черным телом. Однако, согласно следствию (2), вытекающему из закона Кирхгофа, характер распределения энергии в спектре излучения абсолютно черного тела сохраняется в общих чертах и для нечерных тел.

Из рисунка видно, что при температуре максимум излучения приходится на видимый свет Отсюда следует, что наиболее выгодный в световом отношении тепловой источник света должен иметь температуру около 6 000 К. Однако и у такого источника световой коэффициент полезного действия (т. е. отношение энергии излучения, приходящейся на видимую часть спектра, ко всей энергии излучения) оказывается малым — порядка 15%, поскольку, как это видно из рисунка, значительная доля энергии излучения приходится на инфракрасные лучи. У современных осветительных электроламп температура нити накала равна приблизительно 3 000 К, что соответствует величине светового коэффициента

полезного действия порядка 3%. Таким образом, электролампа в большей мере греет, чем светит.

На законе Вина основана оптическая пирометрия — метод определения температуры раскаленных тел (металла — в плавильной печи, газа — в облаке атомного взрыва, поверхности звезд и т. п.) по спектру их излучения. Именно этим методом была впервые определена температура поверхности Солнца. Максимум энергии солнечного излучения приходится на видимый свет длиной волны Следовательно, согласно закону Вина, абсолютная температура поверхности Солнца

Таким образом, верхняя кривая распределения (см. рис. 354) приблизительно соответствует распределению энергии в спектре солнечного излучения.

Для нашей планеты Солнце является основным и чрезвычайно мощным источником лучистой энергии. На верхней границе земной атмосферы интенсивность солнечного излучения составляет около мин); эта величина называется солнечной постоянной. На земной поверхности интенсивность солнечного излучения в среднем на 25% меньше (вследствие поглощения в атмосфере).

Законы Стефана-Больцмана и Вина являются частными законами излучения абсолютно черного тела: они не дают общей картины распределения энергии по длинам волн при различных температурах. В конце прошлого века был предпринят ряд попыток теоретически установить закон распределения энергии в спектре излучения абсолютно черного тела, т. е. получить формулу, выражающую спектральную лучеиспускательную способность этого тела как функцию длины волны X и абсолютной температуры Т:

Однако эти попытки приводили к результатам, противоречащим опыту. Лишь в 1900 г. немецкий физик Планк нашел вид функции (5). Для этого ему пришлось отказаться от установившегося в физике представления об электромагнитном излучении как о непрерывной электромагнитной волне, могущей иметь любую частоту и в соответствии с этим переносить любые количества энергии. Планк высказал чрезвычайно смелую гипотезу, согласно которой электромагнитная энергия может излучаться и распространяться только вполне определенными (для данной излучающей системы) отдельными порциями в, или квантами. Таким образом, можно сказать (пользуясь понятиями классической физики), что электромагнитные волны переносят энергию только в количествах, кратных величине кванта энергии

количество переносимой энергии может быть равным или или или вообще но не может быть равным дробному числу квантов, например или

Величина кванта энергии пропорциональна частоте излучения (обратно пропорциональна длине волны X):

где с — скорость света в вакууме, — постоянная Планка, или квант действия. По формуле (6) можно вычислить величину кванта энергии для излучения любой длины вол Например, для зеленого света получим

В таблице приведены значения квантов энергии для некоторых длин волн, соответствующих различным видам электромагнитного излучения.

Из таблицы видно, что при больших длинах волн величина кванта крайне мала. Поэтому в общем потоке энергии, исходящем от длинноволнового излучателя (например, макроскопического генератора радиоволн), отдельный квант энергии совершенно незаметен, в связи с чем прерывистость излучения энергии не обнаруживается. В коротковолновом излучении величина кванта энергии сравнительно большая. Благодаря этому в потоке энергии, исходящем от коротковолновых микроизлучателей (атомов и молекул), отдельные кванты энергии становятся заметными, обнаруживая тем самым прерывистость (квантовый характер) излучения.

Процесс поглощения электромагнитной энергии веществами также носит прерывистый (квантовый) характер.

Таким образом, между процессами, совершающимися в макро- и микромире, существует не только количественное, но и качественное различие. Поэтому законы классической физики, полученные из наблюдений нал макрообъектами, не могут или, точнее говоря, не всегда могут быть пригодны для описания процессов, совершающихся в микрообъектах. Именно этим была обусловлена бесплодность

попыток теоретически вывести закон распределения энергии в спектре излучения абсолютно черного тела, исходя из понятий классической физики.

На основе представлений о квантовом характере теплового излучения Планк получил следующее выражение спектральной лучеиспускательной способности абсолютного черного тела:

где X — длина волны, абсолютная температура, с — скорость света в вакууме, постоянная Больцмана, основание натуральных логарифмов.

Формула Планка (7) находится в полном соответствии с опытными данными. Из этой формулы получаются как следствия законы Стефана — Больцмана и Вина.

На основе теории Планка Эйнштейн в 1905 г. создал квантовую (фотонную) теорию света, а Бор в 1913 г. разработал квантовую теорию строения атома.

Отметим, что квантование энергии свойственно не только электромагнитному излучению, но и многим другим физическим процессам. Так, например, квантованием энергии колебательных и вращательных движений атомов и молекул объясняется зависимость теплоемкости многоатомных газов от температуры, наблюдаемая при высоких температурах (см § 44)

Квантовые свойства света обусловлены особенностями структуры микроскопических излучателей света — атомов и молекул. В связи с этим дальнейшему ознакомлению с квантовыми свойствами света целесообразно предпослать основные сведения о строении атома.

Законы изучения АЧТ. На основании экспериментальных данных были получены следующие законы:

Выясним, что представляют собой величины в формулах (§) и (§§) на графике зависимости излучательной способности АЧТ ro от длины волны l.

Кривая излучения АЧТ. dR – поток излучения, приходящийся на интервал длин волн dl (площадь плотно заштрихованной полоски) R – интеграл (см. формулу §§) – на графике – это площадь под всей кривой излучения. lmax – длина волны, на которую приходится максимум излучения

Гипотеза и формула Планка.

Все попытки получить формулу, описывающую кривую излучения АЧТ оказались безуспешными. Две из полученных формул (формула Вина и формула Релея и Джинса) достаточно хорошо подходили при малых и при больших длинах волн, но полностью описать кривую не могли (см. таблицу ниже). Получить формулу, полностью описывающую кривую излучения АЧТ удалось Планку. Он впервые выдвинул квантовую гипотезу(1900 г)о том, что свет испускается порциями – квантами. Энергия одного кванта пропорциональна частоте излучения. Это была принципиально новая гипотеза, положившая начало развитию квантовой теории.

энергия кванта (фотона), выраженная через частоту n (Гц), циклическую частоту w (1/с)и длину волны l
h = 6,625×10 - 34 Дж.с - постоянная Планка = 1,05×10 - 34 Дж.с - называют квантом действия (в устной речи произносится «аш перечеркнутая

Мы не будем приводить вывод формулы Планка [vi], укажем только, что он основан на методах статистической термодинамики, как и вывод формул Вина и Релея-Джинса, но Планк предположил, что энергия, приходящаяся на одну степень свободы колебательного движения осциллятора равна не кТ/2, а зависит от частоты излучения.

Приближенная формула Вина хорошо выполняется при малых длинах волн (см. рис.) и дает максимум; формула Релея - Джинса дает неплохое совпадение с опытом при больших длинах волн, но кривая уходит в бесконечность, что физически невозможно. (Подробнее – см. таблицу ниже)

Из формулы Планка можно получить теоретически все законы излучения АЧТ.

Законы теплового излучения используются в приборах, с помощью которых измеряют бесконтактным способом температуру тел, нагретых до высоких температур. Такие приборы называются пирометрами. Шкала такого прибора заранее проградуирована. С помощью оптических линз изображение источника излучения (например, отверстия печи, лампочки накаливания) фокусируется на датчике прибора, и стрелка указывает температуру на шкале прибора.[vii]




ДУАЛИЗМ СВОЙСТВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

В силу двойственности природы света, для его характеристики используются как квантовые, так и волновые величины.

Свет как фотоны (кванты) характеризуется:

энергия фотона
масса покоя фотона равна 0. Действительно, энергия частицы по формуле Эйнштейна , скорость света (и фотона) в вакууме равна с, следовательно, m = 0
импульс фотона. Действительно, из СТО энергия частицы связана с ее импульсом ,m=0 Þ hn = pc

Свет как электромагнитные волны характеризуются:

l- длина волны, n - частота (в Гц), w - циклическая частота, с – скорость света в вакууме
k в скалярной форме называют волновым числом, в векторной форме называют волновым вектором р – импульс фотона
В атомной физике энергию обычно измеряют не в джоулях, а в электронвольтах (эВ). 1 эВ = 1,6×10 - 19 Дж. Электронвольт численно равен той энергии, которую приобретает электрон, пройдя разность потенциалов в 1 вольт. Электронвольты и вольты численно совпадают, хотя этими единицами измеряются совершенно разные величины. Например, электрон пройдя разность потенциалов 5 В приобретает энергию 5 эВ.

В нашем мире мы не наблюдаем таких макрообъектов, которые проявляли бы себя то как частицы, то как волны. Поэтому все попытки представить себе, что же такое свет, оказались безуспешными. Фотоны не подчиняются законам классической механики. Двусмысленность природы света возникает потому, что мы используем классические представления для описания неклассических, квантовых объектов.

Фотоэффектом называют электрические явления, происходящие под действием электромагнитного излучения (света). Различают следующие виды фотоэффекта.

1)Внешний фотоэффект. Он состоит в том, что под действием света происходит

испускание электронов из вещества (см. рис.). При этом на поверхности

вещества появляется положительный заряд.

2)Внутренний фотоэффект. Выбитые светом электроны остаются в веществе.

Если к веществу приложена разность потенциалов, то при освещении светом

электропроводность вещества увеличивается.

3)Фотоэффект в запирающем слое (вентильный фотоэффект). Если привести в контакт два вещества с разным типом проводимости (электронной и дырочной), то на их границе возникает разность потенциалов. Если освещать границу контакта светом и цепь замкнуть, то в ней будет протекать ток. Таким образом, можно наблюдать непосредственное преобразование световой энергии в электрическую (подробнее см.дальше - ФТТ)

внешний фотоэффект внутренний фотоэффект фотоэффект в запирающем слое

Мы будем рассматривать только внешний фотоэффект. Попытки объяснить закономерности фотоэффекта на основе электромагнитной теории оказались невозможными, например, из теории следовало, что появление фототока должно происходить спустя десятки минут после освещения, тогда как из опыта фототок появлялся практически мгновенно. В 1905 г Эйнштейн показал, что закономерности внешнего фотоэффекта можно объяснить, если предположить, что свет поглощается порциями (квантами) такими же, как по предположению Планка свет излучается. Он предложил уравнение:

© уравнение Эйнштейна для внешнего фотоэффекта

Для удобства решения задач соберем все выражения для величин в формуле

(©) в таблицу. В зависимости от условия задачи, следует выбрать подходящие

формулы и подставить в (©).

Рассмотрим вакуумный фотоэлементи его характеристики.1)Вольтамперная характеристика.

На рисунке показана схема, используемая для изучения фотоэффекта. Внутри стеклянного баллона, из которого откачен воздух, имеются два электрода: катод (К) и анод (А). Такое устройство называется вакуумным фотоэлементом. При освещении катода светом, из него будут вылетать электроны, образуя электронное облако. Часть электронов по инерции достигнут анода. Если катод и анод замкнуть вне баллона и подсоединить микроамперметр, то прибор покажет ток.

Этот очень небольшой ток называется инерционным (Iин).

Если к электродам подсоединить батарею и увеличивать напряжение между катодом и анодом, ток в цепи будет увеличиваться. Зависимость фототока от напряжения называется вольтамперной характеристикой фотоэлемента ( см. рис.). Начиная с некоторых напряжений, ток перестает увеличиваться, если при этом световой поток

Ф остается постоянным. Максимальный ток называется током насыщения (Iнас). Существование тока насыщения объясняется следующим образом. Один фотон выбивает только один электрон, но не каждый фотон выбивает по электрону. Отношение числа выбитых электронов Nэл к числу падающих фотонов Nфот в единицу времени называется квантовым выходом. Квантовый выход a зависит от природы вещества и частоты фотонов.

Законы изучения АЧТ. На основании экспериментальных данных были получены следующие законы:

Выясним, что представляют собой величины в формулах (§) и (§§) на графике зависимости излучательной способности АЧТ ro от длины волны l.

Кривая излучения АЧТ. dR – поток излучения, приходящийся на интервал длин волн dl (площадь плотно заштрихованной полоски) R – интеграл (см. формулу §§) – на графике – это площадь под всей кривой излучения. lmax – длина волны, на которую приходится максимум излучения

Гипотеза и формула Планка.

Все попытки получить формулу, описывающую кривую излучения АЧТ оказались безуспешными. Две из полученных формул (формула Вина и формула Релея и Джинса) достаточно хорошо подходили при малых и при больших длинах волн, но полностью описать кривую не могли (см. таблицу ниже). Получить формулу, полностью описывающую кривую излучения АЧТ удалось Планку. Он впервые выдвинул квантовую гипотезу(1900 г)о том, что свет испускается порциями – квантами. Энергия одного кванта пропорциональна частоте излучения. Это была принципиально новая гипотеза, положившая начало развитию квантовой теории.

энергия кванта (фотона), выраженная через частоту n (Гц), циклическую частоту w (1/с)и длину волны l
h = 6,625×10 - 34 Дж.с - постоянная Планка = 1,05×10 - 34 Дж.с - называют квантом действия (в устной речи произносится «аш перечеркнутая

Мы не будем приводить вывод формулы Планка [vi], укажем только, что он основан на методах статистической термодинамики, как и вывод формул Вина и Релея-Джинса, но Планк предположил, что энергия, приходящаяся на одну степень свободы колебательного движения осциллятора равна не кТ/2, а зависит от частоты излучения.

Приближенная формула Вина хорошо выполняется при малых длинах волн (см. рис.) и дает максимум; формула Релея - Джинса дает неплохое совпадение с опытом при больших длинах волн, но кривая уходит в бесконечность, что физически невозможно. (Подробнее – см. таблицу ниже)

Из формулы Планка можно получить теоретически все законы излучения АЧТ.

Законы теплового излучения используются в приборах, с помощью которых измеряют бесконтактным способом температуру тел, нагретых до высоких температур. Такие приборы называются пирометрами. Шкала такого прибора заранее проградуирована. С помощью оптических линз изображение источника излучения (например, отверстия печи, лампочки накаливания) фокусируется на датчике прибора, и стрелка указывает температуру на шкале прибора.[vii]

ДУАЛИЗМ СВОЙСТВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

В силу двойственности природы света, для его характеристики используются как квантовые, так и волновые величины.

Свет как фотоны (кванты) характеризуется:

энергия фотона
масса покоя фотона равна 0. Действительно, энергия частицы по формуле Эйнштейна , скорость света (и фотона) в вакууме равна с, следовательно, m = 0
импульс фотона. Действительно, из СТО энергия частицы связана с ее импульсом ,m=0 Þ hn = pc

Свет как электромагнитные волны характеризуются:

l- длина волны, n - частота (в Гц), w - циклическая частота, с – скорость света в вакууме
k в скалярной форме называют волновым числом, в векторной форме называют волновым вектором р – импульс фотона
В атомной физике энергию обычно измеряют не в джоулях, а в электронвольтах (эВ). 1 эВ = 1,6×10 - 19 Дж. Электронвольт численно равен той энергии, которую приобретает электрон, пройдя разность потенциалов в 1 вольт. Электронвольты и вольты численно совпадают, хотя этими единицами измеряются совершенно разные величины. Например, электрон пройдя разность потенциалов 5 В приобретает энергию 5 эВ.

В нашем мире мы не наблюдаем таких макрообъектов, которые проявляли бы себя то как частицы, то как волны. Поэтому все попытки представить себе, что же такое свет, оказались безуспешными. Фотоны не подчиняются законам классической механики. Двусмысленность природы света возникает потому, что мы используем классические представления для описания неклассических, квантовых объектов.

Фотоэффектом называют электрические явления, происходящие под действием электромагнитного излучения (света). Различают следующие виды фотоэффекта.

1)Внешний фотоэффект. Он состоит в том, что под действием света происходит

испускание электронов из вещества (см. рис.). При этом на поверхности

вещества появляется положительный заряд.

2)Внутренний фотоэффект. Выбитые светом электроны остаются в веществе.

Если к веществу приложена разность потенциалов, то при освещении светом

электропроводность вещества увеличивается.

3)Фотоэффект в запирающем слое (вентильный фотоэффект). Если привести в контакт два вещества с разным типом проводимости (электронной и дырочной), то на их границе возникает разность потенциалов. Если освещать границу контакта светом и цепь замкнуть, то в ней будет протекать ток. Таким образом, можно наблюдать непосредственное преобразование световой энергии в электрическую (подробнее см.дальше - ФТТ)

внешний фотоэффект внутренний фотоэффект фотоэффект в запирающем слое

Мы будем рассматривать только внешний фотоэффект. Попытки объяснить закономерности фотоэффекта на основе электромагнитной теории оказались невозможными, например, из теории следовало, что появление фототока должно происходить спустя десятки минут после освещения, тогда как из опыта фототок появлялся практически мгновенно. В 1905 г Эйнштейн показал, что закономерности внешнего фотоэффекта можно объяснить, если предположить, что свет поглощается порциями (квантами) такими же, как по предположению Планка свет излучается. Он предложил уравнение:

© уравнение Эйнштейна для внешнего фотоэффекта

Для удобства решения задач соберем все выражения для величин в формуле

(©) в таблицу. В зависимости от условия задачи, следует выбрать подходящие

формулы и подставить в (©).

Рассмотрим вакуумный фотоэлементи его характеристики.1)Вольтамперная характеристика.

На рисунке показана схема, используемая для изучения фотоэффекта. Внутри стеклянного баллона, из которого откачен воздух, имеются два электрода: катод (К) и анод (А). Такое устройство называется вакуумным фотоэлементом. При освещении катода светом, из него будут вылетать электроны, образуя электронное облако. Часть электронов по инерции достигнут анода. Если катод и анод замкнуть вне баллона и подсоединить микроамперметр, то прибор покажет ток.

Этот очень небольшой ток называется инерционным (Iин).

Если к электродам подсоединить батарею и увеличивать напряжение между катодом и анодом, ток в цепи будет увеличиваться. Зависимость фототока от напряжения называется вольтамперной характеристикой фотоэлемента ( см. рис.). Начиная с некоторых напряжений, ток перестает увеличиваться, если при этом световой поток

Ф остается постоянным. Максимальный ток называется током насыщения (Iнас). Существование тока насыщения объясняется следующим образом. Один фотон выбивает только один электрон, но не каждый фотон выбивает по электрону. Отношение числа выбитых электронов Nэл к числу падающих фотонов Nфот в единицу времени называется квантовым выходом. Квантовый выход a зависит от природы вещества и частоты фотонов.

В декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытия новой фундаментальной физической константы – постоянной Планка. Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку. Ему удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора (колебательной системы), несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики.

5.1. Тепловое излучение тел

Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным . Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.

Изучая закономерности теплового излучения тел, физики надеялись установить взаимосвязь между термодинамикой и оптикой.

Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением . Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.

Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.

Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным . При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.

Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.

Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры , и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела. Именно таким образом во всех экспериментах по исследованию теплового излучения моделируется абсолютно черное тело.

С увеличением температуры внутри полости будет возрастать энергия выходящего из отверстия излучения и изменяться его спектральный состав.

Распределение энергии по длинам волн в излучении абсолютно черного тела при заданной температуре характеризуется излучательной способностью , равной мощности излучения с единицы поверхности тела в единичном интервале длин волн. Произведение равно мощности излучения, испускаемого единичной площадкой поверхности по всем направлениям в интервале длин волн. Аналогично можно ввести распределение энергии по частотам . Функцию (или ) часто называют спектральной светимостью, а полный поток излучения всех длин волн, равный
называют интегральной светимостью тела.

К концу XIX века излучение абсолютно черного тела было хорошо изучено экспериментально.

В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры :

Несколько позднее, в 1884 году, Л. Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана . Числовое значение постоянной , по современным измерениям, составляет

.

Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина : длина волны , на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре . Значение постоянной Вина

.

При практически достижимых в лабораторных условиях температурах максимум излучательной способности лежит в инфракрасной области. Только при максимум попадает в видимую область спектра. Максимум энергии излучения Солнца приходится примерно на (зеленая область спектра), что соответствует температуре наружных слоев Солнца около (если рассматривать Солнце как абсолютно черное тело).

Успехи термодинамики, позволившие вывести законы Стефана–Больцмана и Вина теоретически, вселяли надежду, что, исходя из термодинамических соображений, удастся получить всю кривую спектрального распределения излучения черного тела . В 1900 году эту проблему пытался решить знаменитый английский физик Д. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия . Эта теорема была применена Релеем к равновесному излучению в полости. Несколько позже эту идею подробно развил Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от длины волны и температуры :

.

Это соотношение называют формулой Релея–Джинса . Оно согласуется с экспериментальными данными только в области достаточно длинных волн (рис. 5.1.3.). Кроме того, из нее следует абсурдный вывод о том, что интегральная светимость черного тела должна обращаться в бесконечность, а, следовательно, равновесие между нагретым телом и излучением в замкнутой полости может установиться только при абсолютном нуле температуры.

Сравнение закона распределения энергии по длинам волн в излучении абсолютно черного тела с формулой Релея–Джинса при

Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена М. Планком на основе новой идеи, чуждой классической физике.

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам , а не по длинам волн .

Здесь – скорость света, – постоянная Планка, – постоянная Больцмана, – абсолютная температура.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При формула Планка переходит в формулу Релея–Джинса.

Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики.

Согласно закону Кирхгофа испускательная способность абсолютно черного тела , где T – температура стенок полости. Если температуру стенок полости поддерживать постоянной и равной T, то из отверстия вышеописанной полости выходит излучение весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре. Разлагая это излучение в спектр (например, при помощи дифракционной решетки) и измеряя балометром интенсивность различных участков спектра, можно найти экспериментально вид функции или (рис.1.3.).

Разные кривые относятся к разным значениям температуры абсолютно черного тела. Площадь, охватываемая кривой дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Анализ этих кривых позволяет сделать следующие выводы:

1) Спектр излучения абсолютно черного тела имеет сплошной характер, т.е. в спектре этого излучения представлен непрерывный ряд длин волн.

2) Существует отчетливо выраженный максимум излучательной способности и с повышением температуры этот максимум смещается в сторону более коротких длин волн.

3) Излучательная способность абсолютно черного тела уменьшается в сторону коротких длин волн более резко, чем в сторону более длинных волн.

Читайте также: