Распределение больцмана кратко и понятно

Обновлено: 02.06.2024

Предположим, что газ находится во внешнем потенциальном поле. В таком случае молекула газа массы $m_0\ ,$ движущаяся со скоростью $\overrightarrow\ $имеет энергию $_p$, которая выражается формулой:

Вероятность ($dw$) нахождения этой частицы в фазовом объеме $dxdydzdp_xdp_ydp_z$ равно:

Плотности вероятности координат частицы и ее импульсов независимы, следовательно:

Формула (5) дает распределение Максвелла для скоростей молекул. Рассмотрим внимательнее выражение (4), которое приводит к распределению Больцмана. $dw_1\left(x,y,z\right)$ -- плотность вероятности нахождения частицы в объеме $dxdydz$ вблизи точки с координатами $\left(x,y,z\right)$. Будем считать, что молекулы газа независимы и в выделенном объеме газа n частиц. Тогда по формуле сложения вероятностей получим:

Коэффициент $A_1$ находится из условия нормировки, которое в имеющемся у нас случае значит, что в выделенном объеме n частиц:

Что такое распределение Больцмана

Распределением Больцмана называют выражение:

Выражение (8) задает пространственное распределение концентрации частиц в зависимости от их потенциальной энергии. Коэффициент $A_1$ не вычисляют, если необходимо знать только распределение концентрации частиц, а не их количество. Допустим, что в точке ($x_0,y_z_0$) задана концентрация $n_0$=$n_0$ $(x_0,y_z_0)=\frac_0dy_0_0>$, потенциальная энергия в той же точке $U_0=U_0\left(x_0,y_z_0\right).$ Обозначим концентрацию частиц в точке (x,y,z) $n_0\ \left(x,y,z\right).\ $Подставим данные в формулу (8), получим для одной точки:

для второй точки:

Выразим $A_1$ из (9), подставим в (10):

Чаще всего распределение Больцмана используют именно в виде (11). Особенно удобно подобрать нормировку, при которой $U_0\left(x,y,z\right)=0$.

Распределение Больцмана в поле сил тяжести

Распределение Больцмана в поле сил тяжести имеет можно записать в следующем виде:

Готовые работы на аналогичную тему

где $U\left(x,y,z\right)=m_0gz$ -- потенциальная энергия молекулы массы $m_0$ в поле тяжести Земли, $g$ -- ускорение свободного падения, $z$ -- высота. Или для плотности газа распределение (12) запишется как:

Выражение (13) называют барометрической формулой.

При выводе распределения Больцмана никаких ограничений для массы частицы не применялось. Следовательно, оно применимо и для тяжелых частиц. Если масса частицы велика, то показатель экспоненты быстро изменяется с высотой. Таким образом, сама экспонента быстро стремится к нулю. Для того, чтобы тяжелые частицы "не осели на дно", необходимо, чтобы их потенциальная энергия была малой. Это достигается в том случае, если частицы помещают, например, в плотную жидкость. Потенциальная энергия частицы U(h) на высоте h взвешенная в жидкости:

\[U\left(h\right)=V_0\left(\rho -_0\right)gh\ \left(14\right),\]

где $V_0$- объем частиц, $\rho $- плотность частиц, $_0$ -- плотность жидкости, h -- расстояние (высота) от дна сосуда. Следовательно, распределение концентрации частиц взвешенных в жидкости:

Для того, чтобы эффект был заметен, частицы должны быть малы. Визуально этот эффект наблюдают с помощью микроскопа.

Задание: В поле силы тяжести находятся два вертикальных сосуда с разными газами (водород при $T_1=200K\ $ и гелий при $T_2=400K)$. Сравнить плотности этих газов на высоте h, если на уровне h=0 плотности газов были одинаковы.

В качестве основы для решения задачи используем барометрическую формулу:

Запишем (1.1) для водорода:

где $m_=\frac<<\mu >_>$ , $<\mu >_\ $- молярная масса водорода, $N_A$ -- постоянная Авогадро.

Запишем (1.1) для гелия:

Найдем отношение плотностей:

Подставим имеющиеся данные, вычислим отношения плотностей:

Ответ: Плотности газов одинаковы.

Задание: Эксперименты с распределением взвешенных частиц в жидкости проводил, начиная с 1906 г., Ж.Б. Перрен. Он использовал распределение частиц гуммигута в воде для измерения постоянной Авогадро. При этом плотность частиц гуммигута составляла $\rho =1,2\cdot ^3\frac$, их объем $V_0=1,03\cdot ^м^3.$ Температура, при которой проводился эксперимент, T=277K. Найдите высоту h, на которой плотность распределения гуммигута уменьшилась в два раза.

Рис. 1

Используем распределение концентрации частиц, взвешенных в жидкости:

Зная плотность воды $_0=1000\frac,$ имеем: $V_0\left(\rho -_0\right)=1,03•^\left(1,2-1\right)^3=0,22•^\ (кг)$. Подставим полученный результат в (2.1):

Прологарифмируем правую и левую части (2.2):

Ответ: Плотность распределения гуммигута уменьшится в два раза при изменении высоты на $1,23\ \cdot ^м$.

Распределение Больцмана — распределение вероятностей различных энергетических состояний идеальной термодинамической системы (идеальный газ атомов или молекул) в условиях термодинамического равновесия; открыто Л. Больцманом в 1868—1871.

<\displaystyle E_<i></p>
<p>Согласно <i>распределению Больцмана</i> среднее число частиц с полной энергией >
равно

<\displaystyle \langle n_</p>
<p>\rangle =>e^/k_T>N_,>

где >" width="" height="" />
— кратность состояния частицы с энергией >" width="" height="" />
— число возможных состояний частицы с энергией >" width="" height="" />
. Постоянная " width="" height="" />
находится из условия, что сумма >" width="" height="" />
по всем возможным значениям " width="" height="" />
равна заданному полному числу частиц " width="" height="" />
в системе (условие нормировки):

<\displaystyle \sum _</p>
<p>n_=n.>

<\displaystyle E_<i></p>
<p>В случае, когда движение частиц подчиняется классической механике, энергию >
можно считать состоящей из

Содержание

Распределение Максвелла

Распределение частиц по скоростям (распределение Максвелла), частный случай распределения Больцмана, имеет место, когда можно пренебречь внутренней энергией возбуждения ^=E_>" width="" height="" />
(вн) и влиянием внеш. полей ^=E_>" width="" height="" />
(пот). В соответствии с разложением энергии на три слагаемых распределение Больцмана можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести

В постоянном поле тяжести, создающем ускорение " width="" height="" />
, для частиц атмосферных газов вблизи поверхности Земли (или других планет) потенциальная энергия пропорциональна их массе " width="" height="" />
и высоте " width="" height="" />
над поверхностью, т.е. ^=mgh>" width="" height="" />
. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В квантовой статистике

Оба эти распределения переходят в распределение Больцмана, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, таким образом когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределения Больцмана можно записать в виде неравенства:


где " width="" height="" />
— число частиц, " width="" height="" />
— объём системы. Данное неравенство выполняется при высокой температуре и малом числе частиц в единице объёма " width="" height="" />
. Из него также следует, что чем больше масса частиц, тем для более широкого интервала изменений " width="" height="" />
и " width="" height="" />
справедливо распределение Больцмана.

<\displaystyle T></p>
<p>Например, внутри белых карликов данное неравенство нарушается для электронного газа, и поэтому их свойста следует описывать с помощью распределения Ферми-Дирака. Однако неравенство, а с ним и <i>распределение Больцмана</i> остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (например, газа фотонов), данное неравенство не выполняется ни при каких значениях
и " width="" height="" />
. Поэтому равновесное излучение описывается законом излучения Планка , который является частным случаем распределения Бозе-Эйнштейна.

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm, можно получить уравнение

Разделяя переменные, получим

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

Пусть давление на поверхности равно p0, тогда полученное уравнение легко преобразовать к виду

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT:

где m0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

Полное число частиц в системе может быть записано в виде

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV. Тогда для этой вероятности запишем

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.

Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?




Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kTln2/[t(r - r0)g] = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r0) = kTln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r0) = 2,53×10 -3 кг/м 3 . Поскольку r0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm, можно получить уравнение

Разделяя переменные, получим

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

Пусть давление на поверхности равно p0, тогда полученное уравнение легко преобразовать к виду

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT:

где m0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

Полное число частиц в системе может быть записано в виде

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV. Тогда для этой вероятности запишем

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.

Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?

Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kTln2/[t(r - r0)g] = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r0) = kTln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r0) = 2,53×10 -3 кг/м 3 . Поскольку r0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

Распределение (или закон) Максвелла--Больцмана описывает распределение молекул газа по координатам и скоростям при системном воздействии внешнего потенциального поля.

Это распределение выводится из распределения Гиббса ( 1 ) :

где W p – вероятность одного из состояний системы с энергией ε p (полная энергия, состоящая из кинетической и потенциальной, которая присуща частицам). Рассмотрим чаще всего используемые формы распределения Максвелла-Больцмана.

Формы распределения Максвелла-Больцмана

Формула распределения для концентрации частиц

d n ( ν ; x , y , z ) = 4 n 0 π ν ν e r 3 e x p - 1 ν ν e r ν 2 + 2 U ( x , y , z ) m 0 ν 2 d v d V ( 2 ) .

Здесь d n ( v ; x ; y ; z ) – количество частиц, присутствующих в выделенном объеме газа d V . Около точки, имеющей координаты ( x , y , z ) , скорости молекул будут находиться в интервале от v до v + d v . В указанной формуле v v e r есть наиболее вероятная скорость молекул; m 0 – является массой молекулы газа; U ( x , y , z ) – это потенциальная энергия частицы в точке с соответствующими координатами и, наконец, n 0 есть концентрация частиц газа в точке с потенциальной нулевой энергией.

Формула распределения для вероятности импульса и координаты

d w ( p x , p y , p z , x , y , z ) = = A · 1 ( 2 π m 0 k T ) 3 2 e x p - p x 2 + p y 2 + p z 2 2 m 0 k T d p x d p y d p z e x p - U ( x , y , z ) k T d x d y d z ( 3 ) .

В данном выражении d w ( p x , p y , p z , x , y , z ) – переменная, показывающая вероятность нахождения частицы в фазовом объеме d x d y d z d p x d p y d p z возле фазовой точки x , y , z , p x , p y , p z ; U ( x , y , z ) – потенциальная энергия молекулы внешнего поля. В данной формуле распределение Максвелла-Больцмана рассматривается в виде произведения двух вероятностей событий, не зависящих друг от друга: вероятность d w ( p x , p y , p z ) , что молекула имеет импульс ( p x , p y , p z ) и вероятность d w ( x , y , z ) нахождения молекулы в точке ( x , y , z ) . В таком случае выражение ( 3 ) разложится на распределение Максвелла:

d w ( p x , p y , p z ) = 1 2 πm 0 kT 3 2 e x p - p x 2 + p y 2 + p z 2 2 m 0 k T d p x d p y d p z ( 4 ) ,

и распределение Больцмана:

d w x , y , z = A e x p - U ( x , y , z ) k T d x d y d z ( 5 ) .

Таким образом, распределения Максвелла и Больцмана служат составляющими элементами распределения Гиббса. Энергия молекул, движущихся в поле тяжести вверх, получает уменьшение, но в распределении Максвелла-Больцмана по скоростям средняя энергия при этом неизменна. Сохранность средней энергии частиц, когда происходит уменьшение энергии отдельно взятой молекулы, возможно благодаря выбыванию молекул с меньшей энергией из потока при увеличении высоты. Средняя энергия молекул, движущихся вниз, постоянна из-за присоединения к потоку молекул, выбывших из потока, направленного вверх.

Сходство между распределениями Максвелла и Больцмана

Распределения Максвелла и Больцмана обладают общей чертой: и в том и в другом случае законы включают в себя экспоненту, чей показатель в числителе содержит энергию молекулы (кинетическую у Максвелла, потенциальную у Больцмана), а в знаменателе имеют величину - k T , определяющую среднюю энергию теплового движения молекул. Собственно, именно эта схожая черта и дает возможность объединять два распределения в один закон Максвелла-Больцмана.

Рассмотрим практические задачи на распределение Максвелла-Больцмана.

Пусть задан некий газ, имеющий неизменную массу, переводимый из одного равновесного состояния в другое. Необходимо определить, происходит ли изменение в распределении молекул по скоростям: 1 ) положение максимума кривой в распределении Максвелла; 2 ) площадь под этой кривой?

Решение

Сходство между распределениями Максвелла и Больцмана

Составим запись распределения Максвелла по модулю скорости:

d N B d v = 4 π m 0 2 πkT 3 2 exp - m 0 v 2 2 kT v 2 .

При переводе газа из одного равновесного состояния в другое имеет место изменение температуры газа. Таким образом, положение максимума кривой Максвелла изменится.

При этом в случае, когда температура увеличивается, максимум получит сдвиг в сторону больших скоростей, а величина пика (высота по вертикальной оси) уменьшится (рисунок 1 ).

Площадь фигуры, ограниченной кривой и осью скоростей на рисунке 1 , равна единице и останется постоянной при изменении температуры.

Необходимо определить количество молекул кислорода, чьи скорости находятся в пределах от 195 м / с до 205 м / с при температуре Т = 273 К . Масса водорода ( m ) = 0 , 1 к г .

Решение

Заданный условием скоростной интервал невелик, т.е. допустимо применять теорему о среднем, и тогда:

∆ N N ≈ 4 π m O 2 2 πkT 3 2 e x p - m O 2 v 2 2 k T v 2 ∆ v ; ∆ N ≈ 4 πN m O 2 2 πkT 3 2 exp - m O 2 v 2 2 kT v 2 ∆ v ( 2 . 1 ) .

В данном выражении v = 200 м / с , Δ v = 10 м / с , m O 2 μ O 2 = 1 N A → m O 2 = μ O 2 N A , m μ O 2 = N N A → N = m N A μ O 2 .

Подставим полученное в ( 2 . 1 ) :

∆ N ≈ 4 π m N A μ O 2 μ O 2 N A 2 π k T 3 2 e x p - μ O 2 N A v 2 2 k T v 2 ∆ v ( 2 . 2 ) .

Теперь в выражении ( 2 . 2 ) применим конкретные числовые значения и осуществим расчет:

∆ N = 4 · 3 , 14 · 0 , 1 · 6 · 10 23 32 · 10 - 3 32 · 10 - 3 6 · 10 23 2 · 3 , 14 · 1 , 38 · 10 - 23 · 273 3 2 e x p - 32 · 10 - 3 6 · 10 23 · ( 200 ) 2 2 · 1 , 38 · 10 - 23 · 273

Ответ: искомое количество молекул кислорода в заданных условиях равно порядка 2 , 3 ⋅ 1022 .

Читайте также: