Пвк это в биологии кратко

Обновлено: 02.07.2024

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз.

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н2:

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО2; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н2, ФАД·Н2), а также одна молекула АТФ.

Кислородное окисление

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

Купить проверочные работы
и тесты по биологии


Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы
Биология. 9 класс. Тесты

Кислородное окисление

1 — наружная мембрана; 2 — межмембранное пространство, протонный резервуар;
3 — цитохромы; 4 — АТФ-синтетаза.

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

где Qт — тепловая энергия.

Пировиноградная кислота — химическое соединение с формулой СН3СОСООН, органическая кетокислота.

Содержание

Биохимическая роль

Пируваты (соли пировиноградной кислоты) — важные химические соединения в биохимии. Они являются конечным продуктом метаболизма глюкозы в процессе гликолиза. Одна молекула глюкозы превращается при этом в две молекулы пировиноградной кислоты. Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.

В условиях достаточного поступления кислорода, пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или дыхательный цикл, цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды. Эти реакции названы по имени Ханса Адольфа Кребса, биохимика, получившего вместе с Фрицем Липманном Нобелевскую премию по физиологии в 1953 году за исследования биохимических процессов клетки. Цикл Кребса называют также циклом лимонной кислоты, поскольку лимонная кислота является одним из промежуточных продуктов цепи реакций цикла Кребса.

Если кислорода недостаточно, пировиноградная кислота подвергается анаэробному расщеплению с образованием молочной кислоты у животных и этанола [1] у растений. [2] При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи фермента лактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации.

Примечания

См. также

Ссылки

  • Пировиноградная кислота // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.
  • George D. Cody, Nabil Z. Boctor, Timothy R. Filley, Robert M. Hazen, James H. Scott, Anurag Sharma, Hatten S. Yoder Jr., "Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate, " Science, 289 (5483) (25 August 2000) pp. 1337—1340. [1]

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Пировиноградная кислота" в других словарях:

ПИРОВИНОГРАДНАЯ КИСЛОТА — (Brenz traubensaure), CH3.CO.COOH, жидкость (на холоду кристаллы с t° пл. 13,6°), запахом напоминающая уксусную кислоту; кипит при 65° (при 10 мм давления); растворима в спирте. эфире, воде. С нитропруссидом натрия в присутствии КОН… … Большая медицинская энциклопедия

ПИРОВИНОГРАДНАЯ КИСЛОТА — (СН3СОСООН), бесцветная жидкость, получаемая путем дистилляции винной кислоты; с запахом уксуса. Фенилпировиноградная кислота, производная от пировиноградной кислоты, встречается в моче людей, страдающих ФЕНИЛКЕТОНУРИЕЙ, то есть нарушением… … Научно-технический энциклопедический словарь

ПИРОВИНОГРАДНАЯ КИСЛОТА — СН3СОСООН, бесцветная жидкость с резким запахом. Присутствует в клетках всех организмов; важнейший промежуточный продукт обмена веществ … Большой Энциклопедический словарь

ПИРОВИНОГРАДНАЯ КИСЛОТА — СНзСОСООН, кетокислота. Соли П. к. пируваты широко распространены в живых организмах. Образуются в результате гликолиза или гликогенолиза, при фотосинтезе, окислении и переаминиро вании нек рых аминокислот, декарбоксилировании солей… … Биологический энциклопедический словарь

пировиноградная кислота — СН3СОСООН – кетокислота. Важнейший метаболит (центраболит). Пируваты (соли П. к. или ее анион) широко распространены в живых организмах. Образуется в результате гликолиза, при фотосинтезе, окислении и переаминировании некоторых аминокислот,… … Словарь микробиологии

пировиноградная кислота — СН3СОСООН, бесцветная жидкость с резким запахом. Присутствует в клетках всех организмов; важнейший промежуточный продукт обмена веществ. * * * ПИРОВИНОГРАДНАЯ КИСЛОТА ПИРОВИНОГРАДНАЯ КИСЛОТА, СН3СОСООН, бесцветная жидкость с резким запахом.… … Энциклопедический словарь

пировиноградная кислота — piruvo rūgštis statusas T sritis chemija formulė CH₃COCOOH atitikmenys: angl. pyruvic acid rus. пировиноградная кислота ryšiai: sinonimas – 2 oksopropano rūgštis … Chemijos terminų aiškinamasis žodynas

Пировиноградная кислота — C3H4O3 = СН3 СО СОНО (иначе: ацетилмуравьиная, метилглиоксилевая или, по новой номенклатуре, пропаноновая кислота) простейшая α кетонокислота (см.), открыта Берцелиусом в 1835 г., получившим ее осторожной перегонкой (не выше 220°) виноградной и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Пировиноградная кислота — α кетопропионовая кислота, СНзСОСООН, бесцветная жидкость с резким запахом; в любых соотношениях смешивается с водой, этиловым спиртом, эфиром; tпл13,6 °С, tкиn 165 °С. Проявляет химические свойства кетонов (См. Кетоны) и карбоновых… … Большая советская энциклопедия

пировиноградная кислота — промежуточный продукт обмена углеводов и некоторых аминокислот, представляющий собой простейшую  кетокислоту и содержащийся в небольшом количестве в крови здоровых людей … Большой медицинский словарь

Пировиноградная кислота (ПВК, пируват) является продуктом окисления глюкозы и некоторых аминокислот. Ее судьба различна в зависимости от доступности кислорода в клетке. В анаэробных условиях она восстанавливается до молочной кислоты. В аэробных условиях пируват симпортом с ионами Н + , движущимися по протонному градиенту, проникает в митохондрии. Здесь происходит его превращение до уксусной кислоты, переносчиком которой служит коэнзим А.

Пируватдегидрогеназный мульферментный комплекс

Суммарное уравнение отражает окислительное декарбоксилирование пирувата, восстановление НАД до НАДН и образование ацетил-SKoA.

Окисление пирувата

Суммарное уравнение окисления пировиноградной кислоты

Превращение состоит из пяти последовательных реакций, осуществляется мультиферментным комплексом, прикрепленным к внутренней митохондриальной мембране со стороны матрикса. В составе комплекса насчитывают 3 фермента и 5 коферментов:

  • Пируватдегидрогеназа (Е1, ПВК-дегидрогеназа), ее коферментом является тиаминдифосфат (ТДФ), катализирует 1-ю реакцию.
  • Дигидролипоат-ацетилтрансфераза (Е2), ее коферментом является липоевая кислота, катализирует 2-ю и 3-ю реакции.
  • Дигидролипоат-дегидрогеназа (Е3), кофермент – ФАД, катализирует 4-ю и 5-ю реакции.

Помимо указанных коферментов, которые прочно связаны с соответствующими ферментами, в работе комплекса принимают участие коэнзим А и НАД.

Суть первых трех реакций сводится к декарбоксилированию пирувата (катализируется пируватдегидрогеназой, Е1), окислению полученного гидроксиэтила до ацетила и переносу ацетила на коэнзим А (катализируется дигидролипоат-ацетилтрансферазой, Е2).

Синтез ацетил-КоА

Реакции синтеза ацетил-SКоА

Оставшиеся 2 реакции необходимы для возвращения липоевой кислоты и ФАД в окисленное состояние (катализируются дигидролипоат-дегидрогеназой, Е3). При этом образуется НАДН.

Восстановление НАД

Реакции образования НАДН

Регуляция пируватдегидрогеназного комплекса

Регулируемым ферментом ПВК-дегидрогеназного комплекса является первый фермент – пируватдегидрогеназа (Е1). Два вспомогательных фермента – киназа и фосфатаза обеспечивают регуляцию активности пируватдегидрогеназы путем ее фосфорилирования и дефосфорилирования.

Вспомогательный фермент киназа активируется при избытке конечного продукта биологического окисления АТФ и продуктов ПВК-дегидрогеназного комплекса – НАДН и ацетил-S-КоА . Активная киназа фосфорилирует пируватдегидрогеназу, инактивируя ее, в результате первая реакция процесса останавливается.

Фермент фосфатаза, активируясь ионами кальция или инсулином , отщепляет фосфат и активирует пируватдегидрогеназу.

Регуляция ПВК-дегидрогеназы

Регуляция активности пируватдегидрогеназы

Таким образом, работа пируватдегидрогеназы подавляется при избытке в митохондрии (в клетке) ацетил-SКоА и НАДН, что позволяет снизить окисление пирувата и, следовательно, глюкозы в случае когда энергии достаточно.

Если АТФ мало или имеется влияние инсулина, то образуется ацетил-SКоА. Последний в зависимости от условий будет направляться либо в цикл трикарбоновых кислот с образованием энергии АТФ, либо на синтез холестерина и жирных кислот.

К наиболее важным в диагностическом отношении метаболитам углеводно­го обмена следует отнести пировиноградную и молочную кислоту.

Пировиноградная кислота (ПВК) — один из центральных метаболитов угле­водного обмена. Она образуется в процессе распада гликогена и глюкозы в тканях, при окислении (дегидрировании) молочной кислоты (МК), а также в результате превращения ряда аминокислот. При окислительном декарбокси-лировании ПВК возникает ацетил-КоА, который вступает в цикл Кребса. Окисление ацетил-КоА в цикле трикарбоновых кислот обеспечивает синтез АТФ.

ПВК — один из основных субстратов гликонеогенеза. Она принимает уча­стие в биосинтезе N-ацетилнейраминовой кислоты, глюкозы, гликогена, ока­зывает большое влияние на протекание процессов обмена веществ в централь­ной нервной системе.

Предлагаемый метод является модификацией метода Умбрайта и отличается тем, что пировиноградная кислота определяется непосредственно в центрифугате крови, после осаждения белков.

Принцип: Пировиноградная кислота с 2,4-динитрофенилгидразином образует гидразон, который со щелочью дает соединение коричнево-красного цвета. Интенсивность окраски прямо пропорциональна содержанию пировиноградной кислоты и определяется фотометрически.

Реактивы:

1) 10% раствор трихлоруксусной кислоты. 100 г ТХУ растворяют в 1000 мл дистиллированной воды.

2) 0,1% раствор 2,4-динитрофенилгидразина (ДНФГ). 50 мг реактива растворяют в 10 мл концентрированной соляной кислоты при слабом подогревании. Объем раствора доводят дистиллированной водой до 50 мл.

Катаболизм (диссимиляция ) - это энергетический обмен, часть метаболизма, распада сложных веществ на более простые (или окисления вещества), который протекает с освобождением энергии в виде тепла и в виде молекулы АТФ, универсального источника энергии всех биохимических процессов.

Схема катаболизма пищевых веществ, его этапы, пути и процессы

На схеме наглядно представлен катаболизм пищевых веществ, который состоит из 3-х основных этапов (стадий), первый и второй этапы относятся к специфическим путям катаболизма, а третий этап относится к общему пути катаболизма.

общая схема катаболизма веществ

ATP (АТФ) - это аденозинтрифосфорная кислота (нуклеотид), универсальный источник и переносчик энергии, который участвует во всех биохимических процессах.

NAD (НАД) - никотинамидадениндинуклеотидфосфата, является коферментом, переносит электроны из одной реакции в другую в метаболизме.

NADH (НАД*Н) - востановленная форма NAD.

Пируват - это соли пировиноградной кислоты, конечный продукт в процессе гликолиза.

Протекание процессов катаболизма

1-й этап катаболизма (подготовительный)

расщепление больших макромолекул на простые субьединицы

На первом этапе происходит расщепление пищевых веществ (белки, полисохариды, жиры) до мономеров. У многоклеточных организмов это осуществляется в пищеварительном тракте (у простейших в лизосомах при самообновленнии клеток) под воздействием соответствующих ферментов, после чего полученные мономеры всасываются в кровь (моносахариды аминокислоты) и в лимфу (жирные кислоты).

Небольшое количество энергии рассеивается ввиде тепла

2-й этап катаболизма (бескислородный)

расщепление простых субьединиц на ацетил-СоА, сопровождающийся образованием ограниченного количества АТP и NADH

На втором этапе все пищевые продукты которые поступают в клетку из крови образуют ацетилкоэнзим А (ацетил-СоА). Это соединение, а также другие ферменты, включающие в себя КоА, являются ключевыми звеньями множества разнообразных биохимических реакций.

— При гликолизе моносахариды образуют пировиноградную кислоту.

— При катаболизме аминокислот образуются ацетил-CoA, пируват, другие кетокислоты

— При β-окислении жирных кислот образуется ацетил-CoA

Второй этап происходит в цитозоли и митохондрии.

При расщеплении глюкозы 60% выделившейся энергии дает тепло, 40% идет на синтез 2х молекул ATP, эта часть энергии запасается.

3-й этап катаболизма (кислородный)

при полном окислении ацетил-СоА до H2O и CO2 образуется большое количество NADH, что обеспечивает синтез большого количества ATP при переносе электронов

Третий этап и его реакции проходят в митохондриях. Ацетил-CoA участвует в реакциях цикла лимонной кислоты (цикл трикарбоновых кислот Кребса), там углероды окисляются до углекислого газ CO2. Происходит полное окисление ацетильной группы ацетил-СоА до Н2O и СO2, при этом большое количество электронов и протонов запасается на молекулах NADH (процесс "окислительное фосфолирование"). В дальнейшем энергия электронов используется для образования протонного градиента, что обеспечивает последующий синтез АТР.

При окислении 2х молекул кислоты образуется 36 молекул ATP

_______________

Источник информации: Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008

Читайте также: