Прокладочные уплотнительные и изоляционные материалы кратко

Обновлено: 02.07.2024

Для изготовления прокладок применяются как неметаллические материалы, так и металлы. Металлические прокладки используются для ответственных объектов в тяжелых условий работы арматуры (высокой температуры, высокого давления и т. д.), но они требуют значительно больших усилий затяга соединения, чем мягкие прокладки.

Неметаллические материалы. Резина является наиболее пригодным материалом для уплотнения разъемных соединений. Она эластична, требует небольших усилий затяга уплотнений, практически непроницаема для жидкостей и газов. Резина применяется до температуры 50° С, а теплостойкая резина — до 140° С.

Для прокладок обычно применяется листовая техническая резина по ГОСТ 7338—65 без тканевых прослоек, так как при наличии прослоек иногда создается протечка среды через волокна прослойки. По твердости резину под¬разделяют на мягкую, средней твердости и твердую. Существует пять типов резины: маслобензостойкая (марки А, Б и В в зависимости от степени стойкости), кислотощелочестойкая, теплостойкая, морозостойкая и пищевая.


В автомобиле имеется значительное количество агрегатов, места соприкосновения деталей которых требуют герметизации. Различают уплотнения для неподвижных 1еталей и деталей с вращательным и вращательно-поступательным движением. Для этих целей применяют прокладки и манжеты, изготавливаемые из различных уплот-нительных материалов.

Основным требованием к уплотнительным материалам является сочетание высокой прочности и упругости, достаточных для обеспечения герметизации и сохранности изделия при его монтаже и демонтаже. В некоторых случаях уплотнительные материалы должны обеспечивать стойкость к агрессивным средам и сохранять работоспособность при высоких температурах.

Наиболее распространенными прокладочными материалами являются пробки, химически обработанная бумага (пергамент, картон, фибра), асбест, войлок, паро-ниты (вулканизованные смеси каучука, асбеста и наполнителей) и ферронит (паронит, армированный металлической сеткой). Предельные значения рабочих температур для этих материалов составляют: войлок 75 °С, бумага и обычный паронит 150 °С, масло-, бензостойкий паронит МБП-5 — 250 °С, ферронит 101…400 °С.

В сальниковых уплотнениях применяются различные сочетания металлов, резин, пластмасс, тканей, войлока и волокон. Манжеты изготавливаются главным образом из резиновых материалов и некоторых видов термопластов.

В конструкции автомобиля для уплотнения используются также прорезиненные материалы и набивки. Первые получают из хлопчатобумажных (для низких температур) или асбестовых (для высоких температур) тканей, пропитанных сырой резиной и затем вулканизированных. Для изготовления набивок используют войлок, пеньку, джут, асбест, пропитанные связующими веществами.

Для отделки салона или кабины автомобиля, его тепло-и шумоизоляции используются обивочные материалы. Эти материалы должны обладать красивым внешним видом, иметь достаточную прочность, тепло- и звуконепроницаемость, долговечность, низкую стоимость.

К материалам, используемым для обивки сидений, предъявляются повышенные требования по прочности, эластичности и износостойкости. Эти материалы должны также легко очищаться от пыли и других загрязнений, а в случае автобусов и легковых такси позволять производить обработку дезинфицирующими растворами. Все обивочные материалы должны хорошо мыться, сохраняя при этом внешний вид.

Некоторые обивочные материалы, главным образом шумопоглощающие, подвергаются воздействию нефтепродуктов или их паров, а в ряде случаев и отработавших газов. Они должны сохранять свои свойства и обеспечивать необходимый срок службы в этих условиях.

Качество обивочных материалов определяется и их ремонтопригодностью, связанной с возможностью ремонта механических повреждений доступными методами, например с помощью склеивания.

Для обивки применяются кожзаменители, резины, текстильные и другие материалы. Наиболее распространены текстильные материалы, из которых изготавливают ткани, войлок, шнуры, тесьму и т. п. Широко применяются комбинированные ткани с нанесенными на их поверхность полимерами, а также различные синтетические пленки (поливинилхлоридная и др.). На изготовление верхней обивки сидений идуг такие заменители кожи, как дерматин, гекстовиниг, автобим и др. В обивке легковых автомобилей используется искусственная кожа на тканевой или трикотажной основе с монолитным или пористо-монолитным поливинилхлоридным покрытием.

Основными требованиями к изоляционным материалам являются высокие диэлектрические свойства, механическая прочность, теплостойкость и устойчивость против влаги. Этим требованиям в наибольшей степени удовлетворяют такие материалы, как текстолит, фибра, эбонит, бакелит, слюда, прессшпан, асбест. Наряду с ними в качестве изоляционных материалов используют изоляционную бумагу, ленту и специальные лаки.

Наиболее высокими диэлектрическими свойствами характеризуется слюда, предоставляющая собой слоистый материал, расщепляющийся на тонкие прозрачные листочки. Слюда выдерживает нагрев до 500 °С и применяется в качестве диэлектрика в конденсаторах, коллекторах электрогенераторов и стартеров, в электронагревательных приборах. В качестве изоляционного материала между коллекторными пластинами электромашин (стартеров, генераторов) используется миканит — склеенные и опрес-сованные листочки слюды.




Прессшпан представляет собой листы картона, пропитанного льняным маслом. Изоляционная бумага изготавливается из древесной массы с помощью обработки содой и сульфатом натрия. Для изготовления изоляционной ленты применяются полоски ткани с нанесенным на поверхность резиновым клеем, либо поливинилхлоридные ленты, покрытые клейким составом.

Конспект:
2.Назначение требования, предьявляемые к обивочным, электроизоляционным материалам и к синтетическим клеям.

Основной задачей электроизоляционных материалов является предотвращение утечки электрических зарядов, разделение электрических цепочек или токопроводящих элементов в приборах и различных аппаратах. Для максимально эффективной работы диэлектрики должны соответствовать определенным требованиям.

В настоящее время многие электроизоляционные материалы могут использоваться как защита от электромагнитного излучения, по-другому это свойство диэлектрика называется экранированием.

По своей природе диэлектрики обладают пассивными и активными свойствами, исходя из которых, можно выделить несколько основных требований к электроизоляционным материалам:

· они должны нести малые диэлектрические потери;

· у материалов должна быть большая диэлектрическая проницаемость;

· для использования в различных областях диэлектрикам необходимо обладать достаточной прочностью, например, как гофрированные трубы из электроизоляционных материалов;

· они должны иметь высокие удельные сопротивления (объемные и поверхностные).

Для нормирования материалов, применяемых в промышленности и производстве, применяют ГОСТ на электроизоляционные материалы. Перечень нормативных документов включает в себя описание методов определения влагостойкости, воспламеняемости, удельного объемного и поверхностного сопротивления, а также тангенса угла диэлектрических потерь и диэлектрической проницаемости при частоте 50 Гц.

В зависимости от сферы применения, электроизоляционные материалы делятся на категории и классы. Чем выше допустимая температура нагрева, тем выше требования к основным характеристикам диэлектриков. Исходя из этого, изоляторы могут изготавливать из природных (целлюлоза, парафин, янтарь, каучук, касторовое масло, пек) и искусственных органических соединений (эластомеры, пластмассы), а также из синтетических (стекловолокно, ситалл, фарфор) и естественных неорганических (слюда, мусковит, флогопит) веществ.

Клеей-этовещество, способное прочно удерживать склеиваемые поверхности благодаря переходу при определенных условиях из жидкого состояния в твердое.

Классификация по признакам:

а) по происхождению:- синтетические; - природные.

б) в зависимости от механизма проявления склеивания:- термореактивные; - термопластичные; - дисперсионные.

в) по способу получения синтетических клеев:- поликонденсационные; - полимеризационные,.

г) по водостойкости:- низкой; - средней; - высокой;

д) по виду растворителя:- водорастворимые; - спирторастворимые;

е) по внешнему виду:- жидкие; - пастообразные; - пленочные; - порошкообразные; - в виде гранул.

Конспект:
1.Назначение требования, предьявляемые к уплотнительным материалам, их виды и применение.


В автомобиле имеется значительное количество агрегатов, места соприкосновения деталей которых требуют герметизации. Различают уплотнения для неподвижных 1еталей и деталей с вращательным и вращательно-поступательным движением. Для этих целей применяют прокладки и манжеты, изготавливаемые из различных уплот-нительных материалов.

Основным требованием к уплотнительным материалам является сочетание высокой прочности и упругости, достаточных для обеспечения герметизации и сохранности изделия при его монтаже и демонтаже. В некоторых случаях уплотнительные материалы должны обеспечивать стойкость к агрессивным средам и сохранять работоспособность при высоких температурах.

Наиболее распространенными прокладочными материалами являются пробки, химически обработанная бумага (пергамент, картон, фибра), асбест, войлок, паро-ниты (вулканизованные смеси каучука, асбеста и наполнителей) и ферронит (паронит, армированный металлической сеткой). Предельные значения рабочих температур для этих материалов составляют: войлок 75 °С, бумага и обычный паронит 150 °С, масло-, бензостойкий паронит МБП-5 — 250 °С, ферронит 101…400 °С.

В сальниковых уплотнениях применяются различные сочетания металлов, резин, пластмасс, тканей, войлока и волокон. Манжеты изготавливаются главным образом из резиновых материалов и некоторых видов термопластов.

В конструкции автомобиля для уплотнения используются также прорезиненные материалы и набивки. Первые получают из хлопчатобумажных (для низких температур) или асбестовых (для высоких температур) тканей, пропитанных сырой резиной и затем вулканизированных. Для изготовления набивок используют войлок, пеньку, джут, асбест, пропитанные связующими веществами.

Для отделки салона или кабины автомобиля, его тепло-и шумоизоляции используются обивочные материалы. Эти материалы должны обладать красивым внешним видом, иметь достаточную прочность, тепло- и звуконепроницаемость, долговечность, низкую стоимость.

К материалам, используемым для обивки сидений, предъявляются повышенные требования по прочности, эластичности и износостойкости. Эти материалы должны также легко очищаться от пыли и других загрязнений, а в случае автобусов и легковых такси позволять производить обработку дезинфицирующими растворами. Все обивочные материалы должны хорошо мыться, сохраняя при этом внешний вид.

Некоторые обивочные материалы, главным образом шумопоглощающие, подвергаются воздействию нефтепродуктов или их паров, а в ряде случаев и отработавших газов. Они должны сохранять свои свойства и обеспечивать необходимый срок службы в этих условиях.

Качество обивочных материалов определяется и их ремонтопригодностью, связанной с возможностью ремонта механических повреждений доступными методами, например с помощью склеивания.

Для обивки применяются кожзаменители, резины, текстильные и другие материалы. Наиболее распространены текстильные материалы, из которых изготавливают ткани, войлок, шнуры, тесьму и т. п. Широко применяются комбинированные ткани с нанесенными на их поверхность полимерами, а также различные синтетические пленки (поливинилхлоридная и др.). На изготовление верхней обивки сидений идуг такие заменители кожи, как дерматин, гекстовиниг, автобим и др. В обивке легковых автомобилей используется искусственная кожа на тканевой или трикотажной основе с монолитным или пористо-монолитным поливинилхлоридным покрытием.

Основными требованиями к изоляционным материалам являются высокие диэлектрические свойства, механическая прочность, теплостойкость и устойчивость против влаги. Этим требованиям в наибольшей степени удовлетворяют такие материалы, как текстолит, фибра, эбонит, бакелит, слюда, прессшпан, асбест. Наряду с ними в качестве изоляционных материалов используют изоляционную бумагу, ленту и специальные лаки.

Наиболее высокими диэлектрическими свойствами характеризуется слюда, предоставляющая собой слоистый материал, расщепляющийся на тонкие прозрачные листочки. Слюда выдерживает нагрев до 500 °С и применяется в качестве диэлектрика в конденсаторах, коллекторах электрогенераторов и стартеров, в электронагревательных приборах. В качестве изоляционного материала между коллекторными пластинами электромашин (стартеров, генераторов) используется миканит — склеенные и опрес-сованные листочки слюды.

Прессшпан представляет собой листы картона, пропитанного льняным маслом. Изоляционная бумага изготавливается из древесной массы с помощью обработки содой и сульфатом натрия. Для изготовления изоляционной ленты применяются полоски ткани с нанесенным на поверхность резиновым клеем, либо поливинилхлоридные ленты, покрытые клейким составом.

Конспект:
2.Назначение требования, предьявляемые к обивочным, электроизоляционным материалам и к синтетическим клеям.

Основной задачей электроизоляционных материалов является предотвращение утечки электрических зарядов, разделение электрических цепочек или токопроводящих элементов в приборах и различных аппаратах. Для максимально эффективной работы диэлектрики должны соответствовать определенным требованиям.

В настоящее время многие электроизоляционные материалы могут использоваться как защита от электромагнитного излучения, по-другому это свойство диэлектрика называется экранированием.

По своей природе диэлектрики обладают пассивными и активными свойствами, исходя из которых, можно выделить несколько основных требований к электроизоляционным материалам:

· они должны нести малые диэлектрические потери;

· у материалов должна быть большая диэлектрическая проницаемость;

· для использования в различных областях диэлектрикам необходимо обладать достаточной прочностью, например, как гофрированные трубы из электроизоляционных материалов;

· они должны иметь высокие удельные сопротивления (объемные и поверхностные).

Для нормирования материалов, применяемых в промышленности и производстве, применяют ГОСТ на электроизоляционные материалы. Перечень нормативных документов включает в себя описание методов определения влагостойкости, воспламеняемости, удельного объемного и поверхностного сопротивления, а также тангенса угла диэлектрических потерь и диэлектрической проницаемости при частоте 50 Гц.

В зависимости от сферы применения, электроизоляционные материалы делятся на категории и классы. Чем выше допустимая температура нагрева, тем выше требования к основным характеристикам диэлектриков. Исходя из этого, изоляторы могут изготавливать из природных (целлюлоза, парафин, янтарь, каучук, касторовое масло, пек) и искусственных органических соединений (эластомеры, пластмассы), а также из синтетических (стекловолокно, ситалл, фарфор) и естественных неорганических (слюда, мусковит, флогопит) веществ.

Клеей-этовещество, способное прочно удерживать склеиваемые поверхности благодаря переходу при определенных условиях из жидкого состояния в твердое.

Классификация по признакам:

а) по происхождению:- синтетические; - природные.

б) в зависимости от механизма проявления склеивания:- термореактивные; - термопластичные; - дисперсионные.

в) по способу получения синтетических клеев:- поликонденсационные; - полимеризационные,.

г) по водостойкости:- низкой; - средней; - высокой;

д) по виду растворителя:- водорастворимые; - спирторастворимые;

е) по внешнему виду:- жидкие; - пастообразные; - пленочные; - порошкообразные; - в виде гранул.

Для придания плотности и герметичности соединениям деталей машин (трубы, различные соединения и др.) и устранения возможного просачивания жидкости и прорыва газов используют прокладочные и уплотнительные материалы.
Изоляционные материалы - это органические и неорганические вещества, обладающие огнестойкостью и малой тепло- и электропроводностью. Они применяются для изоляции находящихся под током деталей машин и электропроводов. Наибольшее распространение получили следующие прокладочные и изоляционные материалы.
Бумага - листовой материал, изготовленный из растительных волокон и целлюлозы. Целлюлоза - растительные волокна, очищенные от смол и других компонентов. Картон – специально обработанная толстая бумага толщиной 0,25-3 мм. В зависимости от способа обработки он приобретает масло- и бензостойкость, электро- и термоизоляционность. Бумагу и картон применяют как прокладочный и изоляционный материал.
Фибра - разновидность бумажного материала, изготовляют ее из бумаги, пропитанной раствором хлористого цинка. Отличается высокой прочностью и хорошо поддается механической обработке, масло- и бензостойка. Недостаток фибры - значительная гигроскопичность (влагопоглощаемость), поэтому при увлажнении она деформируется. Фибры применяются для изготовления шайб, прокладок и втулок.
Асбест - естественный волокнистый белый минерал, состоящий из кремнезема и небольших количеств окиси железа и окиси кальция. Для него характерны высокая огнестойкость, а также малая тепло- и электропроводность, выдерживает температуру до 500°С. Из асбеста делают волокно, нити, шнуры, ткани с примесью хлопка и чисто асбестовые ткани, листовые и прокладочные асбестовые материалы, асбестовую бумагу, картон.
Паронит - листовой материал из асбеста, каучука и наполнителей. Применяют для уплотнения водяных и паровых магистралей (при давлении до 5,0 МПа и при температуре до 450°С), а также для уплотнения трубопроводов и арматуры для нефтепродуктов: бензина, керосина, масла.
Войлок - листовой пористый материал, изготовленный из волокон шерсти. Воздушные поры в нем составляют не менее 75% объема. Он обладает высокими тепло- и звукоизолирующими, а также амортизирующими свойствами. Войлок используют для набивки сальниковых уплотнений и изготовления прокладок.
Важной задачей современного машиностроения является надежная герметизация и уплотнение соединений деталей и сборочных единиц, работающих в жестких условиях. Материал обычно используемых уплотнительных прокладок (паронит, картон и др.) не всегда обеспечивает надежную длительную герметичность соединений. Под действием температуры и вибрации прокладки со временем претерпевают ряд изменений, теряют свои уплотняющие свойства, в них возникают разрывы и трещины. В процессе эксплуатации это приводит к утечке масла, топлива и др. Для этих целей применяют различные герметики. Уплотняющая жидкая прокладка ГИПК-244 предназначена для герметизации неподвижных соединений деталей и сборочных единиц, работающих в водяной, паро-водяной, кислотно-щелочной и масло-бензиновых средах.
Уплотнительная замазка У-20А предназначена для герметизации соединений в воздушной и водяной средах. Герметик Эластосил 137-83 герметизирует неподвижные соединения в водяной, паро-водяной, кислотно-щелочной и масляной средах. Анаэробный клей ДН-1 обеспечивает герметизацию соединений с зазорами до 0,15 мм.
Минеральная вата - продукт переработки металлургических или топливных шлаков. Служит для изоляции поверхностей с низкими и высокими температурами нагрева. Применяются в качестве изоляционного материала также плиты на основе минеральной ваты, проклеенной фенольной смолой или битумной эмульсией.
Изоляционная прорезиненная лента представляет собой суровую тонкую хлопчатобумажную ткань (миткаль), пропитанную с одной или двух сторон липкой сырой резиновой смесью.
Липкая изоляционная лента – это пленочный пластик, покрытый слоем перхлорвинилового клея. Толщина ленты 0,20-0,45 мм, ширина 15-50 мм. Изоляционные ленты выпускаются различных цветов.

Уважаемый посетитель, Вы прочитали статью "Прокладочные, уплотнительные и изоляционные материалы", которая опубликована в категории "Материаловедение". Если Вам понравилась или пригодилась эта статья, поделитесь ею, пожалуйста, со своими друзьями и знакомыми.

К уплотнительным относятся и набивные материалы. Прокладочные материалы применяют для уплотнения разъемных частей двигателей, картеров трансмиссии и других узлов автомобилей с целью их герметизации. Прокладки иногда используют при регулировках отдельных сочленений. Набивочные материалы применяют для герметизации зазоров между подвижными деталями механизмов, а также для защиты узлов трения от пыли, грязи и воды. Уплотнительные прокладки подразделяют на прокладки с полимерной и металлической основой. К материалам на полимерной основе относятся бумага, асбест, резина, фибра, пергамент, а на металлической основе – алюминий, медь, латунь, свинец, углеродистая сталь, высоколегированная сталь.

Бумажные материалы. Бумага – тонколистовой волокнистый материал. Бумагу, масса 1 м2 которой превышает 250 г, называют картоном. Основными полуфабрикатами для изготовления обычных видов бумаги и картона служат целлюлоза, древесная масса, полуцеллюлоза, бумажная макулатура, волокна хлопка, пеньки и др. Картон подразделяется (ГОСТ 17926-80) на тарный, для полиграфического производства, фильтровальный, для легкой промышленности, технический, строительный. Технический картон включает водонепроницаемый картон, обивочный, водостойкий, прокладочный, термоизоляционный прокладочный, электроизоляционный, прессшпан и другие виды картона.

Пергамент (ГОСТ 1341-84) представляет собой прозрачную масло- и жиронепроницаемую и влагостойкую бумагу, получаемую обработкой серной кислотой непроклеенной бумаги с последующей ее нейтрализацией раствором щелочи.

Фибра – это твердый монолитный материал, образующийся в результате обработки нескольких слоев бумаги-основы – пергаментирующим реагентом. Различают (по ГОСТ 17926-80) следующие разновидности фибры: склеенная, высокопрочная, кислородостойкая, огнестойкая, техническая, электротехническая, поделочная и др. Техническая фибра – это легкоштампуемая прочная фибра с ограниченной водопоглошаемостью, предназначенная для деталей машин и приборов. Выпускается фибра в соответствии с требованиями ГОСТ 14613-83.

Общим недостатком всех бумажных материалов является их относительно невысокая теплостойкость: при температурах выше 130-140 ºС бумага и картон становятся хрупкими и теряют гибкость; при 180 ºС начинается обугливание, а при 240-250 ºС происходит разложение бумажных волокон.

Асбестовые материалы. Асбест – название минералов волокнистого строения, обладающих способностью расщепляться на гибкие и тонкие волокна. Предполагают, что нитевидные волокна состоят из макромолекул.

Плотность кускового асбеста 2000-2500 кг/м3, а асбестовых изделий (без наполнителей) 1000-2000 кг/м3. Асбест не горит, обладает хорошими электротеплоизоляционными свойствами и высокой теплостойкостью. Без существенных изменений своих свойств выдерживает нагрев до 300 ºС; при нагреве до 386 ºС асбест теряет из своего состава адсорбционную воду, вследствие чего снижается его прочность и гибкость. Эта потеря воды обратима: при нахождении во влажной среде первоначальные свойства асбеста восстанавливаются. При нагреве выше 450 ºС начинается необратимая потеря конституционной воды, т.е. входящей в его состав, которая заканчивается при 700-800 ºС. В результате асбест делается непрочным и легко растирается в порошок. При 1500 ºС асбест плавится. Прочность асбеста на разрыв изменяется в зависимости от температуры – от 315- 320 кгс/см2 при 20 ºС до 70-80 кгс/см2 при 600 ºС.

Высокая теплостойкость асбеста предопределяет его применение на автомобилях в качестве уплотнительных материалов, работающих при повышенных температурах и давлениях 50-60 кгс/см2 (например, прокладки на глушителях, элементы фрикционных соединений и т. п.). При использовании асбеста в качестве прокладок для головки цилиндров его заключают в медную или стальную оболочку (фольгу), чтобы исключить непосредственное соприкосновение асбеста с горячими газами. Повреждение этой оболочки приводит к контакту с горячими газами, потере ими конституционной воды и быстрому разрушению.

Асбостальные листы (ГОСТ 12856-84) выпускаются пяти марок: ЛА-1, ЛА-1А, ЛА-2, ЛА-ЗА, ЛА-ЗБ, размеры которых: длина 215-875 мм, ширина 500, толщина 1,4-1,75 мм.

Асбостальные листы

Для различного вспомогательного оборудования используются асбестовый картон, асбестовые ткани (ГОСТ 6107-78), асбестовые шнуры и нити (ГОСТ 1779-83), асбестовые ленты (ГОСТ 14256-78), паронит, а также измельченный асбест для теплоизоляционных работ.

Асбестовый картон (ГОСТ 2850-80) на основе хризотилового асбеста выпускается следующих марок:

КАОН-1, КАОН-2 – картон асбестовый общего назначения; КАП – картон асбестовый прокладочный.

Паронит представляет собой прокладочный листовой материал из вальцованного асбеста с каучуковым связующим и минеральными наполнителями. Примерный состав: асбест 60-75%, каучук с серой 12-13% и остальное минеральные наполнители (глина, полевой шпат, тальк и т. п.). Паронит по ГОСТ 481-80 выпускают следующих марок: ПОН, ПОН-1, ПМБ, ПМБ-1, ПК, ПЭ.

Параметр шероховатости уплотняемых поверхностей по ГОСТ 2789- 73 должен быть не более 40 мкм (Rz).

Пробковые материалы изготовляют прессованием коры пробкового дуба и применяют для уплотнения соединений, работающих при небольшом напряжении в среде воды или нефтепродуктов: крышек клапанной коробки двигателей, стаканов фильтра топливного насоса, фильтра вентиляции картера двигателя, крышек коромысел и т. п., а также в качестве набивки сальников игольчатого типа.

Волокна шерсти войлока разрушаются от действия грибков и моли, легко разрушаются от воздействия щелочей, но стойки против кислот.

2. Жидкие прокладки и герметизирующие составы

Среди многочисленных вариантов уплотнений в современных машинах большое распространение получили уплотнения фланцевых соединений с помощью твердых прокладок из картона, паронита и других полимерных материалов. К числу недостатков таких соединений относятся: необходимость создания определенного давления на прокладку, так как в процессе возникновения остаточных деформаций в прокладке нарушается герметичность стыка; при длительной работе (или хранении) происходит старение прокладочных материалов, что ведет также к нарушению герметичности соединения, необходимости точной пригонки контактирующих поверхностей (коробление и перекосы недопустимы), а также строгой последовательности в затяжке резьбовых соединений при создании давления на прокладку. Все это снижает надежность фланцевого соединения и агрегата в целом.

Новым направлением в области герметизации соединений является применение вязкотекучих материалов для уплотнения фланцевых стыков, которые получили наименование жидких прокладок. Они подразделяются на высыхающие, невысыхающие и вулканизующиеся (отверждаемые). Свободно меняя форму при наложении усилия, они хорошо заполняют микро- и макронеровности поверхности деталей и создают высокую степень герметичности соединений; наличие адгезии между материалом жидкой прокладки и деталью повышает надежность герметизации соединения. По своей сущности жидкая прокладка, как правило, представляет полимерную (олигомерную или эластомерную) композицию.

Специально для ремонтных целей разработана одноупаковочная самовулканизующаяся жидкая прокладка (компаунд) КЛТ-75Т (ТУ 38.403435-82) на основе кремнийорганических каучуков. Она характеризуется высокими деформационно-прочностными свойствами: условная прочность при растяжении не менее 1,0 МПа, относительное удлинение при разрыве не менее 12%. Жидкая прокладка заменяет традиционные прокладки из картона, паронита. Температурный интервал эксплуатации прокладки составляет от -55 до +300 ºС, что позволяет восстанавливать прокладки головки блока при их местном повреждении.

Герметики полувысыхающего и высыхающего типов после нанесения на поверхность и испарения растворителя образуют упругую резиноподобную пленку. Основными недостатками герметиков является длительность испарения растворителя и обратимость процесса, что обусловливает непостоянство их физико-механических свойств и снижение качества герметизации. К высыхающим герметикам относят материалы на основе бутадиен-нитрильного каучука и эластопластов.

Герметики У-ЗОМ и УТ-31 вулканизуют при температурах ниже 15 ºС (до 0 ºС), однако жизнеспособность и время вулканизации в этом случае увеличивается в 2-2,5 раза при уменьшении температуры на каждые 10 ºС.

Герметики У-ЗОМ и УТ-31 не обладают достаточной адгезионной прочностью при креплении их к металлам, стеклу, бетону и другим материалам и требуют клеевого подслоя:

  1. клея 88Н – для крепления к металлу и бетону при работе в воздушной среде;
  2. клея 78БЦС-П – для крепления к металлу при работе в воздушной среде с повышенной относительной влажностью и при непосредственном контакте с водой;
  3. клея К-50 – для крепления к металлу при работе в среде топлив и др.

Перед нанесением подслоев и герметиков поверхность, подлежащую герметизации, тщательно очищают от пыли, грязи, стружек и другого сора с помощью волосяных щеток или тканевых салфеток.

Для удаления влаги, следов минеральных масел, а также жировых пятен и других загрязнений на металле, дереве, бетоне поверхность, подлежащую герметизации, обезжиривают тканью, смоченной в бензине по ГОСТ 443-76, и тот час же протирают сухой ветошью насухо. Затем в таком же порядке производят вторичное обезжиривание. Допускается проводить обезжиривание по ГОСТ 21981-76.

3. Изоляционные материалы

При ремонте автомобильного электрооборудования применяют различные электроизоляционные лаки, слюду, миканит, изоляционную ленту и бумагу, лакоткани, а также различные пластмассы (текстолит электротехнический, гетинакс электротехнический и др.), резину и прессшпан.

Изоляционные лаки изготовляются на основе асфальте битумных (БТ-980, -987, -988, -999), глифталевых (ГФ-95), канифольных (КФ-965), полиуретановых (УР-973,-976) и других пленкообразователей.

Применяют МЛ-92 и БТ-99 как покрывные лаки при ремонте электрооборудования, БТ-980, -987, -988 и ГФ-95 как пропиточные для пропитки изоляции обмоток электродвигателей и трансформаторов; ВЛ-941 – как электроизоляционные для покрытия медных проводов; УР-973 предназначен для эмалирования проводов, а УР-976 – для получения влагостойкого электроизоляционного покрытия; лак ВЛ-941 (ГОСТ 10760-76) – для изготовления эмалированных проводов.

Слюда является алюмосиликатным прозрачным минералом, способным к расщеплению на тонкие гибкие пластины.

Миканит подразделяется на коллекторный, формовочный, прокладочный, гибкий, жароупорный и микаленту.

Изоляционная лента (ГОСТ 2162-78) представляет собой миткаль, пропитанный с одной или двух сторон мягкой сырой резиновой смесью.

Плотность картона 1200-1250 кг/м3, влажность не более 10%, предел прочности при разрыве 10-13 кгс/см2 и электрическая прочность 10- 12 кВ/мм. Марка ЭВА применяется для производства автотранспортного оборудования.

Электроизоляционные лакоткани изготавливают из хлопчатобумажных, шелковых, капроновых и стеклянных тканей, пропитываемых электроизоляционными лаками. Выпускаются в виде рулонов шириной 690-990 мм. Толщина лакотканей: хлопчатобумажных 0,15-0,30 мм; шелковых – 0,04-0,15; капроновых 0,10-0,15 (ГОСТ 2214-78) и стеклянных 0,05-0,24 мм (ГОСТ 10156-78).

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Прокладочные, уплотнительные и изоляционные материалы Тема урока:

Описание презентации по отдельным слайдам:

Прокладочные, уплотнительные и изоляционные материалы Тема урока:

Прокладочные, уплотнительные и изоляционные материалы Тема урока:

Назначение: Для придания плотности и герметичности соединениям деталей машин.

Назначение: Для придания плотности и герметичности соединениям деталей машин (трубы, различные соединения и др.) и устранения возможного просачивания жидкости и прорыва газов используют прокладочные и уплотнительные материалы.

Прокладочные, уплотнительные материалы: Бумага – листовой материал, изготовле.

Прокладочные, уплотнительные материалы: Бумага – листовой материал, изготовленный из растительных волокон и целлюлозы. Целлюлоза – растительные волокна, очищенные от смол и других компонентов. Картон – специально обработанная толстая бумага толщиной 0,25-3 мм.

Свойства продуктов переработки древесины: В зависимости от способа обработки.

Свойства продуктов переработки древесины: В зависимости от способа обработки они приобретают масло- и бензостойкость, электро- и термоизоляционность.

Прокладочные, уплотнительные материалы: Фибра – разновидность бумажного матер.

Прокладочные, уплотнительные материалы: Фибра – разновидность бумажного материала, изготовляют ее из бумаги, пропитанной раствором хлористого цинка. Отличается высокой прочностью и хорошо поддается механической обработке, масло- и бензостойкостью.

Недостаток фибры –: значительная гигроскопичность (влагопоглощаемость).

Недостаток фибры –: значительная гигроскопичность (влагопоглощаемость), поэтому при увлажнении она деформируется. Фибры применяются для изготовления шайб, прокладок и втулок.

Прокладочные, уплотнительные материалы: Асбест – естественный волокнистый бел.

Прокладочные, уплотнительные материалы: Асбест – естественный волокнистый белый минерал, состоящий из кремнезема и небольших количеств окиси железа и окиси кальция. Для него характерны высокая огнестойкость, а также малая тепло- и электропроводность, выдерживает температуру до 500°С. Из асбеста делают волокно, нити, шнуры, ткани с примесью хлопка и чисто асбестовые ткани, листовые и прокладочные асбетовые материалы, асбестовую бумагу, картон.

Прокладочные, уплотнительные материалы: Паронит – листовой материал из асбест.

Прокладочные, уплотнительные материалы: Паронит – листовой материал из асбеста, каучука и наполнителей. Применяют для уплотнения водяных и паровых магистралей (при давлении до 5,0 МПа и при температуре до 450°С), а также для уплотнения трубопроводов и арматуры для нефтепродуктов: бензина, керосина, масла.

Прокладочные, уплотнительные материалы: Войлок – листовой пористый материал.

Прокладочные, уплотнительные материалы: Войлок – листовой пористый материал, изготовленный из волокон шерсти. Воздушные поры в нем составляют не менее 75% объема. Он обладает высокими тепло- и звукоизолирующими, а также амортизирующими свойствами. Войлок используют для набивки сальниковых уплотнений и изготовления прокладок.

Требования к сборочным соединениям: Важной задачей современного машиностроени.

Требования к сборочным соединениям: Важной задачей современного машиностроения является надежная герметизация и уплотнение соединений деталей и сборочных единиц, работающих в жестких условиях. Материал обычно используемых прокладок (паронит, картон и др.) не всегда обеспечивает надежную длительную герметичность соединений. Под действием температуры и вибрации прокладки со временем претерпевают ряд изменений, теряют свои уплотняющие свойства, в них возникают разрывы и трещины. В процессе эксплуатации это приводит к утечке масла, топлива и др. Для этих целей применяют различные герметики.

Применение герметиков: Уплотняющая жидкая прокладка ГИПК-244 предназначена дл.

Применение герметиков: Уплотняющая жидкая прокладка ГИПК-244 предназначена для герметизации неподвижных соединений деталей и сборочных единиц, работающих в водяной, паро-водяной, кислотно-щелочной и масло-бензиновых средах.

Применение герметиков: Уплотнительная замазка У-20А предназначена для гермети.

Применение герметиков: Уплотнительная замазка У-20А предназначена для герметизации соединений в воздушной и водяной средах. Герметик Эластосил 137-83 герметизирует неподвижные соединения в водяной, пароводяной, кислотно-щелочной и масляной средах.

Применение герметиков: . Анаэробный клей ДН-1 обеспечивает герметизацию соеди.

Применение герметиков: . Анаэробный клей ДН-1 обеспечивает герметизацию соединений с зазорами до 0,15 мм. Минеральная вата – продукт переработки металлургических или топливных шлаков. Служит для изоляции поверхностей с низкими и высокими температурами нагрева. Применяются в качестве изоляционного материала также плиты на основе минеральной ваты, проклеенной фенольной смолой или битумной эмульсией.

Применение герметиков: Изоляционная прорезиненная лента представляет собой су.

Применение герметиков: Изоляционная прорезиненная лента представляет собой суровую тонкую хлопчатобумажную ткань (миткаль), пропитанную с одной или с двух сторон липкой сырой резиновой смесью. Липкая изоляционная лента – это пленочный пластик, покрытый слоем перхлорвинилового клея. Толщина ленты 0,20-0,45 мм, ширина 15-50 мм. Изоляционные ленты выпускаются различных цветов.

АБРАЗИВНЫЕ МАТЕРИАЛЫ И ИНСТРУМЕНТ .

АБРАЗИВНЫЕ МАТЕРИАЛЫ И ИНСТРУМЕНТ НА ИХ ОСНОВЕ

Определение: Абразивные материалы. Абразивными называются мелкозернистые или.

Определение: Абразивные материалы. Абразивными называются мелкозернистые или порошковые неметаллические вещества (химические соединения элементов), обладающие очень высокой твердостью и имеющие острые режущие грани.

Классификация абразивных материалов: Абразивные материалы разделяют на природ.

Классификация абразивных материалов: Абразивные материалы разделяют на природные (наждак, кварцевый песок, кремень, корунд), которые находят ограниченное применение следствие неоднородности свойств, и искусственные (синтетический алмаз, электрокорунд, карбид бора, карбид кремния и др.), широко используемые в промышленности.

Применение абразивных материалов: Их используют для получения шлифовальных кр.

Применение абразивных материалов: Их используют для получения шлифовальных кругов, сегментов, головок, брусков; гибких шлифовальных и полировальных лент и шкурок, а также в виде полировальных паст. Абразивные зерна используют для гидроабразивной абразивно-жидкостной, абразивно-импульсной (ультразвуковой) и абразивно-химической обработки твердых сплавов.

Характеристики абразивных материалов: Абразивные материалы характеризуются аб.

Характеристики абразивных материалов: Абразивные материалы характеризуются абразивной (режущей) способностью, высокой красностойкостью (1800-2000°С), зернистостью, твердостью и износостойкостью. Абразивная способность характеризуется массой снимаемого при шлифовании материала до затупления зерен.

По абразивной способности абразивные материалы располагаются в следующем пор.

По абразивной способности абразивные материалы располагаются в следующем порядке: алмаз, нитрид бора, карбид кремния, монокорунд, электрокорунд, наждак, кремень. Зернистость характеризует размер и однородность зерен. Абразивные материалы подразделяют на четыре группы: шлифзерно, шлифпорошки, микропорошки и тонкие микропорошки. Материалы каждой группы различаются по номерам зернистости.

Классификация по крупности: Зернистость абразивных шлифзерна и шлифпорошков о.

Классификация по крупности: Зернистость абразивных шлифзерна и шлифпорошков определяют в сотых долях миллиметра, а микропорошков - в микрометрах. абразивные материалы указанных групп разделяют на 28 номеров: шлифзерно 200, 160, 125, 100, 80, 63, 50, 40, 32, 25, 20, 16; шлифпорошки 12,10, 8, 6, 5, 4, 3; микропорошки М63, М50, М40, М20, М14; тонкие микропорошки М10, М7, М5.

Абразивный инструмент. Твердость абразивных инструментов принято обозначать б.

Абразивный инструмент. Твердость абразивных инструментов принято обозначать буквами: М – мягкий, СМ – среднемягкий, С – средний, СТ – среднетвердый, ВТ – весьма твердый, ЧТ – чрезвычайно твердый.

Процесс изготовления абразивных инструментов: Состоит из следующих операций.

Процесс изготовления абразивных инструментов: Состоит из следующих операций: размола; измельчения абразивных материалов; сортировки по номерам в зернистости; смешивания со связкой и увлажнением; формования для получения определенной формы и размеров изделий; сушки и тепловой обработки.

Связка – цементирующее вещество, которое скрепляет друг с другом абразивные.

Связка – цементирующее вещество, которое скрепляет друг с другом абразивные зерна. Связки бывают керамическими, бакелитовыми, вулканитовыми и др. Путем тонкого измельчения и смешивания глины, полевого шпата, кварца и других веществ в определенных пропорциях приготовляют керамическую связку. Искусственная смола – бакелит является основой бакелитовой связки.

Вулканитовая связка – искусственный каучук, подвергнутый вулканизации для п.

Вулканитовая связка – искусственный каучук, подвергнутый вулканизации для превращения его в прочный, твердый эбонит. Для зачистки и отделки поверхностей изделий пользуются шлифовальными шкурками. Это бумага или ткань с наклеенными на нее зернами абразивов

Доводку или притирку и полирование выполняют абразивными и алмазными пастами.

Доводку или притирку и полирование выполняют абразивными и алмазными пастами. Доводку (притирку) осуществляют изготовленным из более мягкого материала, чем обрабатываемая заготовка, притиром с нанесенным на него абразивным порошком или пастой. Притиркой достигается высокая точность обработки и уменьшение шероховатости поверхности.

Полирование осуществляют быстродвижущейся абразивной лентой, насыщенной мягк.

Полирование осуществляют быстродвижущейся абразивной лентой, насыщенной мягкими абразивами или мягким полировальным кругом (из войлока, фетра, бязи) с нанесенной на него полировальной пастой. Полирование не повышает точность обработки, а улучшает лишь качество поверхности (шероховатость).

Пасты состоят из жидких, полужидких или твердых смесей абразивных материалов.

Пасты состоят из жидких, полужидких или твердых смесей абразивных материалов с добавками химически активных веществ. Все абразивно-доводочные пасты в зависимости от применяемого материала делят на две группы: твердые (алмаз, карбид бора, наждак) и мягкие (окись хрома, окись железа, кварц). Кроме абразивных материалов в состав паст для связки входят: химически активные олеиновая и стеариновая кислоты, парафин, а также скипидар, канифоль и другие вещества.

Алмазы широко применяют для изготовления высокопроизводительных алмазных инс.

Алмазы широко применяют для изготовления высокопроизводительных алмазных инструментов, порошков и паст. Алмазные пасты являются наиболее эффективными средствами для выполнения доводочных и притирочных работ. Пасты из синтетических или природных алмазов используют для окончательной доводки деталей и изделий.

Маркировка круга ПП450х50х127ЗАЭ50С1Б : ПП – круг плоский прямоугольного п.

Маркировка круга ПП450х50х127ЗАЭ50С1Б : ПП – круг плоский прямоугольного профиля; 450 – наружный диаметр круга; 50 - высота круга; 127 – диаметр отверстия круга (все размеры в миллиметрах); ЗАЗ – Златоустовский абразивный завод; Э – электрокорунд; 50 – зернистость; С1 – средняя твердость 1; Б – бакелитовая связка.

Для изготовления абразивных кругов используют естественные минералы – алмаз.

Для изготовления абразивных кругов используют естественные минералы – алмаз, кварц, корунд, наждак, кремень, гранат – и искусственные – электрокорунд нормальный (Э), электрокорунд белый (ЭБ), монокорунд (М), карбид кремния зеленый (КЗ) и черный (КЧ), карбид бора, борсиликокарбид, электрокорунд хромистый (ЭХ), электрокорунд титанистый (ЭТ).

По твердости абразивные инструменты подразделяют на семь групп и 16 степеней.

По твердости абразивные инструменты подразделяют на семь групп и 16 степеней твердости. При этом под твердостью абразивного инструмента понимают способность связки сопротивляться вырыванию абразивных зерен с рабочей поверхности инструмента под действием внешних сил.

Структура абразивного инструмента характеризуется соотношением между объемны.

Структура абразивного инструмента характеризуется соотношением между объемным содержанием абразивных зерен, связки и пор в единице объема инструмента. Алмазные круги используют для шлифования заготовок из твердых сплавов и высокотвердых материалов. Круг состоит из корпуса, изготовленного из алюминия, пластмассы или стали, и алмазоносного слоя толщиной 1,5-3 мм.

Читайте также: