Происхождение многоклеточных организмов кратко

Обновлено: 06.07.2024

Многоклеточные организмы - это организмы , состоящие [внезапно] из более чем одной клетки , в отличие от одноклеточных организмов.

Все виды животных, наземные растения и большинство грибов являются многоклеточными, как и многие водоросли , тогда как некоторые организмы являются частично одно- и частично многоклеточными, как слизистые плесени и социальные амебы, такие как род Dictyostelium .

Рис. 1. Колония Dictyostelium в процессе агрегации (Автор Bruno in Columbus)

Многоклеточные организмы возникают различными путями, например, путем деления клеток или путем агрегации (соединения) множества отдельных клеток. Колониальные организмы являются результатом того, что отдельные индивидуальные клетки объединяются в колонию. Однако часто бывает трудно отделить колониальных простейших от настоящих многоклеточных организмов, потому что эти две концепции не различаются.

Возникновение многоклеточности

Многоклеточность развивалась независимо по меньшей мере в 46 раз у эукариот [статья на эту тему на английском языке тут ], а также у некоторых прокариот, таких как цианобактерии, миксобактерии, актиномицеты, у экстремофильной бактерии Magnetoglobus multicellularis и у группы метановых архебактерий Methanosarcina.

Однако сложные многоклеточные организмы развивались только в шести эукариотических группах: животные, грибы, бурые водоросли, красные водоросли, зеленые водоросли и наземные растения. Мноклеточность неоднократно развивалась для Chloroplastida (зеленые водоросли и наземные растения), один или два раза для животных, один раз для бурых водорослей, три раза в грибах (хитриды, аскомицеты и базидиомицеты) и, возможно, несколько раз для слизистых плесени и красные водоросли.

Первым доказательством многоклеточности являются цианобактериоподобные организмы, которые жили 3–3,5 миллиарда лет назад.

Потеря многоклеточности

Некоторые группы организмов в своем эволюционном развитии утратили многоклеточность.

Многие грибы (например, Saccharomycotina, Cryptococcus и другие дрожжи), некоторых красные водоросли (например, Porphyridium sp. ), но возможно, что они примитивно одноклеточные.

Потеря многоклеточности также считается вероятной у некоторых зеленых водорослей (например, Chlorella vulgaris и некоторые из группы Ulvophyceae). В других группах, как правило, паразитах, происходило уменьшение количества клеток или уменьшение типов клеток (например, многие представители Myxozoa, многоклеточные организмы, ранее считавшиеся одноклеточными, являются паразитами морских животных).

Гипотезы происхождения

Одна из гипотез о происхождении многоклеточности заключается в том, что группа функционально-специфических клеток объединяется в слизистую массу, которая перемещается как многоклеточная единица. Это в основном то, что делают слизевики.

Другая гипотеза состоит в том, что примитивная клетка подвергалась делению ядра, превращаясь в коеноцит (клетку с множеством ядер). Мембрана, в таком случае, сформировалась бы вокруг каждого ядра (и клеточного пространства и органелл, занятых в пространстве), таким образом приводя к группе связанных клеток в одном организме. Этот механизм наблюдается у дрозофилы.

Третья гипотеза состоит в том, что при разделении одноклеточного организма дочерние клетки не могли отделиться, что привело к конгломерации идентичных клеток в одном организме, что впоследствии могло развить специализированные ткани. Это то, что делают эмбрионы растений и животных, а также колониальные хоанофлагелляты.

Гиф. 1. Tetrabaena socialis - зеленая водоросль, самый примитивный многоклеточный организм, состоящий из четырех клеток, несущих по два жгутика

Поскольку первые многоклеточные организмы были простыми, мягкими организмами, у которых не было костей, раковин или других твердых частей тела, они плохо сохранились в ископаемом материале. Одним из исключений может быть Обыкновенная губка (Demospongiae), которая, возможно, оставила химический след в древних породах.

Самые ранние окаменелости многоклеточных организмов включают Grypania spiralis (см. рисунок 1) и окаменелости черных сланцев палеопротерозойской фервильской группы в Габоне (2,5 млрд лет назад).

Рис. 2. Grypania spiralis в отложениях

Далее я более подробно расскажу о современных теориях возникновения многоклеточности:

Теория симбиоза

Эта теория предполагает, что первые многоклеточные организмы произошли от симбиоза (кооперации) различных видов одноклеточных организмов, каждый из которых играет разные роли. Со временем эти организмы станут настолько зависимыми друг от друга, что не смогут выжить независимо, что в конечном итоге приведет к объединению их геномов в один многоклеточный организм. Каждый соответствующий организм стал бы отдельной линией дифференцированных клеток во вновь создаваемых видах.

Однако проблема этой теории заключается в том, что до сих пор неизвестно, как ДНК каждого организма может быть включена в один геном, чтобы составить их как единый вид. Хотя считается, что такой симбиоз имел место (например, митохондрии и хлоропласты в клетках животных и растений - эндосимбиоз), он случался очень редко, и даже тогда геномы эндосимбионтов сохраняли элемент различия, раздельно реплицируя свою ДНК во время митоза видов-хозяев.

Например, два или три симбиотических организма, образующих составной лишайник , хотя и зависят друг от друга в отношении выживания, должны воспроизводиться по отдельности, а затем переформироваться, чтобы создать еще один отдельный организм.

Теория синцития

Эта теория утверждает, что один одноклеточный организм с несколькими ядрами мог бы создать внутренние мембранные перегородки вокруг каждого из своих ядер.

Многие протисты, такие как инфузории или слизевики, могут иметь несколько ядер, что подтверждает эту гипотезу. Однако простого наличия нескольких ядер недостаточно для поддержки теории. Множественные ядра инфузорий различны и имеют четко дифференцированные функции. Макроядро служит потребностям организма, а микроядро используется для полового размножения с обменом генетического материала.

Синцитиальные слизевики образуются из отдельных амебоидных клеток, подобно синцитиальным тканям некоторых многоклеточных организмов, а не наоборот.

Чтобы считаться действительной, эта теория нуждается в наглядном примере и механизме образования многоклеточного организма из ранее существовавшего синцития.

Рис. 3. Слизевик Fuligo septica (Автор фото Kreis Tuttlingen)

Колониальная теория

Теория предполагает, что симбиоз многих организмов одного и того же вида (в отличие от симбиотической теории , которая предполагает симбиоз разных видов) привел к многоклеточному организму.

Преимущество колониальной теории состоит в том, что она была обнаружена независимо в 16 различных типах простейших. Например, во время нехватки пищи амеба Dictyostelium (Рис. 1) группируется в колонии, которая перемещается как единое целое в новое место. Некоторые из этих амеб затем немного отличаются друг от друга.

Другими примерами колониальной организации у простейших является, например, Volvox sp. (Рис. 4), который состоит из 500-50000 клеток (в зависимости от вида), только часть из которых размножается.

Рис. 4. Колонии вольвокса (Автор фото Frank Fox)

В отечественной литературе колониальную теорию обычно делят на теорию гастреи (Геккель, 1872), теорию фагоцителлы (Мечников, 1878) и теорию синзооспоры (Захваткин, 1949). Обе теории довольно схожи, разница в том, как, согласно эти теориям, происходила интеграция клеток в колонии.

Теория гастреи

Согласно этой теории предком многоклеточных была гастрея - многоклеточный двуслойный организм. Она произошла от колониальных протистов с шарообразными колониями. Процесс интеграции клеток в колонии сделал возможным разделение функций между клетками: передние клетки утрачивают жгутики и превращаются в фагоциты, сидящие во впячивании на переднем конце - образуется кишечник.Остальные клетки утрачивают пищеварительную функцию и становятся чисто двигательными. Рот гастреи находился на переднем конце, и пища "сама заплывала" в кишечник. Симметрия у гастреи была радиальной. При переходе к сидячему образу жизни ее потомки эволюционировали в губок и кишечнополостных, а при переходе к ползанию по дну - в плоских червей и всех остальных многоклеточных (Рис. 5).

Так развиваются ланцетники и коралловые полипы.

Теория фагоцителлы

Фагоцителла не имела рта и кишечника, пищеварение было внутриклеточное. Рот сформировался,как просвет между клетками наружного слоя, ведущий во внутреннюю паренхиму. Располагался он, в отличие от гастреи на заднем конце тела. Кишечника еще не было. Но теперь возникла возможность питаться более крупной добычей: внутренние клетки могли окружать ее, образуя гигантскую пищеварительную вакуоль. Однако для хищничества нужна еще способность ловить добычу. Поэтому хищничать научились только настоящие многоклеточные - после того, как у них возникли мышцы и управляющая ими нервная система. Постепенно у потомков фагоцителлы сформировался постоянный кишечник. По мере увеличения размеров он мог усложняться: возникли боковые карманы, чтобы доставлять пищу к наружным слоям клеток. В дальнейшем у некоторых животных эти карманы могли отделиться, дав начало полости тела - целому. Фагоцителла обитала в толще воды. Нетрудно представить себе, как от нее могли произойти современные группы животных при переходе к жизни на дне. Когда рта еще не было, осевшая на дно фагоцителла "превратилась" в трихоплакса . После появления рта, но до появления кишечника при переходе к ползанию возникли бескишечные турбеллярии. Рот у них сместился на брюхо, и они стали двустороннесимметричными. После появления кишечника часть потомков фагоцителлы перешли к сидячему образу жизни на дне - они превратились в кишечнополостных (Рис. 5).

Так развиваются обыкновенные губки, гидроидные и сцифоидные стрекающие.

Основным кандидатом на роль предка всех многоклеточных является воротничковый жгутиконосец (Choanoflagellata), их клетки снабжены жгутиком, окруженный воротничком. Жгутик создает токи жидкости, позволяющие хоанофлагеллятам плавать в толще воды. Эти же токи пригоняют в воротничковую зону бактерий, которыми хоанофлагелляты питаются. Многие их этих простейших образуют колонии, причем легко переходят из одноклеточного состояния в колониальное и обратно.

Рис. 5. Гастрея и фагоцителла

Теория синзооспоры

Согласно данной теории многоклеточные также произошли от колониальных протистов. У протистов встречаются клетки, сильно увеличенные за счет запасания питательных веществ - как яйцеклетка у животных. Часто такие клетки делятся несколько раз подряд - это похоже на дробление. Таким способом образуются одноклеточные мелкие расселительные стадии - зооспоры.

У колониальных протистов зооспоры могут оставаться все вместе, образуя колонию - синзооспору. В процессе эволюции могла произойти неотения и утратиться взрослая сидячая стадия.

Отличия от теорий фагоцителлы и гастреи:

- Считается, что никогда не существовало однослойного шарообразного предка. Об этом свидетельствует то, что у всех многоклеточных бластулы не питаются. Не питаются и образующиеся из них паренхимулы. Поэтому и у древних многоклеточных такие стадии не были взрослыми организмами - это были всегда только личинки.

- Сидячий образ жизни примитивных взрослых многоклеточных.

- Наиболее примитивной из расселительных личинок считается бластула. В паренхимулу она превращается, готовясь к превращению во взрослый организм. Этот метаморфоз происходит после перехода к сидячему образу жизни. У всех остальных многоклеточных взрослая сидячая стадия утратилась. У этих животных личинки стали взрослыми - произошла неотения.

Преимущества многоклеточности

Многоклеточность позволяет организму превышать пределы размера, обычно налагаемые диффузией: отдельные клетки с увеличенным размером имеют уменьшенное отношение поверхности к объему и испытывают трудности с поглощением достаточного количества питательных веществ и их транспортировкой по всей клетке.

Таким образом, многоклеточные организмы имеют конкурентные преимущества увеличения размера без его ограничений. Многоклеточность также позволяет увеличивать сложность, позволяя дифференцировать типы клеток в пределах одного организма.

Я попытался привести современные данные по возникновению многоклеточности. Тема спорная, вариантов куча и все они интересны. Есть, что добавить - пиши в комменты.

Происхождение многоклеточных до сих пор окончательно не выяснено. Еще в прошлом веке ученые дискутировали по поводу происхождения многоклеточных, выдвигая разные, иногда даже фантастические, гипотезы. До настоящего времени сохранили свое значение лишь несколько из них, прежде всего те, где признается, что предками многоклеточных были простые. Самыми известными гипотезами происхождения многоклеточных являются:

  • Гипотеза гастрея (Э. Геккель).
  • Гипотеза плакулы (А. Бючли).
  • Гипотеза билатогастреи (Т. Егерстен).
  • Гипотеза фагоцителлы (И. И. Мечников).

Гипотеза гастреи

Так, в 70-х годах позапрошлого века известный немецкий биолог Э. Геккель развил систему взглядов на происхождение многоклеточных от колониальных жгутиковых - гипотезу гастреи.

Согласно этой гипотезе предками многоклеточных были колонии жгутиковых, подобные современным. Геккель опирался на данные эмбриологии и предоставлял основным этапом эмбрионального развития организма филогенетического значения. Подобно тому, как в онтогенезе многоклеточный организм образуется из одной оплодотворенной яйцеклетки, в результате дробления превращается в многоклеточные стадии - морулы, затем бластула и гаструлу, так и в историческом развитии - сначала возникли одноклеточные амебообразные организмы - цитеи, затем от таких организмов развились колонии из нескольких особей - море, которые впоследствии превратились в шаровидные однослойные колонии - бластеи, которые имели на поверхности жгутики и плавали в толще воды.

Наконец, выпячивание стенки бластеи внутрь (инвагинация) привело к возникновению двухслойного организма - гастрея. Внешний слой ее клеток имел жгутики и выполнял локомоторной функции, а. внутренний выстилал первичный кишечник и выполнял функцию пищеварения. Так, по гипотезе Геккеля, одновременно возникли первичный рот (бластопор) и закрытая первичная кишка. Поскольку во времена создания этой гипотезы единственным способом гаструляции считалась инвагинация, свойственная более высокоорганизованным животным (ланцетник, асцидии), Геккель утверждал, что и в филогенезе образования многоклеточных гастрите происходило именно таким образом. С двухслойного плавающего организма - гастрея, которая осела на субстрат на аборальный полюс, началось развитие кишечнополостных, что является, по мнению Геккеля, самыми примитивными многоклеточными, от которых возникли все остальные многоклеточные.

В свое время гипотеза гастрея была достаточно обоснованной. Гекель выдвинул ее еще до открытия И. И. Мечниковым внутриклеточного пищеварения. Тогда считалось, что пища переваривается только в полости кишечника, поэтому и первичную, энтодерму представляли в виде эпителия первичной кишки.

Готовые работы на аналогичную тему

Гипотеза гастрея сыграла большую роль в развитии эволюционной зоологии. В ней впервые было обосновано единство происхождения всех многоклеточных животных.

Гипотезу поддержал ряд зоологов, и с определенными дополнениями ее принимает и немало современных ученых, в частности в Западной Европе, она изложена также во многих зарубежных учебниках зоологии.

Гипотеза плакулы

Одной из модификаций гипотезы гастрея была гипотеза плакулы, предложенная английским ученым О. Бючли (1884), который считал, что многоклеточные происходят из двухслойной плоской колонии простейших (плакулы). Обращенный к субстрату слой плакулы выполнял функцию питания, поглощая пищевые частицы со дна. Изгибаясь одной стороной вверх, двухслойная плакула превратилась в гастрееподобный организм.

Гипотеза билатерогастреи

Достаточно популярной среди современных ученых является другая модификация гипотезы гастрея, выдвинутая шведским ученым Т. Егерстеном в 1955-1972 гг., известная под названием гипотезы билатерогастреи. Согласно этой гипотезе удаленным предком многоклеточных животных была шарообразная колония растительных жгутиковых, похожая на Volvox, которая плавала в поверхностных слоях воды и могла питаться автотрофно и гетеротрофно - за счет фагоцитоза мелких органических частиц. Колония, как и современный Volvox, имела передне-заднюю полярность. По мнению Егерстена, такая бластея перешла к оептосного типа жизни, осев на дно боком, который стал плоским.

Таким образом возникла донное билатеральносиметричное (такое, через тело которого можно провести одну плоскость симметрии, делящую его на две зеркально подобные половины) бластулоподибное животное - билатеробластея. Поскольку освещенность на дне недостаточно для фотосинтеза, билатеробластея питалась преимущественно гетеротрофно, фагоцитирующими питательные частицы со дна клетками вентрального эпителия. Во время перехода к питанию крупной добычей, эти животные втягивали вентральный слой, образуя временную полость, в которую попадала добычу и где происходило ее переваривание. Постепенно такая временная полость стала постоянной кишечной полостью.

От билатерогастреи происходят рубки, которые, по мнению Егерстена, имеют кишечную полость. Позже, в процессе эволюции билатерогастреи появились три пары боковых впячиваний в стенках кишечника. От такой усложненной билатерогастреи происходят все другие типы животных:

  1. кишечнополостные (первичные коралловые полипы) с тремя парами септ в гастральной полости,
  2. целомические животные с тремя парами целом.

Паренхимные и первиннопорожниини животные, по этой гипотезе, вторично утратили целом.

Гипотеза Мечникова

Сейчас наиболее обоснованной и альтернативной гипотезе гастрея можно считать гипотезу отечественного ученого И. И. Мечникова, разработанную в 1877-1886 гг. Изучая эмбриональное развитие низших многоклеточных - губок и кишечнополостных, Мечников установил, что в процессе образования двухслойной стадии в них происходит не впячивания, а в основном иммиграция - вползания отдельных клеток стенки бластулы в ее полости. Этот примитивный процесс образования гаструлы Мечников считал первичным, а инвагинацию - следствием сокращения и упрощения развития, имевшие место в процессе эволюции.

Предками многоклеточных, по гипотезе Мечникова, были шарообразные колонии гетеротрофных жгутиковых, которые плавали в воде, питались фагоцитирующими мельчайшими частицами.

Прототипом такой колонии могли быть пелагические шаровидные колонии воротниковой жгутиковых (Sphaeroeca volvox). Отдельные клетки, захватив питательную дольку, теряли жгутик, превращаясь в амебоидных, и погружались вглубь колонии, заполненной бесструктурную киселем. Затем они могли возвращаться на поверхность.

Такое явление наблюдается в современных губок, жгутиковые клетки хоаноциты которых могут, заполнившись пищей, превращаться в амебоидные и мигрировать в паренхимы, где происходит пищеварение, а затем возвращаться на место. Со временем клетки дифференцировались на те, которые обеспечивали преимущественно колонии, и те, которые питались и кормили других. Колония уже не имела вида полого шара - внутри находилось скопление фагоцитов.

Из современных животных к организмам такого типа ближайшие является воротниковые жгутиковые (Choanofiagellida) Proterospongia haeckeli, которые образуют колонию, во внешнем слое которой содержатся воротниковые жгутиковые, а во внутреннем - амебоидные клетки. Постепенно временное дифференцировки клеток приобрело постоянный характер и колония одноклеточных превратилась в многоклеточный организм, который должен два слоя клеток:

  1. наружный (Базальное) - кинобласт
  2. внутренний (амебоидное) - фагоцытобласт.

Питание такого организма происходило за счет захвата жгутиковыми клетками кинобласта органических частиц из толщи воды и передачи их амебоидным клеткам фагоцитобласта. Этот гипотетический многоклеточный организм Мечников назвал фагоцителой, желая подчеркнуть роль -фагоцитозу в его возникновении.

первые многоклеточные организмы, Согласно одной из наиболее принятых гипотез, они начали группироваться в колониях или в симбиотических отношениях. С течением времени взаимодействие между членами колонии стало сотрудничать и приносило пользу всем.

Постепенно каждая ячейка проходила процесс специализации для конкретных задач, увеличивая степень зависимости от своих партнеров. Это явление имело решающее значение в эволюции, позволяя существовать сложным существам, увеличивать их размеры и принимать различные системы органов..


Многоклеточные организмы - это организмы, состоящие из нескольких клеток, таких как животные, растения, некоторые грибы и т. Д. В настоящее время существует множество теорий, объясняющих происхождение многоклеточных существ, основанных на одноклеточных формах жизни, которые впоследствии были сгруппированы.

  • 1 Почему многоклеточные организмы?
    • 1.1 Размер ячейки и объемное соотношение поверхности (S / V)
    • 1.2 Очень большая ячейка имеет ограниченную поверхность обмена
    • 1.3 Преимущества многоклеточного организма
    • 1.4 Недостатки существования многоклеточного организма
    • 3.1 Колониальная и симбиотическая гипотеза
    • 3.2 Гипотеза синцития

    Почему многоклеточные организмы?

    Переход от одноклеточных к многоклеточным организмам является одним из самых волнующих и обсуждаемых вопросов среди биологов. Однако, прежде чем обсуждать возможные сценарии, которые привели к многоклеточности, мы должны спросить себя, почему необходимо или полезно быть организмом, состоящим из множества клеток.

    Размер ячейки и отношение объема поверхности (S / V)

    Средняя клетка, которая является частью тела овоща или животного, имеет диаметр от 10 до 30 микрометров. Организм не может увеличиваться в размерах, просто увеличивая размер отдельной клетки из-за ограничений, накладываемых взаимосвязью между поверхностью и объемом..

    Различные газы (такие как кислород и углекислый газ), ионы и другие органические молекулы должны входить и выходить из клетки, пересекая поверхность, ограниченную плазменной мембраной.

    Оттуда он должен распространяться по всему объему клетки. Таким образом, соотношение между поверхностью и объемом ниже в больших ячейках, если сравнить его с тем же параметром в больших ячейках.

    Очень большая ячейка имеет ограниченную поверхность обмена

    Следуя этим рассуждениям, мы можем прийти к выводу, что поверхность обмена уменьшается пропорционально увеличению размера ячейки. Давайте использовать в качестве примера 4 см куб, объемом 64 см. 3 и поверхность 96 см 2 . Соотношение будет 1,5 / 1.

    Напротив, если мы возьмем один и тот же куб и разделим его на 8 кубов по два сантиметра, соотношение будет 3/1.

    Поэтому, если организм увеличивает свой размер, что полезно в нескольких аспектах, таких как поиск пищи, передвижение или бегство от хищников, предпочтительно делать это путем увеличения числа клеток и, таким образом, поддерживать подходящую поверхность для обменные процессы.

    Преимущества многоклеточного организма

    Преимущества многоклеточного организма выходят за рамки простого увеличения размера. Многоклеточность позволила увеличить биологическую сложность и сформировать новые структуры.

    Это явление позволило эволюции очень сложных путей сотрудничества и взаимодополняемости поведения между биологическими объектами, которые составляют систему.

    Недостатки многоклеточного организма

    Несмотря на эти преимущества, мы находим примеры - как у нескольких видов грибов - потери многоклеточности, возвращающейся к наследственному состоянию одноклеточных существ.

    Когда между клетками организма происходит сбой систем сотрудничества, могут возникнуть негативные последствия. Самый показательный пример - рак. Тем не менее, есть несколько способов, которыми в большинстве случаев удается обеспечить сотрудничество.

    Какими были первые многоклеточные организмы?

    По словам некоторых авторов, начало многоклеточности уходило в глубокое прошлое, более 1000 миллионов лет назад (например, Selden & Nudds, 2012)..

    Поскольку формы переходов плохо сохранились в окаменелостях, мало что известно о них, а также о физиологии, экологии и эволюции, что затрудняет процесс разработки реконструкции зарождающейся многоклеточности..

    На самом деле, неизвестно, были ли эти первые окаменелости животными, растениями, грибами или какой-либо из этих линий. Окаменелости характеризуются как плоские организмы с большой поверхностью / объемом.

    Эволюция многоклеточных организмов

    Поскольку многоклеточные организмы состоят из нескольких клеток, первым шагом в эволюционной эволюции этого состояния должна быть группировка клеток. Это может произойти по-разному:

    Колониальная и симбиотическая гипотеза

    Эти две гипотезы предполагают, что первоначальным предком многоклеточных существ были колонии или одноклеточные существа, которые установили симбиотические отношения друг с другом..

    Пока не известно, был ли агрегат образован из клеток с дифференциальной генетической идентичностью (таких как биопленка или биопленка) или из стволовых и дочерних клеток - генетически идентичны. Последний вариант более вероятен, поскольку в связанных клетках генетические конфликты интересов исключены.

    Переход существ, состоящих из одной клетки, к многоклеточным организмам включает в себя несколько этапов. Первое - это постепенное разделение труда внутри клеток, которые работают вместе. Некоторые принимают соматические функции, а другие становятся репродуктивными элементами.

    Таким образом, каждая ячейка становится все более зависимой от своих соседей и приобретает специализацию в конкретной задаче. Отбор отдавал предпочтение организмам, сгруппированным в этих примитивных колониях, по сравнению с теми, которые остались в одиночестве..

    В настоящее время исследователи ищут возможные условия, которые привели к образованию этих групп, и причины, которые могут привести к их предпочтению - перед лицом одноклеточных форм. Используются колониальные организмы, которые могут помнить гипотетические колонии предков.

    Синцитио гипотеза

    Синцитий - это клетка, которая содержит несколько ядер. Эта гипотеза предполагает формирование внутренних мембран в предковом синцитии, что позволяет создавать множество компартментов в одной клетке..

    Происхождение многоклеточных организмов

    Данные, которые в настоящее время используются, указывают на то, что многоклеточное состояние появилось независимо более чем в 16 эукариотических линиях, включая животных, растения и грибы..

    Применение новых технологий, таких как геномика и понимание филогенетических отношений, позволило нам предположить, что многоклеточность пошла по общему пути, начиная с кооптации генов, связанных с приверженностью. При создании этих каналов достигается связь между клетками.

    Каким образом в процессе развития животного мира произошел переход от одноклеточных к многоклеточным? Этот вопрос нельзя считать в какой-то степени решенным, и приходится ограничиваться более или менее вероятными гипотезами.

    Происхождение многоклеточных животных

    Происхождение многоклеточных животных
    1 — колония воротничковых жгутиконосцев типа Sphaeroeca с монотомическим размножением, 2 — колония воротничковых жгутиконосцев типа Proterospongia с палинтомическим размножением и половым процессом, 3 — ранняя фагоцителла I без рта, 4 — пластинчатые (Placozoa) без рта, 5 — губки (Spongia) без рта и кишечника, 6 — поздняя фагоцителла II со ртом, 7 — первичные кишечнополостные типа гастреи (двуслойные со ртом), 8 — первичные турбеллярии (тип
    Plathelminthes) — паренхиматозные со ртом, смещенным к брюшной стороне, трехслойные, 9 — бескишечные турбеллярии с дальнейшей дифференциацией клеток и смещением рта на брюшную сторону

    Наиболее старая и очень распространенная среди зоологов гипотеза заключается в том, что переходными к многоклеточным формам были колониальные организмы, подобные колониальным жгутиковым. Среди этих организмов есть и такие, которые состоят из нескольких совершенно сходных клеток, без следов какой-либо клеточной дифференцировки (Gonium, Pandorina и др.). Такой организм можно рассматривать как колонию разделившихся, но не разошедшихся клеток. В таком случае предполагается, что сначала колонии состояли из одинаковых клеток, а затем возникла дифференцировка клеточных элементов.

    В 70-х годах прошлого столетия Э. Геккель, использовав данные эмбриологии, и особенно работы русского зоолога А. О. Ковалевского, разработал теорию происхождения многоклеточных, получившую название теории гастреи.

    Наружный слой гастреи дал ее потомкам эктодерму, внутренний — энтодерму. Таким образом, по теории Геккеля, все многоклеточные животные, включая и губок, произошли от одной прародительской формы — гастреи. Они унаследовали от нее два первичных зародышевых листка — энто- и эктодерму — и первичный кишечник. Все ткани и органы много-клеточных позднее развились из этих образований. Кожные покровы и кишечник гомологичны у всех многоклеточных, так как имеют общее происхождение. Теория Геккеля завоевала многочисленных сторонников и долгое время господствовала в науке, но одновременно вызывала и справедливую критику.

    Происхождение многоклеточных по И. И. Мечникову

    Одним из серьезных оппонентов этой теории был И. И. Мечников. Его самыми существенными возражениями Геккелю были следующие: 1. Образование гаструлы путем инвагинации нельзя считать первичным, так как у наиболее примитивных многоклеточных (кишечнополостные, бескишечные турбеллярии) гаструляция происходит путем множественной иммиграции клеток в полость бластулы. 2. Образование первичного кишечника с полостным пищеварением не могло быть первичным, так как низшим многоклеточным в большой степени свойственно внутриклеточное пищеварение. 3. Процесс инвагинации в филогенезе не мог быть обусловлен ни физиологическими, ни экологическими причинами. И. И. Мечников предполагал, что предком многоклеточных животных (Metazoa) была колония жгутиковых. Первичный многоклеточный организм был однослойным и шаровидным (бластея, по Геккелю), покрытым жгутиками. Одни и те же клетки выполняли функции движения и поглощения пищи. После захвата пищевых частиц клетки теряли жгутики и уходили с поверхности во внутреннюю часть организма. Там происходило переваривание пищи, после чего клетки могли вновь возвращаться на поверхность и формировать новый жгутик. Таким образом произошло первичное, факультативное (временное) выделение наружного слоя клеток — кинобласта, имеющих функцию движения, и внутренней массы клеток — фагоцитобласта, занимающихся пищеварением. В результате эволюции это разделение закрепилось и образовался предок всех многоклеточных — паренхимелла, или фагоцителла (второе название применено И. И. Мечниковым позже).


    Фагоцителла размножалась половым путем. Оплодотворенные яйца проходили полное равномерное дробление. Потомки фагоцителлы при оседании на дно и переходе к прикрепленному образу жизни дали ветвь, идущую к губкам. Плавающие фагоцителлы превратились в дальнейшем в первичных кишечнополостных, причем из фагоцитобласта у них сформировался первичный кишечник с ротовым отверстием. Часть потомков фагоцителлы перешла к жизни на дне; у ползающих форм тело сплющилось, возникла билатеральная симметрия, из них возникли первичные бескишечные ресничные черви.

    Гипотеза И. И. Мечникова была основана на большом материале собственных исследований по эмбриологии низших многоклеточных (губок и кишечнополостных). Он впервые поставил важную проблему эволюции самого онтогенеза, изменения способов гаструляции и клеточной дифференциации у разных групп низших кишечнополостных. Он внес много нового в учение о первичных зародышевых листках и их эволюции.

    Сравнительно недавно выдвинута еще одна гипотеза происхождения многоклеточности, называемая полиэнергидной или гипотезой целлюляризации. Автор ее — ученый И. Хаджи. Сначала он считал предками многоклеточных животных многоядерных жгутиконосцев, с большим числом жгутиков, а позднее инфузориеобразные формы (инфузорий, до возникновения у них ядерного дуализма). От них, по мнению Хаджи, пошли две ветви животного мира — одна к современным инфузориям, другая к самым примитивным (по его мнению) многоклеточным— бескишечным ресничным червям (Acoela). И. Хаджи сравнивал строение инфузорий и бескишечных турбеллярий и нашел у них много внешнего сходства. Из этого он делает заключение, что органеллы простейших превратились в органы многоклеточных, при этом увеличение (умножение) количества ядер и последующее обособление около них плазмы (целлюляризация) привело к возникновению многоклеточности. У современных Acoela, по мнению автора, этот процесс еще не закончился, отчего энтодерма этих животных имеет состояние плазмодия. В действительности же это состояние синцития, отсутствие границ между клетками возникает у этих животных вторично, в процессе онтогенеза, причем далеко не у всех видов. В последнее время удалось подтвердить истинно клеточное строение Acoela; с помощью электронного микроскопа были обнаружены клеточные мембраны в их наружном эпителии.

    Сравнительный анализ строения тела инфузорий и бескишечных турбеллярий показал, что истинных гомологий между этими группами организмов провести нельзя. Кроме того, весь эмбриологический материал находится в противоречии с этой гипотезой.

    Предками многоклеточных (Metazoa), по-видимому, были гетеротрофные воротничковые жгутиконосцы (Craspedomonadina) из отряда протомонадных (Protomonadida). От шаровидной свободноплавающей колонии, состоящей из одинаковых жгутиконосцев, возникали более сложные, с большей интеграцией колонии. Первоначально размножение было бесполым, колония распадалась на отдельные клетки, которые затем превращались в новые колонии. Возникновение полового процесса привело к разделению клеток колонии на соматические и половые. Одновременно произошла дифференциация переднезадней оси колонии и определение ее переднего и заднего концов (полюсов). Радиальная симметрия колонии приобрела многолучевой характер.

    Вначале половые клетки — гаметы — были одинаковыми и наблюдалась изогамная копуляция, а позднее произошла дифференциация мужских и женских гамет и возникла анизогамия. Оплодотворенное яйцо — зигота — начинало интенсивно делиться до тёх пор, пока не возникала новая колония, подобная бластуле.

    Дальнейшая дифференциация колонии привела к ее превращению в самостоятельный организм, подобный фагоцителле. При этом произошло вначале временное, или факультативное, а затем постоянное обособление наружного слоя, или кинобласта, и внутреннего, или фагоцитобласта (по И. И. Мечникову). Образовавшийся организм — фагоцителла —размножался как половым, так и бесполым путем. Первый эмбриональный этап развития приводил к образованию однослойной свободной личинки. Вторым этапом было постэмбриональное развитие, которое заключалось в росте животного и дальнейшей дифференциации его клеток. При этом часть клеток уходила с поверхности личинки внутрь, образуя внутренний слой. Таким образом возникла двух-слойность фагоцителлы. Затем из соматических выделились половые клетки и возникла половая зрелость организма.

    Дальнейшим этапом развития А. В. Иванов предполагает образование ротового отверстия на заднем полюсе фагоцителлы. Вначале ее амебоидные фагоциты подходили в любом месте к поверхности и захватывали пищевые частицы. Однако с возникновением переднего конца тела координированное биение ресничек кинобласта создавало скопление (концентрацию) пищевых частиц на заднем конце тела, в так называемом мертвом пространстве. Здесь возникает ротовое отверстие, через которое фагоцитам легче захватывать пищу. Это обстоятельство согласуется с фактическим материалом и объясняет образование первичного рта у всех многоклеточных на заднем, вегетативном полюсе зародыша.

    A. В. Иванов считает губок и бескишечных турбеллярий наиболее близкими формами к исходному общему предку всех Metazoa — фагоцителле.

    Губки перешли к сидячему образу жизни и очень рано отделились от общего ствола Metazoa. Их предками были, по-видимому, схожие с фагоцителлой организмы, у которых еще не было ни рта, ни кишечника. Поверхностный слой клеток (кинобласт) погрузился внутрь и стал выполнять вместо двигательной вододвигательную функцию, а внутренний слой стал наружным. Так произошло известное выворачивание слоев тела у губок. Однако их свободноплавающие личинки— паренхимулы — очень похожи на личинок низших многоклеточных — планулы — и на гипотетическую раннюю фагоцителлу.

    Вторая ветвь развития идет к общему предку двухслойных животных, от которого затем произошли два типа — кишечнополостные (Coelenterata) и гребневики (Ctenophora). Вначале эти формы были плавающими. Прикрепленный образ жизни привел к формированию примитивных кишечнополостных, близких к гидроидным полипам, от которых позднее возникли кораллы и плавающие медузы. Гребневиков можно считать прямыми потомками примитивных плавающих двухслойных, сохранившими первичный способ передвижения за счет ресничек гребных пластинок, гомологичных кинобласту фагоцителлы.

    Третья ветвь развития от фагоцителлы идет к бескишечным турбелляриям. Их формирование связано с переходом к ползающему образу жизни, что способствовало возникновению билатеральной симметрии, оформлению переднего и заднего концов тела и образованию рта. Последний возникает первоначально на заднем конце тела, а затем перемещается на брюшную сторону.

    Таким образом, по теории А. В. Иванова, ресничные черви — турбеллярии, с одной стороны, и примитивные предки кишечнополостных и гребневиков, с другой стороны, отходят почти одновременно от поздней фагоцителлы, у которой уже имелся рот, но фагоцитобласт еще не эпителизировался (кишечник еще не сформировался). В дальнейшем эти группы развиваются в какой-то мере параллельно.

    B. Н. Беклемишев, который также разделяет гипотезу фагоцителлы И. И. Мечникова, обращает внимание на большое сходство (в главных чертах организации) взрослых гребневиков и турбеллярий с личинками кишечнополостных. Он объясняет это сходство общностью происхождения обеих групп (гребневиков и турбеллярий) от более или менее близких предков. По В. Н. Беклемишеву, гребневики и турбеллярий имеют укороченный жизненный цикл по сравнению с кишечнополостными. Он предполагает, что гребневики и турбеллярий развились из предков кишечнополостных путем неотении, т. е. из их личиночных форм, перешедших к прогрессивной эволюции. Дальнейшее развитие этих групп шло в некоторой степени параллельно, или конвергентно, что проявляется в сходстве строения (симметрии) нервной системы и в образовании аборального статоциста. Однако гребневики формировались как планктонные (за редким исключением) формы, а турбеллярий — как донные. Вследствие ползания по дну у них возникла билатеральная симметрия.

    Проблема происхождения многоклеточных и филогенетических связей между низшими многоклеточными — губками, кишечнополостными, гребневиками и турбелляриями — очень сложна. Ее нельзя считать полностью разрешенной. Для этого требуются новые данные по сравнительной цитологии, эмбриологии, физиологии указанных групп, с применением новейших методов исследования, таких, как электронная микроскопия и др.

    Читайте также: