Проблемы использования солнечной энергии кратко

Обновлено: 05.07.2024

В начале 2000-х общая мощность солнечных электростанций в мире перевалила за гигаватт, а к 2016-му мировое потребление электроэнергии, выработанной с помощью солнечных батарей, составило 305 ГВт (для сравнения: в 2010-м было 50 ГВт). И сегодня это значение только увеличивается.

Расти большой

Энергетика в целом постепенно движется в сторону распределенной модели. Потребители самостоятельно строят локальные источники энергии для собственных нужд и направляют излишки электричества в общую сеть. По некоторым оценкам, к 2020 году 20% всего электричества будет поступать в глобальную сеть от локальных установок, а к 2030 году эта цифра вырастет до 30%.

Солнечная индустрия, напротив, стремится к централизации. Солнечные станции — масштабные поля из мощных солнечных панелей, простирающиеся на несколько километров. Так, ферма в пустыне Негев мощностью 300 мегаватт, которую строит Израиль, займет площадь в 4 км 2 , а замороженная 200-гигаваттная солнечная электростанция в Саудовской Аравии должна была разместиться на тысяче квадратных километров.

Мало места

В России до 2024 года введут в эксплуатацию ,75 ГВт солнечных электростанций. В результате мы получим тысячи гектаров земли, занятых громоздкими конструкциями весом свыше 63 тысяч тонн. Кстати, их утилизация — дополнительная проблема для индустрии.

Решением может стать подход с размещением солнечных панелей на крышах домов и других городских построек. Так можно будет не тратить средства на возведение тяжеловесных металлических конструкций под солнечные модули, плюс появляется возможность сэкономить на кабеле, так как его не нужно тянуть до подстанции. Строить солнечные парки стоит только тогда, когда закончится последний квадратный метр крыши.

В России более чем у 70% строений плоские крыши, при этом среди таких строений не только жилые дома, но и сотни гипермаркетов, строительных магазинов и крупных торговых центров. С учетом технических построек каждый из этих магазинов в среднем имеет несколько тысяч квадратных метров кровли, по стране это десятки миллионов квадратных метров площади, где можно разместить солнечные электростанции. Для сотни гипермаркетов суммарная мощность станций составит более 100 МВт, что сравнимо с мощностью полноценной газотурбинной установки. Однако в этом случае не придется платить за топливо, потери в сетях и дорогостоящее обслуживание тяжелого оборудования.

Подобные проекты уже реализуются. По данным Ассоциации индустрии солнечной энергетики (SEIA) в США на 2018 год, бизнес оборудует свои торговые и офисные площади солнечными панелями, а их общая мощность уже перевалила за 2,5 ГВт. Так, компания Chronar вводит в действие 60-киловаттную станцию на крыше своей штаб-квартиры в Нью-Джерси, а корпорация Apple заключила партнерское соглашение с Daini Denryoku, чтобы установить более 300 солнечных систем на крышу офисного здания в Японии, и будет генерировать 18 000 МВт·ч ежегодно.

Неэффективные материалы

Развитие фасадного размещения солнечных панелей тормозят и технологические особенности специализированных устройств. Первые промышленные модули состояли из двух стекол и кремниевых ячеек между ними, алюминиевой рамки и токоснимателя. Развитие гигаваттных ферм потянуло за собой производителей алюминия, стекла и комплектующих. Так сформировалась неповоротливая индустрия, слабо восприимчивая к технологическим новшествам. Из-за этого конструкция солнечной панели значительно не менялась на протяжении последних 30 лет.

Но сегодня дело сдвинулось с мертвой точки: появляются новые композитные материалы и полимерные солнечные батареи. Они похожи на классические кремниевые, но главным преимуществом композитной панели является низкая стоимость, а также легкость и гибкость. В результате ее можно размещать на самых разных поверхностях. Примером может быть даже поезд, работающий исключительно на солнечных батареях. 16 декабря прошлого года такой состав вышел на маршрут длиной в три километра в Австралии. Гибкие панели расположили на крыше вагона и на промежуточных стоянках, где поезд может дополнительно подзарядиться.

Сложные конструкции

Размещая классические солнечные установки на городских конструкциях, приходится делать поправку на устойчивость системы — учитывать балласт, чтобы панель не сдуло. По европейским нормам утяжеление может достигать 180 килограммов на м 2 . При проектировании крыш такие показатели редко закладываются, возникает риск повреждения кровли.

Другой пример — инициатива Илона Маска. Он предложил встраивать солнечные модули в черепицу. Технология Solar Roof выдерживает падение крупных градин на скорости до 160 км/ч и стилизована под глину. Плиточный подход имеет право на жизнь, однако в этой области еще предстоит преодолеть ряд трудностей. Среди них высокий процент непроизводительной площади и большое число разъемов и соединений. Учитывая, что крыши периодически приходится чистить ото льда, есть вероятность повредить установку.

Что дальше

Число солнечных электростанций постоянно растет. Но чтобы они стали по-настоящему конкурентоспособными, установки должны быть эффективнее и удобнее имеющихся аналогов. Достичь этого помогут новые материалы и конструкции, которые достаточно универсальны и предоставляют больше гибкости с точки зрения формы и возможностей для расположения. Остается только не упускать такие возможности и использовать уже готовые и пригодные для размещения установок сооружения.

3. Олейник Д.Ю. Вопросы современной альтернативной энергетики / Д.Ю. Олейник, К.В. Кайдакова, А.П. Преображенский // Вестник Воронежского института высоких технологий, 2012, № 9, С. 46-48.

4. Мохненко С.Н. Альтернативные источники энергии / С.Н. Мохненко, А.П. Преображенский // В мире научных открытий, 2010, № 6-1, С. 153-156.

5. Львович И.Я. Альтернативные источники энергии / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Вестник Воронежского государственного технического университета, 2011, Т. 7, № 2, С. 50-52.

6. Львович И.Я. Альтернативные источники энергии / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Главный механик, 2011, № 12, С. 45-48.

p>Как показывает анализ, для большинства источников энергии характерно использование энергии Солнца. Среди них можно отметить уголь, газ, нефть, поскольку в них происходит консервация солнечной энергии. Ее хранение происходит для такого топлива в течение длительного времени. На основе влияния солнечного света, и, кроме того, тепла на Земле происходило формирование растений, они собирали в себе энергию, а потом на основе определенных процессов они постепенно превратились в сегодняшнее топливо. За счет солнца в течение года возникают многие сотни тонн зерна и древесины.

Для коэффициента полезного действия действующих солнечных батарей характерны значения около нескольких десятков процентов. Тогда для элемента с площадью порядка одного квадратного дециметра получаемая мощность будет немного более 1 Вт. Способность по использованию солнечных электростанций на экваторе весьма эффективна, а в других местах Земли не такая большая вследствие изменяющихся атмосферных условий, а также небольшой интенсивности солнечной радиации , которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи [1, 2] .

Солнечная энергия является восстанавливаемым источником энергии 3. Сейчас ученые по всему миру занимаются разработкой систем, которые изменяют возможности использования солнечной энергии.

Есть преимущество солнечных батарей, связанное с тем, что у них весьма простая конструкция, а также простой монтаже, и минимальные требования к облуживанию и большой сроке эксплуатации. Когда происходит их установка, то они не требуют дополнительного пространства. Следует стремиться к тому, чтобы они не были долгое время в тени.

Сформированные на настоящий момент солнечные батареи имеют возможности сохранения работоспособности для очень долгого времени.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

Солнечная энергетика: преимущества и перспективы

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Подробнее можете почитать на Википедии: Фотовольтарический эффект

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Устройство солнечной панели

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

Устройство солнечного модуля

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в отдельной статье.

Современные солнечные панели и электростанции

Солнечные панели SistineSolar

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. Черепица Solar Roof содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

Черепица Solar Roof

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Крупнейшая в Европе СЭС

Интерес вызывает и крупнейшая плавучая СЭС в Китае. Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Плавучая солнечная электростанция

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Станция Иванпа Солар

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.

Гелиотремальная электростанция

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

Солнечная аэростатная электростанция

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ. Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Так одной из крупнейших в нашей стране является Орская СЭС. Она состоит из 100 тыс. модулей, выдающих суммарную мощность 25 МВт. Выработанное электричество подаётся в Единую энергетическую систему России (ЕЭС).

Орская СЭС

Самой мощной сегодня является СЭС Перово, расположенная в Республике Крым. Она выдаёт более 105 МВт, что на момент открытия станции было мировым рекордом. СЭС Перово состоит из 440 000 фотоэлектрических модулей и занимает площадь 259 футбольных полей.

СЭС Перово в Крыму

Вообще в Крыму солнечная энергетика неплохо развита – там более десятка солнечных электростанций мощностью от 20 МВт. Правда, вся полученная электроэнергия уходит сугубо на нужды полуострова.

К 2020 году в России планируется построить 4 крупных СЭС, мощность которых позволит увеличить долю солнечной энергии до 1% от всего энергобаланса страны.

Таким образом, уже сегодня можно с уверенностью сказать, что солнечная энергетика способна в недалёкой перспективе выступить полноценной альтернативой традиционным способам получения электроэнергии. И даже в России эта отрасль хоть и медленно, но развивается.


Солнечная энергетика — это одна из тех сфер, где благие намерения человечества почти всегда опережают технические возможности и экономические реалии. Создатель первой солнечной панели, американский изобретатель Чарльз Фриттс, ещё в 1881 году предсказывал, что уже совсем скоро обычные электростанции будут заменены на солнечные. И это несмотря на то, что созданная им установка имела КПД всего 1%, то есть именно столько солнечного света превращалось в электричество. Спустя 140 лет мечта Чарльза Фриттса так и не сбылась: гелиоэнергетика всё ещё борется за место под солнцем с ветряными мельницами генераторами, геотермальными источниками и полезными ископаемыми. Что тормозит солнечную революцию и какими методами пытаются улучшить солнечные батареи?

Казалось бы, придумав солнечную энергетику, мы протянули невидимый провод к самому мощному реактору в нашей планетной системе, который не погаснет как минимум ещё пять миллиардов лет (а там подумаем). Но человечеству понадобился ещё почти век, чтобы увеличить эффективность солнечной панели всего на пять процентных пунктов — это случилось, когда учёные из Bell Labs создали более мощную батарею в 1954 году.



В последние годы инвестиции в солнечную энергетику стагнируют. Источник: International Renewable Energy Agency (IRENA), Frankfurt School-UNEP Centre/BNEF

И всё же солнечная электроэнергетика пока не завоевала мир. Даже Германия, которая за первое полугодие 2019 года выработала на ВИЭ больше энергии, чем на угле и атоме, не спешит расставаться с мощностями на буром угле. К 2030 году планируется сократить их с текущих 45 ГВт до 37 ГВт. При этом во многом экономический успех солнечной энергетики по-прежнему обеспечивается налоговой политикой и субсидиями. Этим объясняется один парадокс: оптовые цены на электроэнергию в ФРГ одни из самых низких в Европе, а конечные — одни из самых высоких.

  • солнечная энергия остаётся не самой эффективной — коэффициент использования установленной мощности (КИУМ), то есть отношение фактически выработанной энергии к проектной, установленной производителем для солнечных панелей, составляет 13-18% зимой и 30-35% летом, что является самым низким значением среди других ВИЭ, а также газа и угля;
  • отсюда и более высокая стоимость солнечной энергии — в среднем по миру она составляет $0,085 за кВт·ч, тогда как в биоэнергетике — $0,062, у геотермальных источников — $0,072, гидроэлектростанций — $0,047; дороже только ближайший конкурент — ветряные установки вдали от моря с показателем $0,127, хотя морские прибрежные дают энергию по $0,056 за кВт·ч;
  • нестабильность поступления фотонов от светила заставляет использовать дополнительные приборы для накопления и распределения энергии (о варианте решения этой проблемы мы, кстати, рассказывали);
  • для солнечной энергосистемы нужно много места, будь то огромная станция в поле (а земля вблизи городов дорогая) или домашняя электроустановка, к которой надо не только подключить инвертор и аккумулятор, но и обеспечить доступ для техобслуживания.

Кремниевый диктат

Солнечные панели состоят из материала, который хорошо улавливает энергию света. Обычно этот материал зажат между металлическими пластинами, которые переносят захваченную энергию далее по цепи. В той самой солнечной панели 1954 года выпуска за авторством инженеров Bell Labs главную роль играл кремний. Он же со многими модификациями и по сей день господствует в производстве фотоэлементов для солнечных батарей, составляя основу 95% панелей.

За полвека человечество разработало несколько типов кремниевых солнечных батарей. Самую большую долю мирового рынка занимают поликристаллические кремниевые панели. Пользуются спросом они благодаря относительной доступности, которая обусловлена более дешёвой технологией производства. Но и КПД у таких панелей ниже, чем у аналогов (14-17%, максимум — 22%). Более дорогой, но и более эффективный вариант — монокристаллические кремниевые панели. Их КПД составляет порядка 22% (максимум — 27%).



Какие технологии производства солнечных панелей господствуют в мире. Как видим, по большей части производятся поликристаллические солнечные модули (61%), в меньшей степени — моно- (32%), и совсем немного тонкопленочных (аморфных) — 5%. Источник: Fraunhofer Institute for Solar Energy Systems; PSE Conferences & Consulting GmbH

Несмотря на прогресс в экономике и технике солнечных панелей, их стоимость остаётся высокой. К ней нужно прибавлять и расходы на создание собственно энергетической установки (контроллер, инвертор, аккумулятор), без которой батарея не работает. В разных странах эти величины колеблются, но доля расходов, собственно, на фотоэлектрический блок всё равно высока.

Не кремнием единым

В попытке разработать более эффективные панели были созданы тонкоплёночные (аморфные) модули. Их суть проста: улавливающий свет материал наносится очень тонким слоем на плёнку, благодаря чему панель становится более лёгкой и гибкой, а её производство требует меньше материалов.

Правда, КПД у них намного меньше, чем у собратьев по солнечному цеху — 6-8% для кремниевых вариантов. Тем не менее, по себестоимости тонкоплёночные солнечные элементы выигрывают, потому что для них требуется слой светоулавливающего вещества шириной всего от 2 до 8 мкм, что составляет всего около 1% от того, что используется в обычных кристаллических модулях.

Привет от русского графа

Однако работать с перовскитом не так просто, и мы в Toshiba в этом убедились. После нанесения на плёнку перовскит кристаллизуется очень быстро, из-за чего трудно создать ровный слой на большой площади. Между тем, в этом и заключается главная задача при создании солнечного элемента: достичь как можно большей площади поверхности с сохранением при этом высокой эффективности преобразования энергии.

В июне 2018 года Toshiba изготовила тонкоплёночный солнечный элемент на основе перовскита с самой большой площадью поверхности и при этом самой высокой в мире эффективностью преобразования энергии. Как это удалось сделать?

Мы разделили ингредиенты, необходимые для образования перовскита (раствор йодида свинца — PbI₂, метиламмонийгидройодид — MAI). Сначала мы покрыли подложку раствором PbI₂, а затем раствором MAI. Благодаря этому мы смогли отрегулировать скорость роста кристаллов на плёнке, что дало возможность создать ровный и тонкий слой большой площади.

Экономика перовскита



Созданный нами модуль на основе перовскита имеет площадь 703 кв. см. А полученная нами эффективность преобразования энергии достигла 12%. Источник: Toshiba

Есть ещё два преимущества фотоэлементов на перовските — гибкость и прозрачность. Благодаря им солнечные батареи из перовскита могут быть установлены в самых разных местах: на стенах, на крышах транспортных средств и зданий, на окнах и даже на одежде.

Регулируя толщину слоя перовскита, можно контролировать прозрачность солнечных элементов на основе этого материала. К примеру, его можно использовать в покрытии теплиц: нужное количество фотонов будут получать растения, а часть из них — электросеть фермерского хозяйства. Эксперименты по определению разумного соотношения, потребляемого растениями и панелями света, уже проводятся у нас в Японии.

Ещё одна возможная сфера применений — оснащение электрокаров солнечными панелями на основе перовскита. Пока мы находимся в самом начале этого пути, но уже есть первые наработки. Так, учёные из Западного резервного университета Кейза (шт. Огайо, США) экспериментировали с использованием небольших солнечных батарей на основе перовскита для подзарядки аккумуляторов электромобилей. Они подключили четыре солнечных элемента на основе перовскита к литиевым батареям. При подключении для зарядки небольших литий-ионных батарей размером с монету команда учёных достигла эффективности преобразования в 7,8%, что в два раза меньше, чем у обычных тонкоплёночных солнечных батарей.

Не исключено также, что в скором времени ленты из перовскитовых солнечных панелей украсят вашу рубашку или пиджак. Известно уже о нанесении перовскита на полиуретановую подложку, КПД которой в поглощении солнца достигло 5,72%.

А в России пошли ещё дальше в экспериментах с перовскитом. Как оказалось, этот материал может быть хорошим излучателем и подходит для генерации света. Учёные из Московского института стали и сплавов (МИСиС) и Санкт-Петербургского университета информационных технологий механики и оптики разработали солнечный элемент на основе перовскита, который одновременно может работать как батарея и как светодиод. В основу положен галогенидный перовскит. Для переключения функций достаточно изменять подаваемое на прибор напряжение: при уровне до 1,0 В прототип работает как солнечный элемент, а если подать более 2,0 В — включается режим светодиода. В перспективе учёные могут разработать стекольные плёнки, которые в дневное время будут вырабатывать энергию, а в тёмное время суток излучать свет. При этом максимальная толщина плёнки не превысит 3 мкм, что позволит сохранить прозрачность стекла. То есть, темно не будет.



Практически по всем параметрам перовскит превосходит конкурентов, включая среднюю себестоимость электроэнергии на всем протяжении жизни солнечной батареи из заданного материала (Levelised Cost of Energy, LCOE). Сложности возможны только с утилизацией отживших панелей ввиду токсичности перовскитовых соединений. Источник: Group for Molecular Engineering of Functional Materials (GMF), Швейцария

Эффект масштаба


Итак, перовскит может помочь продвижению гелиоэнергетики не только за счёт своей экономической доступности, но и в силу намного более широкой области применения: помимо промышленности, городского и сельского хозяйства, панели на основе перовскита могут использоваться даже в быту, в частности в производстве автомобилей, мелкой электроники, бытовой техники и даже одежды. А чем более широкий спектр применения, тем выше ёмкость рынка, что привлечёт новых инвесторов и снижение стоимости солнечного электричества.

Солнечная энергетика: проблемы и перспективы развития

KC435_vnutr36

KC435_vnutr37

Солнечная энергетика: проблемы и перспективы развития

Солнечная энергетика представляет собой одно из перспективных направлений возобновляемой энергетики, основанное на непосредственном использовании солнечного излучения с целью получения энергии для отопления, электроснабжения и горячего водоснабжения. Солнечная энергия может быть превращена в электрическую двумя основными путями: термодинамическим и фотоэлектрическим. Остановимся на последнем.

Как это работает

Чувствительность фотоэлемента зависит от длины волны падающего света и прозрачности верхнего слоя элемента. В ясную погоду кремниевые элементы вырабатывают электрический ток приблизительно силой 25 мА при напряжении 0,5 В на 1 кв. см площади элемента, то есть 12–13 мВт/кв. см. Теоретическая эффективность кремниевых элементов составляет около 28%, практическая – от 14 до 20%.

При последовательно-параллельных соединениях солнечные элементы образуют солнечную (фотоэлектрическую) батарею. Мощность солнечных батарей, которые серийно выпус-каются промышленностью, составляет 50–200 Вт. На солнечных фотоэлектрических станциях солнечные батареи используются для создания фотоэлектрических генераторов. На рис. 2 изображены состав и блок-схема солнечной фотоэлектрической станции. Срок службы такой станции составляет 20–30 лет, а эксплуатационные затраты минимальные.

Недостатками плоских фотоэлементов для получения электрической энергии являются их высокая стоимость и значительные площади, необходимые для размещения фотоэлектростанции.

Одним из путей совершенствования фотоэнергетики является создание концентрирующих фотоэлементов. Система концентрации солнечной энергии состоит непосредственно из концентраторов и системы слежения за положением Солнца, так как концентрирующие фотоэлементы воспринимают только прямое солнечное излучение.

Сегодня основой для создания концентрируемых солнечных элементов служит кремний. Так, на основе кремния в Австралии созданы элементы со степенью концентрации k = 11 и к.п.д. 21,6%, в США выпускаются кремниевые элементы с k = 40 и к.п.д. 20%.

Для повышения эффективности фотоэлектрического преобразования солнечной энергии в качестве исходного материала применяют арсенид галлия, фотоэлектрические потери которого при высоких температурах значительно ниже, чем у кремния.

На основе арсенида галлия созданы двух- и трёхкаскадные элементы с высокой эффективностью работы при степени концентрации 1000 и больше. Уже созданы лабораторные образцы солнечных элементов площадью 0,5 кв. см с k = 500 и кпд 40%.

Прогнозы специалистов в области фотоэлектрического преобразования солнечного излучения показывают, что наиболее перспективными будут концентраторы с k = 1000, работающие с многокаскадными арсенид-галлиевыми солнечными элементами нового поколения.

Существенным недостатком существующих солнечных энергетических установок является неравномерность их работы, что связано с изменением потока солнечного излучения, достигающего поверхности Земли, вызванного погодными условиями, сменой времён года и временем суток.

Солнечные аэростатные электростанции могут стать одним из возможных новых направлений, позволяющих более эффективно использовать солнечную энергию. У подобных электростанций основной элемент – аэростат – может быть вынесен на несколько километров над поверхностью Земли, выше облаков, что обеспечивает непрерывное использование солнечной энергии в течение дня. Принципиальная схема работы солнечной аэростатной электростанции (САЭС) с паровой турбиной заключается в поглощении поверхностью аэростата солнечного излучения и нагрева за счёт этого водяного пара, находящегося внутри. При этом оболочка аэростата выполняется двухслойной. Солнечные лучи, проходя через наружный прозрачный слой, нагревают внутренний слой оболочки с нанесённым покрытием, поглощающим солнечное излучение. Находящийся внутри оболочки водяной пар нагревается поступающим через оболочку тепловым потоком до 100–150°С. Прослойка газа (воздуха) между слоями, выполняя роль теплоизоляции, уменьшает потери тепла в атмосферу. Давление пара практически равно давлению наружного воздуха. Водяной пар по гибкому паропроводу подаётся на паровую турбину, затем конденсируется в конденсаторе, вода из конденсатора вновь подаётся насосами во внутреннюю полость оболочки, где испаряется при контакте с перегретым водяным паром. Кпд такой установки может составить 25%, причём благодаря запасу водяного пара во внутренней полости аэростата установка может работать и ночью. При диаметре аэростата 150 м и размещении на высоте 5 км установка может иметь мощность 2 МВт.

Будущее – за солнечной энергетикой

Однако, по прогнозам экспертов, через двадцать лет энергия Солнца станет настолько эффективной и доступной, что создавать инфраструктуру под традиционные источники топлива (нефть, уголь, газ) будет невыгодно. Цена солнечной энергии продолжит снижаться до тех пор, пока не станет самой дешёвой.

Специалисты считают, что к 2026 году промышленная солнечная энергетика будет конкурентоспособной на большинстве рынков, а ещё через 25 лет цена жизненного цикла солнечной электростанции (на основе солнечных батарей) снизится вдвое при растущей цене ископаемого топлива.

Постепенно солнечная энергетика сделает невыгодным не только строительство традиционных энергоблоков, ЛЭП и другой инфраструктуры, но и эксплуатацию уже существующих объектов. Накопленные инвестиции в солнечную энергетику к 2040 году достигнут $3,7 трлн., что доведет суммарную мощность солнечных ЭС до более чем трети новых мощностей мировой энергетики (200 ГВт).

К 2040 году электричество от солнечной панели на собственной крыше почти во всех значительных экономиках будет дешевле сетевого, и к этому времени почти 13% мировой электроэнергии будут вырабатывать автономные установки.

Мировое потребление энергии не будет увеличиваться по причине опережающего роста экономичности конечных потребителей – так, переход от обычных ламп накаливания к светодиодному освещению экономит 80% электричества.

На трассе Омск-Тюмень установлен 31 осветительный комплекс на солнечных батареях

В Омской области такая практика применяется впервые за исключением пешеходного перехода в Исилькульском районе, где установлены два аналогичных осветителя. Данная система полезна там, где трудно подключить к сети электроснабжения обычные фонари. Светильниками на солнечных батареях оборудовали участки трассы у села Малиновка и посёлка Красный Яр.

Стоимость одного автономного осветительного комплекса SOL-40 в полной комплектации (с аккумулятором, солнечной панелью и датчиком освещённости) около 300 тысяч рублей. Для сравнения: обыкновенный придорожный фонарь с подключением к сети и установкой обходится ориентировочно в 80 тысяч рублей. Однако со временем фонари на солнечных панелях окупаются за счёт экономии электроэнергии.

Читайте также: