Приведите все формулировки первого начала термодинамики пояснив их ответ кратко

Обновлено: 02.07.2024

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

1. Определение первого закона термодинамики

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях. Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика. Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно.

Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией. ВНУТРЕННЯЯ ЭНЕРГИЯ тела — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела. А изменять температуру тела можно двумя способами:

  1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы);
  2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы.

Нам, также известно, что работа, совершаемая газом, обозначается Аг, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается Q. Внутреннюю энергию газа или любого тела принято обозначать буквой U, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком Δ, то есть ΔU.

Физика. 10 класс. Базовый уровень. Учебник

Большое количество красочных иллюстраций, графиков и схем, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Сформулируем ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид:

Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде:

Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты.

2. Первый закон термодинамики в процессах

Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них.

  1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть U = const, а значит ΔU = 0, тогда первый закон термодинамики будет иметь вид: Q = Aг.
  2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда Аг = 0 и первый закон термодинамики приобретает вид: ΔU = Q.
  3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: ΔU = QАг.
  4. Адиабатный процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и Q = 0. Тогда первый закон термодинамики будет иметь вид: ΔU = —Аг.

3. Применение

Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень. Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия. Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии.

Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта. Во-первых, внутренняя энергия идеального одноатомного газа равна: а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах pV. Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят.

На рисунке 3 . 9 . 1 условно проиллюстрированы энергетические потоки между выделенной термодинамической системой и окружающими телами. В случае, если тепловой поток направлен к термодинамической системе, то некоторая величина Q > 0 , если же система совершает положительную работу над окружающими ее объектами, то справедливо неравенство A > 0 .

Первый закон термодинамики

Рисунок 3 . 9 . 1 . Обмен энергией между термодинамической системой и окружающими телами в результате теплообмена и совершаемой работы.

Состояние системы меняется, когда происходит процесс ее обмена теплом с окружающими объектами, и она совершает положительную или отрицательную работу. Изменяются макроскопические параметры системы, такие как температура, объем и давление. По причине того, что внутренняя энергия U всецело определяется макроскопическими параметрами, которые характеризуют состояние системы, процессы совершения работы и теплообмена провоцируют изменения внутренней энергии данной системы Δ U .

Определение 1 -го закона термодинамики

Первый закон термодинамики представляет собой некое обобщение закона сохранения и превращения энергии для термодинамической системы, и формулируется следующим образом:

Изменение Δ U внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами.

Формула первого закона термодинамики, зачастую записывается в ином виде:

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики представляет из себя, по сути, обобщение опытных фактов. Если руководствоваться им, то можно заявить, что энергия не возникает и не исчезает бесследно, а передается от одной системы к другой, меняя свои формы. Невозможность создания вечного двигателя (perpetuum mobile) первого рода, то есть машины, которая может совершать полезную работу, не потребляя энергию извне и не претерпевая каких-либо изменений во внутренней конструкции агрегата, являлась важным следствием первого закона термодинамики. В подтверждение этого выступает тот факт, что каждая из огромного множества попыток создания такого устройства неизменно заканчивалась неудачей. Реальная машина может совершать положительную работу A над внешними объектами, только получая некоторое количество теплоты Q от окружающих тел или уменьшая Δ U своей внутренней энергии.

Первый закон термодинамики в процессах газов

Первый закон термодинамики может применяться к изопроцессам в газах.

В изохорном процессе, то есть в условиях неизменного объема ( V = c o n s t ) , газ не совершает работы, A = 0 .

В этом случае справедливой будет формула внутренней энергии газа:

Q = ∆ U = U ( T 2 ) - U ( T 1 ) .

В данном выражении U ( T 1 ) и U ( T 2 ) представляют внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит лишь от температуры, что исходит из закона Джоуля. При изохорном нагревании газ поглощает тепло ( Q > 0 ) , чем провоцирует увеличение его внутренней энергии. В условиях охлаждения тепло отдается внешним объектам ( Q 0 ) .

В изобарном процессе, предполагающем постоянность значения давления ( p = c o n s t ) , работа, совершаемая газом, выражается в виде соотношения:

A = p ( V 2 - V 1 ) = p ∆ V .

Первый закон термодинамики для изобарного процесса дает:

Q = U ( T 2 ) - U ( T 1 ) + p ( V 2 - V 1 ) = ∆ U + p ∆ V .

При изобарном расширении Q > 0 тепло поглощается газом, и он совершает положительную работу. При изобарном сжатии Q 0 тепло переходит внешним телам. В таком случае A 0 . При изобарном сжатии уменьшаются температура газа T 2 T 1 и значение внутренней энергии Δ U 0 .

В изотермическом процессе температура газа не меняет своей величины, следовательно, не изменяется и внутренняя энергия газа, Δ U = 0 .

Первый закон термодинамики для изотермического процесса выражается соотношением

Теплота Q , приобретенная газом в процессе изотермического расширения, превращается в работу, совершаемую над внешними объектами. И наоборот, изотермическое сжатие приводит к преобразованию уже работы внешних сил, произведенной над газом, в передающееся окружающим телам тепло.

Вместе с изохорным, изотермическим и изобарным процессами в термодинамике нередко исследуют процессы, происходящие в условиях отсутствующего теплообмена с окружающими объектами.

Адиабатическая оболочка – это сосуд с теплонепроницаемыми стенками.

Процессы сжатия или расширения газа в подобных емкостях называют адиабатическими.

Первый закон термодинамики в процессах газов

Рисунок 3 . 9 . 2 . Модель адиабатического процесса.

В адиабатическом процессе Q = 0 . По данной причине первый закон термодинамики принимает вид:

Выходит, что газ производит работу за счет падения значения его внутренней энергии.

Расширение или сжатие газа на плоскости p , V проиллюстрирована кривой, называемой адиабатой.

В процессе адиабатического расширения газом совершается положительная работа A > 0 , что является причиной понижения значения внутренней энергии Δ U 0 . Данное явление провоцирует падение его температуры. Исходя из этого, можно заявить, что величина давления газа при адиабатическом расширении понижается быстрее, чем это происходит в изотермическом (рис. 3 . 9 . 3 ).

Первый закон термодинамики в процессах газов

Рисунок 3 . 9 . 3 . Семейства изотерм (красные кривые) и адиабат (синие кривые) идеального газа.

В условиях координат ( p , V ) выводящееся в термодинамике уравнение адиабатического процесса для идеального газа принимает следующий вид:

p V γ = c o n s t .

Данное выражение, в котором γ = C p C V – показатель адиабаты, C p и C V – теплоемкости газа в процессах с постоянным давлением и с постоянным объемом, называется уравнением Пуассона. В условиях одноатомного газа γ = 5 3 = 1 , 67 , двухатомного γ = 7 5 = 1 , 4 , многоатомного γ = 1 , 33 .

Работа газа в адиабатическом процессе выражается через температуры начального T 1 и конечного T 2 состояний и принимает вид:

A = C V ( T 2 - T 1 )

Адиабатический процесс относится к изопроцессам.

В термодинамике важное место занимает физическая величина, называемая энтропией. Изменение энтропии в том или ином квазистатическом процессе эквивалентно некоторому обретенному системой теплу Δ Q T . Так как на каждом участке адиабатического процесса Δ Q = 0 , энтропия в нем не претерпевает изменений.

Любые изопроцессы, в том числе и адиабатические, являются квазистатическими. Промежуточные состояния газа в таких процессах близки к состояниям термодинамического равновесия. Каждая точка, принадлежащая адиабате, описывает равновесное состояние. Однако, процесс, который проводится в адиабатической оболочке, то есть при отсутствующем теплообмене с окружающими объектами, не обязательно удовлетворяет данному условию.

Примером неквазистатического процесса, в котором промежуточные состояния не находятся в состоянии равновесия, служит расширение газа в пустоту. На рисунке 3 . 9 . 3 иллюстрируется жесткая адиабатическая оболочка, состоящая из двух разделенных вентилем K сообщающихся емкостей. В изначальном состоянии газом заполнен один из сосудов, в это же время во втором находится лишь вакуум. Открытие вентиля запускает процесс расширения газа. Он заполняет оба сосуда, и устанавливается новое равновесное состояние.

В таком процессе Q = 0 , по той причине, что исключен теплообмен с окружающими телами, и A = 0 , так как оболочка недеформируема. Первый закон термодинамики позволяет сказать, что Δ U = 0 , то есть внутренняя энергия газа не претерпела никаких изменений. Так как внутренняя энергия идеального газа зависит лишь от температуры, температура газа в начальном и конечном состояниях одинакова. Изображающие эти состояния точки на плоскости ( p , V ) лежат на одной изотерме. Все промежуточные состояния газа не являются равновесными и не могут быть изображены на диаграмме.

Расширение газа в пустоту – пример необратимого процесса. Его нельзя провести в противоположном направлении.

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энер­гии для термодинамической системы.

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энер­гии для термодинамической системы.

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах — джоулях (как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Первый закон термодинамики формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:

Первый закон термодинамики

,

где A' — работа, совершаемая системой (A' = -A).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Первый закон термодинамики

Действительно, если к телу не поступает теплота (Q - 0), то работа A', согласно уравнению , совершается только за счет убыли внутренней энергии А' = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде­ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам .

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам.

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохорой.

Первый закон термодинамики

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе­ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

Первый закон термодинамики

При изохорном процессе объем газа не меняется (ΔV= 0), и, согласно первому началу термоди­намики ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV=0) газом не совершается.

Свои выводы эта наука делает на общих принципах, началах (законах термодинамики). Эти начала получены эмпирически, обобщением экспериментальных данных.

Теоретическую основу термодинамики составляют три закона.

Формулировка первого закона термодинамики

Первое начало термодинамики — это специализированная формулировка закона сохранения энергии: Подводимая к термодинамической системе теплота (Q) идет на совершение данной системой работы (A) и увеличение ее внутренней энергии ( ). В виде формулы первое начало запишем как:

Выражение (1) интегральная форма первого начала термодинамики.

В дифференциальном виде первое начало термодинамики представлено как:

где — бесконечно малое количество теплоты, которое подводят к системе, — элементарная работа, совершаемая системой, — бесконечно малое приращение внутренней энергии термодинамической системы.

Первое начало термодинамики показывает, как (насколько) изменяются термодинамические параметры, которые характеризуют систему, но не предсказывает направление развития процесса.

Формулировка второго закона термодинамики

Второе начало термодинамики имеет несколько формулировок. Приведем четыре из них.

Не существует кругового процесса, единственным результатом которого является осуществление работы за счет охлаждения резервуара тепла. Здесь тепловым резервуаром считают систему тел, находящуюся в состоянии теплового равновесия и имеющую запас внутренней энергии. При этом считают, что сам резервуар не производит работы, он лишь передает теплоту.

Невозможно сделать периодически работающую машину, действие которой заключается только в том, что она поднимает груз за счет получения теплоты от теплового резервуара, который охлаждается. Формулировка Планка отличается от формулировки Томсона только формой.

Теплота не способна к самопроизвольному переходу от менее нагретого тела к телу с большей температурой. Под теплотой здесь понимают внутреннюю энергию. При этом имеется в виду не только тепловой контакт, а передача тепла любым способом. Надо учитывать, что невозможным считается не просто передача теплоты от тела с меньшей температурой, но такая передача без каких-либо изменений во внешних телах.

Если термодинамический процесс происходит в изолированной системе, то энтропия не убывает. В математической форме второе начало термодинамики записывается как:

\[\int^<(1)></p>
<p>_>\le 0\ или\ S_1\le S_2\left(3\right),\]

где — энтропия для состояний (1) и (2). Рост энтропии обозначает то, что система приближается к состоянию термодинамического равновесия.

Второе начало термодинамики отображает направление процесса.

Формулировка третьего начала термодинамики

Иначе третье начало термодинамики называют теоремой Нернста (по имени ученого, который ее предложил). Эту теорему можно представить в виде двух утверждений:

  1. Если температура системы стремится к абсолютному нулю, то ее энтропия стремится к определённому конечному пределу. Причем этот предел не зависит от того в каком равновесном состоянии находится рассматриваемая система.
  2. При абсолютном нуле температур переходы системы из одного равновесного состояния в другое происходят без изменения энтропии.

Другой формулировкой третьего начала термодинамики (теоремы Нернста) считают следующую:

Если температура термодинамической системы стремится к абсолютному нулю, то энтропия также стремится к нулю.

Поведение вещества около абсолютного нуля показывает справедливость теоремы Нернста. Объяснение третье начало термодинамики находит в квантовой механике.

Третье начало термодинамики имеет ряд важных следствий:

  1. Около абсолютного нуля температур теплоемкости всех веществ стремятся к нулю.
  2. Вблизи абсолютного нуля стремятся к нулю коэффициенты теплового расширения и термический коэффициент давления.
  3. Тело невозможно охладить до абсолютного нуля.

Примеры решения задач

Задание Какое количество теплоты следует сообщить газу для того, чтобы в процессе изохорного нагревания его давление изменилось на ? Процесс проводят с кислородом, объем которого составляет V.
Решение Основой для решения задачи служит первое начало термодинамики:

Так как процесс, проводимый с газом, является изохорным, то:

Следовательно, выражение (1.1) принимает вид:

Изменение внутренней энергии газа определено как:

\[\Delta U=\frac<i></p>
<p>\frac<\mu >R\Delta T\left(1.3\right),\]

где — число степеней свободы молекулы (для кислорода равно пяти); — масса газа; — молярная масса газа; — универсальная газовая постоянная; — изменение температуры.

Для того чтобы найти изменение внутренней энергии рассматриваемого газа используем уравнение Менделеева — Клайперона. Запишем его два раза, для начального и конечного состояний процесса:

\[p_1V=\frac</p>
<p><\mu >RT_1\ и\ p_2V=\frac<\mu >RT_2\left(1.4\right)\]

Вычтем первое уравнение системы (1.4) из второго, получим:

\[p_2V-p_1V=\frac</p>
<p><\mu >RT_2-\frac<\mu >RT_1\to \Delta pV=\frac<\mu >R\Delta T\left(1.5\right)\]

Сравним выражения (1.5) и (1.3), запишем:

\[\Delta U=\frac<i></p>
<p>\Delta pV\left(1.6\right)\]

Подставим выражение для внутренней энергии (1.6) в формулу (1.2):

\[Q=\frac<i></p>
<p>\Delta pV\]

Пример решения на законы термодинамики

\[\Delta S=\Delta S_<12></p>
<p>+\Delta S_\left(2.1\right)\]

Так как процессы в идеальном газе можно считать обратимыми, то изменение энтропии для процесса 1-2 определим как:

\[\Delta S_<12></p>
<p>=\int^2_1>=0\]

так как процесс адиабатный проводят без теплообмена.

Для процесса 2-3 имеем:

\[\Delta S_<23></p>
<p>=\int^3_2=\int^3_2<\mu >\frac=\frac<\mu >>>C_pln\frac\left(2.2\right),\]

C_p=\frac<i+2></p>
<p>где R
— молярная теплоемкость газа при постоянном давлении.

Так как процесс 2-3 является изобарным, то в соответствии с законом Гей- Люссакаи по условию задачи имеем:

\[\frac<T_3></p>
<p>=\frac=\frac=\frac\left(2.3\right)\]

Окончательно изменение энтропии в заданном процессе найдем, подставив (2.3) в (2.2) и в (2.1):

\[\Delta S=\frac<m></p>
<p><\mu >\fracRln\frac\]

Читайте также: