Применение щелочноземельных металлов кратко

Обновлено: 08.07.2024

Металлический кальций используется в производстве стали, чугуна, для их очистки от кислорода, серы и фосфора, для получения сплавов.

Благодаря химической активности металлический кальций также находит применение в восстановлении некоторых тугоплавких металлов (титан, цирконий и др.) из их оксидов.

Организм человека содержит около \(1\) % кальция, в основном в костях и зубах (в виде ортофосфата с примесями карбоната и фторида).

Ионы кальция — важные элементы в жизнедеятельности клетки. Ионы кальция активируют внеклеточные ферменты.

Оксид кальция является основной составной частью негашёной извести , которая применяется в строительстве.

Большое значение имеет хлорная известь , которую получают при взаимодействии гашёной извести с хлором. Хлорная известь используется для отбеливания и дезинфекции.

Карбонат кальция (мел, мрамор, известняк) находит применение в строительстве и сельском хозяйстве, используется в производстве извести, цемента, стекла.

При смешивании алебастра с водой образуется полужидкая масса, которая быстро твердеет. Алебастр в смеси с известью, песком и водой используется в качестве штукатурки.

Чистый алебастр применяется для изготовления художественных изделий и в медицине для накладывания гипсовых повязок.

Его используют в качестве рентгенконтрастного вещества благодаря тому, что барий не пропускает рентгеновские лучи, а сульфат бария не является токсичным веществом для человека, не имеет запаха и вкуса.

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.


Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Щелочноземельные металлы

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.


Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Магний

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.


В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Кальций

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Бериллий

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

Щёлочноземельные металлы получили свое название за счет своих оксидов, которые сообщают воде щелочные реакции. Изучая химию, очень часто приходится взаимодействовать со сложными и непонятными названиями. Но если разобраться и понять что к чему, то изучать предмет легко и интересно.

Однако при написании формул стоит быть внимательным, не забывая про коэффициенты и признаки реакций.

Положение в периодической системе Менделеева

Щелочноземельные металлы

Щелочноземельные металлы – это химические элементы второй группы периодической системы химических элементов таблицы Менделеева:

Электронное строение и закономерности изменения свойств

Атомы данных металлов на внешнем энергетическом уровне имеют 2 s-электрона. Отсюда следует, что максимальная степень окисления +2.

Также могут иметь нулевую степень окисления, но не отрицательную, так как металлы не могут иметь данную степень.

Общая конфигурация внешнего энергетического уровня nS 2 :

3000

В периоде от Be до Ra металлические свойства, восстановительные, электроотрицательные увеличиваются, а неметаллические, окислительные свойства и радиус атома уменьшается.

Физические свойства щелочноземельных металлов

Физические свойства данной группы имеют следующие характеристики: светло-серый — темно-серый цвет, твердые вещества, не растворимые и нелетучие, без запаха, тепло-электропроводимые, имеют характерный металлический блеск.

Показатели плотности и температуры плавления представлены в таблице:

3001

Химические свойства

Оксиды и гидроксиды щёлочноземельных металлов усиливают основные свойства при движении вниз по второй группе. Следовательно, бериллий имеет меньшие основные свойства, чем радий.

Эти вещества взаимодействуют с любыми растворами кислот от сильной до слабой, а также с образованием солей, образуя белый осадок.

С кислородом образуют реакцию горения и оксид:

Металлы, стоящие в главной подгруппе второй группы (кроме бериллия) реагируют с водой. При проведении данных реакций выделяется водород (H2):

Также реагируют с неметаллами:

Bа + Cl2 = BаCl2 — хлорид бериллия;

Ca + Br2 = CaBr2 — бромид кальция;

Sr + H2 = SrH2 — гидрид стронция.

Химические свойства щелочноземельных металлов показаны на картинке:

3003

Нахождение в природе

Все металлы данного типа встречаются на земле, но не в чистом виде. Часто они представлены в виде минеральных солей. Самый распространённый считается кальций, магний немного уступает, затем идет барий и стронций.

Бериллий и радий являются самыми редкими, однако последний металл в больших количествах находится в урановых рудах.

3004

Способ получения

Магний, кальций и стронций получают электролизом расплавов солей.

Барий получают с помощью восстановления оксида.

При нагревании фторида бария получают сам металл.

Качественные реакции

Одна из качественных реакций-окрашивание пламени.

Список возможных цветов пламени при нагревании данных элементов:

Sr — насыщенный красный;

Ba - светло-зеленый или классический зеленый.

3005

Металлы данного типа при взаимодействии с щелочами, оксидами или растворами солей выпадают в белый осадок.

Применение щелочноземельных металлов

D2R

Бериллий из-за своей прочности добавляют в различные сплавы металлов, также препятствует коррозии. Используется в изготовлении рентгеновских аппаратов.

Магний и кальций активно использует для лекарственных средств, поскольку данные металлы играют большую роль в жизнедеятельности организма. Также в медицине используют радий, но для облучения кожи и злокачественных образований.

Стронций и барий добавляют в различный сплавы, которые работают в агрессивной среде и имеют сверхсильную проводимость.

Данные металлы играют огромную роль в жизни человека, выполняют различные функции и имеют ряд определенных свойств. Они содержатся в земной коре, поэтому довольно широко используются. Однако это не говорит о том, что их нужно расходовать безгранично.


Все элементы — твердые вещества, ножом можно резать только стронций. Все — серебристо-серые, обладают такими классическими металлическими свойствами, как электропроводность и теплопроводность.

Химическая активность возрастает по мере увеличения размера атома, от бериллия к радию. Бериллий покрывается на воздухе оксидной пленкой и дальше уже вступает в реакции только со фтором или при очень высоких температурах. Магний тоже окисляется на поверхности и далее ведет себя достаточно пассивно. Кальций постепенно весь окисляется во влажном воздухе, горит, стоит его слегка нагреть, растворяется в воде. Барий, стронций и радий на воздухе взаимодействуют не только с кислородом, но и с азотом, поэтому для хранения их помещают в герметичные емкости и заливают керосином.

Кальций окись
Магний металлический (стружка)
Магнесальт
Кальций окисьМагний металлический (стружка)Магнесальт (бишофит)

Щелочноземельные металлы растворяются в кислотах, образуют соли. С водой образуют щелочи, сила которых растет от магния к радию. Все, кроме бериллия и магния, легко реагируют с неметаллами.

Cа и Mg являются важными биогенными элементами. Кальций нужен для скелета, зубов животных и людей, работы мышц; регулирует свертываемость крови.

Магний содержится в живых клетках, он есть в хлорофилле, способствует функционированию ферментных реакций, нервной системы, синтезу нуклеиновых кислот. В очень небольших количествах в нашем организме есть и стронций. Барий, радий, бериллий и их соединения токсичны для всего живого.

Этой группе металлов отдан весь второй столбец таблицы Менделеева. И атомщики, и ювелиры используют щелочноземельные металлы. С ними интересно экспериментировать, но требуется осторожность.

Щелочноземельные металлы

Что представляют собой

Щелочноземельные металлы – это вся вторая группа таблицы Менделеева.

К щёлочноземельным металлам относятся:

История

Двойное название группы – отражение природы и характеристик входящих в нее элементов:

Сегодняшний состав щелочноземельной группы сформировался не сразу: бериллий и магний отсутствовали.

Это объяснялось отличием свойств данных элементов от остальных:

  • По большинству характеристик они ближе к алюминию, чем к другим элементам группы.
  • Их гидроксиды – не щелочи.
  • Магний взаимодействует с водой в замедленном режиме, у бериллия реакция в таком растворе нулевая. Та же картина при контакте с неметаллами.

Однако специалисты Международного союза теоретической и прикладной химии (IUPAC) решили все-таки причислить бериллий и магний к щелочноземельной группе.

Формы нахождения в природе

Щёлочноземельным металлам присуща чрезмерная активность, поэтому в природе они как самостоятельный элемент отсутствуют.

Почти всегда это составляющая минералов либо руд:

  • Самый распространенный элемент щелочноземельной группы – кальций (2,9-12,9% по массе). Его получают из известняков, им насыщены мрамор, гранит.
  • Почти три процента забирает магний.
  • В сто раз реже в литосфере представлены барий со стронцием.
  • Содержание остальных элементов измеряется тысячными долями процента.

Самым редким на планете щёлочноземельным металлом является радий. Но найти его легче других: это обязательный компонент урановых рудников.

Физико-химические характеристики

Элементы группы наделены общими физическими свойствами:

  • Серебристый с сероватостью цвет.
  • Твердость в стандартных условиях, ножом режется только стронций.
  • Металлический блеск.
  • Тускнение на воздухе с разной скоростью вследствие образования оксидной пленки.
  • Хорошая пропускная способность для тепла и электричества.
  • Два электрона на внешнем слое атома у каждого элемента, степень окисления – всегда +2. Это отражают формулы соединений, образованных металлами группы.

Есть общие и оригинальные:

  • Покрытый пленкой-оксидом бериллий способен на реакцию только при 600+°С (кроме фтора).
  • Окисленный магний при средней температуре не реагирует ни с чем. Получение соединений металла возможно при температуре от 645°C.
  • Кальций окисляется неспешно и только если воздух влажный. При незначительном нагреве горит, растворяется водой.
  • Осмотрительности требуют барий, стронций, радий. На открытом пространстве взаимодействие этих металлов с кислородом и азотом чревато взрывом. Их держат в герметичных контейнерах, залив керосином. Эта особенность объединяет щелочные и щелочноземельные металлы.

Общие свойства щёлочноземельных металлов – растворение в кислотах, образование солей, щелочей при взаимодействии с водой.

Химическая активность щелочноземельных металлов усиливается с увеличением габаритов атома – от бериллия к радию.

Где используются

Свойства металлов щелочноземельной группы обусловили применение каждого во всех сегментах – от авиастроения до медицины и ювелирного дела:

Сегодня на первое место по использованию магниевых сплавов выходят смартфоны, планшеты, другие гаджеты.

Стронций создает насыщенно-красные оттенки огней салюта. Изотопом вещества лечат онкологию.

  • Барий. Используются соединения металла. Главный потребитель – атомщики. Ассортимент: вакуумные, пьезоэлектрические приборы, жидкий теплоноситель, линзы, стекло для урановых стержней, керамика-сверхпроводник. Нетоксичный сульфат используется рентгенологами как контрастное вещество.

На особом счету радий. Это самый редкий щелочноземельный металл: на планете его получено всего полтора килограмма.

Даже микродозы радиоактивного вещества смертельно опасны для человека. Однако это свойство используется исследователями ядерных процессов и для лечения онкологии.

Шкалы, стрелки компасов, бортовых приборов, изготовленных до 1970-х годов, покрыты краской, содержащей радий. Она светится в темноте, но с тех пор не используется как опасная для человека.

Биологическое значение

Значение щелочноземельных элементов разнообразно:

Барий, радий, бериллий, их соединения ядовиты. Поэтому для биологических структур опасны.

Читайте также: