Применение непредельных углеводородов кратко

Обновлено: 30.06.2024

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Непредельные УВ.

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены , алкины, алкадиены ( полиены ).

Алкены — ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С п Н 2 п .

Строение

Атомы углерода, между которыми имеется двойная связь, находятся в состоянии s р 2 -гибридизации. Это означает, что в гибридизации участвуют одна s - и две р -орбитали, а одна р -орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р -орбиталей соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π-связи.

Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π-связь, располагаются перпендикулярно плоскости молекулы.

Двойная связь является более прочной. Наличие π-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Гомологический ряд этилена

Неразветвленные алкены составляют гомологический ряд этена (этилена):

Изомерия и номенклатура

Для алкенов, так же как и для алканов, характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, — это бутен.

hello_html_m3ffaab0f.jpg

Особым видом структурной изомерии является изомерия положения двойной связи.

hello_html_307dbcfa.jpg

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии — геометрической, цис-, или транс -изомерии, которые отличаются друг от друга пространственным расположением фрагментов молекулы относительно плоскости π-связи, а следовательно, и свойствами.

hello_html_m6768b1d3.jpg

Алкены изомерны циклоалканам (межклассовая изомерия), например:

hello_html_m7338f2be.jpg

Номенклатура алкенов, разработанная ИЮПАК, схожа с номенклатурой алканов.

Выбор главной цепи.

Образование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

Нумерация атомов главной цепи.

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.

Формирование названия.

Названия алкенов формируются так же, как и названия алканов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс, обозначающий принадлежность соединения к классу алкенов, - ен.

Получение

Промышленные способы получения алкенов основаны на превращении алканов в алкены с использованием природных источников УВ (нефть, природный газ).

Крекинг нефтепродуктов.

В процессе термического крекинга предельных углеводородов наряду с образованием алканов происходит образование алкенов, например:

гексадекан октан октен

Дегидрирование алканов.

При пропускании алканов над катализатором (Pt, Ni, Cr 2 О 3 ) при высокой температуре (400—600 °С) происходит отщепление молекулы водорода и образование алкена.

hello_html_38429ac.jpg

Дегидратация спиртов (отщепление воды).

Воздействие водоотнимающих средств (H 24 , А l 2 О3) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:

hello_html_55a2a5e.jpg

Эту реакцию называют внутримолекулярной дегидратацией.

Дегидрогалогенирование галогеналканов.

При взаимодействии галогеналкана с щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода:

hello_html_6960e745.jpg

В результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева :

при отщеплении галогеноводорода от вторичных и третичных галогеналканов атом водорода отщепляется от наименее гидрированного атома углерода.

Дегалогенирование.

При действии цинка или магния на дибромпроизводное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:

hello_html_m40adde5.jpg

Свойства

Физические свойства

Первые три представителя гомологического ряда алкенов — газы, вещества состава С 5 Н 10 —С 16 Н 32 — жидкости, высшие алкены — твердые вещества. Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства

Реакции присоединения .

а) Гидрирование алкенов.

Алкены способны присоединять водород в присутствии катализаторов гидрирования — металлов — платины, палладия, никеля:

hello_html_49d73adc.jpg

б) Галогенирование.

Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов:

hello_html_72fe3d44.jpg

в) Гидрогалогенирование:

hello_html_m11ad1fd7.jpg

Реакция присоединения галогеноводорода более подробно будет рассмотрена ниже. Эта реакция подчиняется правилу Марковникова: при присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, а галоген к менее гидрированному.

г) Гидратация. Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

hello_html_m3f535a91.jpg

Первичный спирт образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты:

hello_html_7077b099.jpg

Полимеризация

Особым случаем реакции присоединения является реакция полимеризации алкенов и их производных. Реакция протекает при повышенной температуре и давлении, а также в присутствии катализатора:

hello_html_m22c509d.jpg

Реакции окисления

Как и любые органические соединения, алкены горят в кислороде с образованием СО 2 и Н 2 О:

б) Окисление перманганатом калия (реакция Вагнера)

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах на холоду происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:

hello_html_m7f63760c.jpg

В действительности процесс окисления алкенов гораздо сложнее, происходящие при этом превращения можно изобразить уравнением:

hello_html_m2cdced64.jpg

Применение

Алкены широко используются в химической промышленности как сырье для получения разнообразных органических веществ и материалов. Например, этен — исходное вещество для производства этанола, этиленгликоля, эпоксидов, дихлорэтана.

Большое количество этена перерабатывается в полиэтилен, который используется для изготовления упаковочной пленки, посуды, труб, электроизоляционных материалов.

Из пропена получают глицерин, ацетон, изопропиловый спирт, растворители. Полимеризацией пропена получают полипропилен, который по многим показателям превосходит полиэтилен: имеет более высокую температуру плавления, химическую устойчивость.

В настоящее время из полимеров — аналогов полиэтилена производят волокна, обладающие уникальными свойствами. Так, например, волокно из полипропилена прочнее всех известных синтетических волокон. Материалы, изготовленные из этих волокон, являются перспективными и находят все большее применение в разных областях человеческой деятельности.

Какая структурная особенность отличает непредельные углеводороды от предельных? Приведите примеры подобных соединений.

Как происходит образования σ-связи, а как π-связи? Какие связи являются менее прочными и почему? Укажите качественную реакцию для определения π-связи.

Напишите структурные формулы следующих алкенов: а) пропен, б) бутен-1, в) 3,3-диметилбутен-1, г) 2,3-диметилпентен-1.

Напишите уравнение реакции получения этилена из этанола. Какую роль выполняет концентрированная серная кислота в этой реакции?

Напишите уравнения реакции гидрирования, галогенирования и гидрогалогенирования пентена-2.

Непредельным углеводородам принадлежит несколько гомологических рядов: этилена (алкены) , ацетилена (алкины) , диены. Т. е. применимы в нефтехимии, химической промышленности (полиэтилен, бутадиеновые резины, краски) , машиностроении (газвая сварка).

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Непредельные углеводороды

Непредельные углеводороды - это углеводороды, содержащие кратные связи в углеродном скелете молекулы.

Кратными называются двойные и тройные связи.

К непредельным углеводородам относятся алкены, алкины, алкадиены и другие углеводороды с кратными связями в молекуле.

Алк ен ы

Алк ин ы

Алка диен ы

Общая формула

Одна двойная ( - и -) связь

Одна тройная ( - и две -) связи

Две двойные связи

Примеры гомологов

Виды изомерии

– изомерия углеродного скелета,

– изомерия положения кратной связи.

· Пространственная (геометрическая или цис-транс ; для алкенов и алкадиенов).

· Межклассовая (например: алкены и циклоалканы, или алкины и алкадиены).

Пример 1. Изомеры состава C4H8:

транс -бутен-2

цис -бутен-2

Вещества 1 и 2, а также 4 и 5 – изомеры углеродного скелета; вещества 1 и 3 – изомеры положения двойной связи; вещества 3а и 3б – пространственные изомеры; вещества 1, 2 ,3 с одной стороны и вещества 4 и 5 с другой стороны – межклассовые изомеры.

Пример 2. Некоторые изомеры состава C5H8:

Вещества 1 и 3, а также 5 и 7 – изомеры углеродного скелета; вещества 1 и 2 – изомеры положения тройной связи; вещества 4, 5 и 6 – изомеры положения двойных связей; вещества 1, 2 и 3 с одной стороны и вещества 4, 5, 6 и 7 с другой стороны – межклассовые изомеры.

Для алкенов цис-транс изомеры есть только в том случае, если каждый из двух атомов углерода, связанных двойной связью, имеет два разных заместителя, но при этом два из этих четырех заместителей одинаковы.

Алкены – это непредельные углеводороды, в молекулах которых есть одна двойная связь между атомами углерода

Физические свойства алкенов

Низшие алкены - газы, почти без запаха. С увеличением молекулярной массы температура кипения возрастает. Температура кипения неразветвленных алкенов больше температуры кипения разветвленных изомеров, температура кипения цис- изомеров больше температуры кипения транс- изомеров. Малорастворимы в воде Плотность жидких алкенов меньше 1 г/см 3 .

Химические свойства алкенов

Алкены значительно более активны, чем алканы, из-за наличия в молекулах не очень прочных π -связей.


Непредельные углеводороды

Ключевые слова конспекта: Непредельные углеводороды. Алкены. Пространственная (геометрическая) изомерия. Реакции дегидратации. Реакции присоединения (гидратация, гидрогалогенирование, галогенирование). Правило Марковникова. Реакции полимеризации. Мономер. Полимер. Структурное звено. Степень полимеризации. Качественные реакции на непредельные углеводороды.

Гомологический ряд алкенов

Полиэтилен получают из углеводорода этилена С2Н4. В молекуле этилена два атома углерода связаны не одинарной, а двойной связью, что отражает структурная формула СН2=СН2. Этилен — первый представитель гомологического ряда этиленовых углеводородов, или алкенов.


Наличие в молекуле одной двойной связи С=С показывает, что валентности углеродных атомов не полностью насыщены атомами водорода, поэтому такие углеводороды называют непредельными углеводородами.

Этиленовые углеводороды образуют свой гомологический ряд. Как и в случае алканов, состав двух гомологов отличается на одну или несколько групп СН2. Приведём молекулярные и структурные формулы ближайших гомологов этилена.


Номенклатура и изомерия алкенов


Два последних углеводорода в таблице 2 имеют одинаковый состав, но различное химическое строение, т. е. это изомеры. Однако у бутена изомерия проявляется не только в строении углеродной цепи (линейная или разветвлённая), но и в положении двойной связи в молекуле. В конце названия алкена арабской цифрой указывают атом углерода, за которым следует двойная связь:

Изомерия положения двойной связи — тоже один из видов структурной изомерии.

Особенности пространственного строения этиленовых углеводородов приводят к появлению в гомологическом ряду алкенов ещё одного вида изомерии — пространственной изомерии.


Для бутена-2 возможно написание двух различных структурных формул. В первом случае углеродная цепь алкена расположена по одну сторону от линии двойной связи, а во втором — по разные стороны:

Эти два углеводорода имеют разные физические свойства (температуры кипения, плавления и др.). Каждое вещество имеет состав С4Н8, неразветвлённую цепь углеродных атомов, одинаковое положение кратной связи в цепи, но различаются они взаимным расположением атомов в пространстве. Следовательно, эти углеводороды являются изомерами. Первый называют цис-бутен-2, второй — транс-бутен-2. Такой вид пространственной изомерии носит название геометрической или цис-транс-изомерии (от лат. cis — на одной стороне и trans — напротив).

Непредельные углеводороды. Алкены

Способы получения алкенов

В отличие от предельных углеводородов, алкены встречаются в природе нечасто. Промышленные способы их получения основаны на превращении алканов в алкены. В качестве природных источников алкенов используют главным образом нефть и природный газ.

Один из способов получения алкенов — уже знакомая вам реакция дегидрирования соответствующих предельных углеводородов.

К лабораторным способам получения алкенов относят реакции отщепления. Для образования в молекуле двойной связи от соседних атомов углерода нужно отнять по одному связанному с ними атому или группе. Тогда освободившиеся валентности превращаются во вторую углерод-углеродную связь.


или

Химические свойства алкенов

Химические свойства этилена и его гомологов обусловлены особенностями их строения, а именно наличием в их молекулах двойной углерод-углерод ной связи.

Для непредельных соединений характерны реакции присоединения.


Одна из наиболее важных реакций присоединения для этилена — его взаимодействие с водой в присутствии катализатора (кислоты):


Обычно эту реакцию записывают так:

В результате реакции гидратации этилена получают технический этиловый спирт. Его используют только в качестве растворителя, горючего, сырья для химических производств — словом, везде, кроме пищевой промышленности.

Присоединение воды к гомологу этилена — пропилену происходит по правилу, сформулированному выдающимся русским химиком, учеником Бутлерова В. В. Марковниковым.



Этиленовые углеводороды вступают в реакции присоединения галогеноводородов — реакции гидрогалогенирования:


И в этих реакциях, как и в реакциях гидратации, соблюдается правило Марковникова:


К реакциям присоединения относят также взаимодействие этиленовых углеводородов с галогенами — реакции галогенирования. В отличие от алканов, которые с галогенами вступают в реакцию замещения, алкены присоединяют молекулу галогена за счёт разрыва связи С=С:


или

В качестве реагента для реакции бромирования этилена можно использовать раствор брома в воде — так называемую бромную воду. При этом жёлтая окраска бромной воды исчезает. Поскольку реакция сопровождается характерными видимыми изменениями, обесцвечивание бромной воды можно использовать как качественную реакцию на этилен и другие непредельные соединения.


Вещества, содержащие двойную углерод-углеродную связь, можно обнаружить с помощью ещё одной качественной реакции. При пропускании этилена через водный раствор перманганата калия происходит обесцвечивание этого раствора. В упрощённом виде, обозначив окислитель ( КМ nO 4 ) как [О], уравнение реакции записывают так:

Разновидностью реакции присоединения можно считать процесс полимеризации.

Под действием высокой температуры и давления двойные углерод-углеродные связи в этилене разрываются, и за счёт освободившихся валентностей атомы углерода соединяются друг с другом:


Исходное вещество (в данном случае — этилен) называют мономером, а продукт реакции (в нашем примере — полиэтилен) — полимером. В результате реакции полимеризации образуются длинные цепи, состоящие из фрагментов этилена —СН2—СН2—. Многократно повторяющуюся в полимерной цепи группу атомов называют структурным звеном полимера. Число структурных звеньев в макромолекуле обозначают буквой п и называют степенью полимеризации. Относительная молекулярная масса таких гигантских молекул может составлять от нескольких тысяч до нескольких миллионов. Поскольку эта величина не является постоянной, говорят о средней молекулярной массе полимера. Уравнение реакции полимеризации этилена записывают так:

Этилен — важное химическое сырьё для производства полиэтилена, галогенпроизводных (используются, например, в качестве растворителей), этилового спирта, этиленгликоля и других продуктов химической промышленности.

Алкены — не единственные представители углеводородов, содержащих в молекуле двойную связь. О других углеводородах с двойными связями вы узнаете из материала следующего конспекта.

Непредельные углеводороды (алкены, олефины)


Соединения, содержащие только атомы углерода и водорода, классифицируются на предельные и непредельные углеводороды. Каждая группа включает несколько классов веществ, которые отличаются строением и свойствами.

Определения

Предельные углеводороды отличаются от непредельных одинарными связями. Атомы углерода в предельных углеводородах соединены простыми одинарными связями. При этом все дополнительные связи атомов углерода заняты водородами. Поэтому предельные углеводороды вступают в реакции присоединения и замещения только под действием катализаторов или высокой температуры.

Непредельные углеводороды содержат двойные или тройные связи и могут присоединять дополнительные атомы к местам разрыва кратных связей, превращаясь в предельные углеводороды.

Схема классификации углеводородов

Рис. 1. Схема классификации углеводородов.

Физические и химические свойства углеводородов меняются в зависимости от строения молекулы и количества углеродов в цепи.

К предельным или насыщенным углеводородам относятся алканы и циклоалканы. К непредельным или ненасыщенным углеводородам относятся алкены, алкины, алкадиены.

Сравнительная таблица

В сводной таблице предельных и непредельных углеводородов отображены основные характеристики классов.

Класс

Общая формула

Строение

Гомологи

Изомерия

Линейные молекулы, содержащие одинарные связи

Структурная по углеродному скелету. В некоторых случаях возможна оптическая

Циклические молекулы, содержащие одинарные связи

Структурная углеродного скелета, межклассовая, пространственная

Включают одну двойную связь (СН2=СН2)

Структурная по углеродному скелету и положению двойной связи, межклассовая с циклоалканами, пространственная

Содержат две двойные связи (СН2=С=СН2)

Структурная углеродного скелета, положения двойных связей, межклассовая с алкинами, пространственная

Содержат одну тройную связь (CH≡CH)

Структурная по углеродному скелету, положению тройной связи, межклассовая

Строение предельных углеводородов

Рис. 2. Строение предельных углеводородов.

Класс аренов (ароматических углеводородов) выделяется в отдельную группу. Арены содержат бензольное кольцо и отличаются химическими свойствами от насыщенных и ненасыщенных углеводородов.

Примеры непредельных углеводородов

Рис. 3. Примеры непредельных углеводородов.

Что мы узнали?

Предельные (насыщенные) и непредельные (ненасыщенные) углеводороды – две группы веществ, включающие отдельные классы, которые отличаются строением и свойствами. К предельным углеводородам относятся линейные алканы и циклические циклоалканы. К непредельным углеводородам относятся алкены с одной двойной связью, алкадиены с двумя двойными связями и алкины с одной тройной связью. Между классами возможна межклассовая изомерия: между алкенами и циклоалканами, между алкинами и алкадиенами.

Читайте также: