Преобразование механической энергии в электрическую кратко

Обновлено: 04.07.2024

Впервые Луиджи Гальвани и Алессандро Вольта в своих работах научились преобразовывать химическую энергию в электрическую в конце 18 века. И хотя энергетически это не сильно обогатило человечество - результатами изобретенных ими батареек мы пользуемся с большой благодарностью. Гениальное открытие Майкла Фарадея о возможности преобразования механической энергии в электрическую -резко изменило качество всей жизни на Земле. Когда Фарадей на заседании Лондонского научного общества докладывал о своем изобретении, Лорды не совсем поняли пользу этого новшества. На что Фарадей и сам сказал, что пока не знает как этим распорядиться, Но заметил, что в следующем веке правительство с этого открытия будет снимать очень большие налоги.

Мы построили модели Фарадея для постоянного и переменного тока. Их отличие, что в генераторе постоянного тока магниты неподвижны, а вращается катушка с проводником, а в генераторе переменного тока катушка неподвижна, а вращаются магниты.. Сейчас даже не надо собирать модель. На AliExpress есть недорогие модели таких генераторов, Хотя там и приводятся графики нарастания и убывания электрического тока, но физика процесса не объяснена.

Вот на это нам бы и хотелось обратить Ваше внимание. Как такогого тока никто не видел. Мы только видим результаты его воздействия, и только с открытием Периодического Закона Д.И. Менделеева сложилась картина , объясняющая физическую сущность фарадеевского открытия. Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда. Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы. Например, металлы в отличии от диэлектриков легко

расстаются с электронами, находящимися на верхних орбитах своих атомов под воздействием разности потенциалов, находящихся на концах проводника. Прохождение электрического тока порождает магнитное поле.

Эти два явления неразрывно связаны и не существуют друг без друга. Появление одного одновременно порождает другое. Это явление используется в производстве, когда сильными электромагнитами машины поднимают и переносят тяжелые чушки, выбирают из куч металлический лом…Почему же в природе мы не встречаем естественных постоянных магнитов и откуда они берутся. Оказывается многие элементы периодической системы Менделеева и их различные сплавы являются потенциальными магнитами, обладающие различной силой магнитных свойств. И становятся они магнитами при воздействии на них разной интенсивности магнитным полем. Эта обширная научная тема, о которой мы расскажем в дальнейшем. Факт тот, что при протекании электрического тока на проводник действует выталкивающая сила (Правило правой руки). В отсутствие тока нет магнитного поля, а сами эти материалы состоят из огромного количества мизерных магнитиков плюсы и минусы которых направлены случайным образом в разные стороны. Таким образом полярности эти материалы не имеют и появляется она только при протекании электрического тока, когда эти микромагниты выстраиваются в едином порядке. И разворачивают материал по правилу правой руки (Сила Ампера) При прекращении подачи тока этот порядок снова нарушается и материал утрачивает свои магнитные свойства.

Для того чтобы создать постоянный магнит нужно 1. Иметь материал с соответствующими магнитными свойствами (ферриты, сплавы…) 2. Механически не позволить материалам перемещаться в пространстве. 3 Подать на материал сильное магнитное поле ( например накопив сильный электрический заряд в батарее конденсаторов). В результате не имея возможности материалу развернутся произойдет необратимый разворот внутренних микромагнитов вещества. Все - мы получили постоянный магнит. Теперь вращая катушку с проводом вокруг двух магнитов с отрицательным и положительным полюсом мы получим генератор постоянного тока, а вращая магнит вокруг неподвижной катушки получим генератор переменного тока

Электрические машины, которые предназначены для преобразования механической энергии в электрическую называют генераторами.

Устройство, которое вырабатывает переменный ток, называют генератором переменного тока.

Принципиальная основа генератора переменного тока

Конструкция генераторов электрического тока в настоящее время основывается на использовании явления электромагнитной индукции.

В генераторах энергия механического движения трансформируется в энергию электрического тока, так сторонние электродвижущие силы (ЭДС) обладают механической природой.

ЭДС можно получить двумя способами:

  1. если в неподвижном магнитном поле катушка будет вращаться;
  2. вращаться станет магнитное поле, а катушка будет неподвижна.

Допустим, что переменный ток получают при вращении катушки в стационарном магнитном поле. Для упрощения будем полагать, что в однородном магнитном поле равномерно вращается проводящая рамка (один виток). При этом:

  • площадь рамки составляет $\Delta S$,
  • скорость ее вращения $\omega$,
  • угол между нормалью к плоскости рамки $\vec n$ и вектором магнитной индукции $\vec B$ составляет $\alpha$.

Магнитный поток, который пронизывает рамку, равен:

$Ф’=B\Delta S cos (\alpha) (1).$

В каждый момент времени $t$ положение витка по отношению к вектору магнитной индукции задается при помощи угла $\alpha = \omega t$. В этом случае выражение (1) можно представить как:

$Ф’=B\Delta S cos (\omega t) (2).$

В соответствии с законом электромагнитной индукции в нашем витке появляется ЭДС индукции, равная:

$\epsilon_i’=-\frac=B\Delta S \omega sin (\omega t) (3).$

При вращении катушки, имеющей $N$ витков магнитный поток равен:

что увеличивает амплитуду ЭДС в $N$ раз, соответственно:

$\epsilon_i=NB\Delta S \omega sin (\omega t) (4).$

Готовые работы на аналогичную тему

Амплитуда ЭДС получается равной:

$\epsilon_m=NB\Delta \omega (5).$

Величину $\epsilon_m$ называют еще амплитудой напряжения, которое создает генератор переменного тока, рассматриваемого вида.

Выражение (5) часто записывают в виде:

$\epsilon_i= \epsilon_m \ sin (\omega t (6).$

Выражение (6) указывает на то, что ЭДС изменяется периодически по гармоническому закону (закону синуса).

Реализация принципа генерации переменного тока

На сегодняшний момент создано и применяют большое число генераторов переменного тока различных конструкций. Например, технический переменный ток получают при помощи генератора, в котором:

  1. ЭДС возникает в результате вращения проволочной обмотки.
  2. Концы обмотки соединяют с двумя изолированными медными кольцами, которые называют контактными.
  3. Данные кольца укреплены на оси машины с помощью прижимных проводников (щеток), изготавливаемых из меди или графита. Щетки включают в замкнутую цепь тока, не нарушая вращение обмотки.

Для увеличения ЭДС, из формулы (6) следует, что нужно увеличить магнитный поток. С этой целью стараются сделать сопротивление магнитной цепи наименьшим. Поэтому магнитную систему конструируют из пары железных сердечников:

  • наружного стационарного сердечника в виде кольца и
  • внутреннего, совершающего вращение цилиндра.

Воздушный зазор между сердечниками стараются сделать минимальным.

Генератор, обычно обладает двумя обмотками:

  • одной, расположенной в пазах, на внутренней стороне неподвижного сердечника (статора);
  • второй, находящейся на внутренней стороне (в пазах) вращающегося сердечника (ротора).

Одна обмотка генерирует магнитный поток, вторая является рабочей, в ней создается переменная ЭДС.

Обратим внимание на один из них – генератор трехфазного тока, который создал М.О. Доливо-Добровольский в 1890 году.

Этот генератор имеет три одинаковые катушки. Их оси находятся в одной плоскости, которая параллельна магнитному полю, при этом углы между осями катушек составляют $120^0 C$. Токи индукции возбуждаются сразу во всех трёх катушках одномоментно, сдвиг фаз этих токов составляет $120^0$. Токи с несколькими фазами дают возможность получать в нагрузке вращающиеся магнитные поля. В этих магнитных полях совершают вращения магниты или замкнутые контуры. Получаемые таким образом токи удобно использовать для трансформации электрической энергии в механическую в электрических двигателях.

Генератор постоянного тока

Для получения постоянного (прямого) тока, переменная ЭДС, индуцируемая в обмотке ротора, с помощью коллектора подлежит выпрямлению.

Коллектор – вращающийся переключатель.

Самый простой генератор постоянного тока:

  • может иметь обмотку, которая содержит один виток;
  • в состав его коллектора входят два изолированных полуцилиндра из меди, расположенных на оси машины, к этим цилиндрам присоединяют обмоточные концы;
  • пара щеток, прижимаемых к пластинам коллектора, реализуют подключение обмотки в цепь тока.

Поясним принципы работы коллектора. Напряжение между концами обмотки коллектора изменяется по гармоническому закону (закон синуса) (6) (рис.1(а)). При каждой половине оборота коллектор коммутирует (осуществляет переключение) концы обмотки. В результате на щетках возникает напряжение, которое можно изобразить кривой рис.1 (б). Данный генератор выдает пульсации тока, у которого постоянно направление, но величина изменяется.

Рисунок 1. Принципы работы коллектора. Автор24 — интернет-биржа студенческих работ

Поскольку коллектор совершает вращение, то соединяемую с ним обмотку делают вращающейся. Она располагается на внутреннем сердечнике из железа, который находится на оси генератора. Чтобы получить постоянный ток обмотку делят на несколько секций и используют многопластинчатые коллекторы.

В современных генераторах большой мощности используют электромагниты.

Свойства генератора постоянного тока значительным образом зависят от того, каким образом осуществляется соединение обмотки возбуждения с якорем. В зависимости от способа соединения генераторы делят на:

  • шунтовые генераторы, в которых реализуется параллельное возбуждение;
  • сериесные генераторы, с последовательным соединением;
  • компаундные генераторы, в которых используется смешанное возбуждение.

В генераторах первого типа обмотка возбуждения соединяется с якорем параллельно. Ток, питающий электромагнит составляет от 1% до 5% тока якоря. При этом сопротивление обмотки возбуждения существенно меньше сопротивления якоря.

В сериесных генераторах обмотка возбуждения соединена с якорем при помощи последовательного соединения. Так как ток проходит по обмотке возбуждения полностью, для уменьшения потерь напряжения необходимо, чтобы сопротивление обмотки было много меньше, чем сопротивление якоря.

Электромеханическое действие магнитного поля и электромагнитная индукция используются для преобразования механической энергии в электрическую энергию и обратно. Устройства, при помощи которых эти преобразования осуществляются, называются электрическими машинами.

Преобразование механической энергии в электрическую.

Электрические генераторы. Электрические машины, в которых происходит преобразование механической энергии в электрическую энергию, называются электрическими генераторами.


- Ɩ

v F I

+ R


I


Если замкнуть прямолинейный провод длиной Ɩ, расположенный в однородном магнитном поле перпендикулярно вектору магнитной индукции В, на внешний участок цепи с сопротивлением R, то при движении провода с постоянной скоростью v перпендикулярно магнитным линиям в нем индуктируется неизменяющаяся ЭДС Еи и в замкнутой цепи возникает постоянный ток I. Направление наведенной ЭДС определяется правилом правой руки (ладонь правой руки располагают так, чтобы линии магнитной индукции входили в нее, отогнутый под прямым углом большой палец совмещают с направлением движения проводника, тогда вытянутые четыре пальца укажут направление индуктированной ЭДС). Следовательно, при движении в магнитном поле под действием внешних сил замкнутого на внешний участок цепи проводника, пересекающего магнитные линии, происходит преобразование механической энергии в электрическую энергию.

На рисунке показана схема устройства простейшего генератора постоянного тока.


Концы витка присоединены к металлическим изолированным полукольцам с наложенными на них двумя неподвижными щетками, при помощи которых присоединяется внешний участок цепи. Два полукольца образуют простейший коллектор, а полукольцо – коллекторную пластину. При вращении якоря одна щетка все время соединяется с проводом витка, расположенным под северным полюсом, а другая щетка с проводом витка, расположенным под южным полюсом. Переключение щетки с одной пластины на другую происходит в момент прохождения витка через нейтральную плоскость. Вследствие этого полярность напряжения на щетках не изменяется. При двух коллекторных пластинах напряжение на щетках изменяется от нуля до Еm (если не учитывать сопротивление витка). Обмотка реального генератора состоит из большого числа витков и коллекторных пластин, так что колебания напряжения в цепи получаются ничтожными.

Неподвижная часть машины постоянного тока называется статором, вращающаяся часть – ротором.

Пояснения к работе.

Электромеханическое действие магнитного поля и электромагнитная индукция используются для преобразования механической энергии в электрическую энергию и обратно. Устройства, при помощи которых эти преобразования осуществляются, называются электрическими машинами.

Преобразование механической энергии в электрическую.

Электрические генераторы. Электрические машины, в которых происходит преобразование механической энергии в электрическую энергию, называются электрическими генераторами.


- Ɩ

v F I

+ R


I


Если замкнуть прямолинейный провод длиной Ɩ, расположенный в однородном магнитном поле перпендикулярно вектору магнитной индукции В, на внешний участок цепи с сопротивлением R, то при движении провода с постоянной скоростью v перпендикулярно магнитным линиям в нем индуктируется неизменяющаяся ЭДС Еи и в замкнутой цепи возникает постоянный ток I. Направление наведенной ЭДС определяется правилом правой руки (ладонь правой руки располагают так, чтобы линии магнитной индукции входили в нее, отогнутый под прямым углом большой палец совмещают с направлением движения проводника, тогда вытянутые четыре пальца укажут направление индуктированной ЭДС). Следовательно, при движении в магнитном поле под действием внешних сил замкнутого на внешний участок цепи проводника, пересекающего магнитные линии, происходит преобразование механической энергии в электрическую энергию.




На рисунке показана схема устройства простейшего генератора постоянного тока.


Концы витка присоединены к металлическим изолированным полукольцам с наложенными на них двумя неподвижными щетками, при помощи которых присоединяется внешний участок цепи. Два полукольца образуют простейший коллектор, а полукольцо – коллекторную пластину. При вращении якоря одна щетка все время соединяется с проводом витка, расположенным под северным полюсом, а другая щетка с проводом витка, расположенным под южным полюсом. Переключение щетки с одной пластины на другую происходит в момент прохождения витка через нейтральную плоскость. Вследствие этого полярность напряжения на щетках не изменяется. При двух коллекторных пластинах напряжение на щетках изменяется от нуля до Еm (если не учитывать сопротивление витка). Обмотка реального генератора состоит из большого числа витков и коллекторных пластин, так что колебания напряжения в цепи получаются ничтожными.

Неподвижная часть машины постоянного тока называется статором, вращающаяся часть – ротором.

Процесс преобразования энергии в электрических машинах

Процесс преобразования энергии в электрических машинах

Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.

Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.

Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.

Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле . В обмотке якоря индуцируется э. д. с. и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Об осуществлении в электрической машине энергопреобразовательного процесса

Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:

1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;

2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,

3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.

Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.

Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в "машине постоянного тока" мы имеем двустадийное преобразование энергии.

Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой "изменяющееся электрическое сопротивление", преобразуется в энергию постоянного тока.

В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.

Роль упомянутого изменяющегося электрического сопротивления выполняет "скользящий электрический контакт", который в обычной "коллекторной машине постоянного тока" состоит из "электромашинной щетки" и "электромашинного коллектора", а в «униполярной электрической машине постоянного тока" из "электромашинной щетки" и "электромашинных контактных колец".

Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или "изменяющейся электрической индуктивности", или "изменяющейся электрической емкости", то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем "индуктивную машину", во втором — "емкостную машину".

Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование "электрическая машина", являющееся, по существу, более широким понятием.

Принцип действия электрического генератора.

Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.

Принципиальные схемы простейших генератора (а) и электродвигателя (б)

Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)

При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.

Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.

При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.

Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.

Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.

Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.

При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;

2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.

Электрический двигатель

Принцип действия электрического двигателя.

Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.

Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.

При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;

2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Электрический двигатель

Принцип обратимости электрических машин

Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.

Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.

Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.

Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.

Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U машина работает двигателем, при E > U — генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Электрические машины — это преобразователи энергии, устройства, которые преобразуют энергию из одной формы в другую. Они преобразуют механическую работу в электрическую энергию или наоборот.

Существуют также силовые преобразователи, которые преобразуют электрическую энергию одной формы в другую. Они называются статическими преобразователями мощности.

Ниже перечислены некоторые примеры преобразователей мощности:

  • Силовые преобразователи, которые генерируют механическую работу с использованием электрической энергии, называются электрическими двигателями. Электродвигатели — это электрические машины.
  • Силовые преобразователи, которые используют электроэнергию постоянного тока и напряжения и преобразуют эту энергию в электрическую энергию переменного тока и напряжения, называются инверторами. Инверторы относятся к статическим преобразователям мощности и используют полупроводниковые силовые переключатели.
  • Электрические генераторы преобразуют механическую работу в электрическую энергию. Они также принадлежат к электрическим машинам.
  • Силовые трансформаторы преобразуют электрическую энергию из одной системы переменного напряжения в электрическую энергию другой системы переменного напряжения, при этом две системы переменного тока имеют одинаковую частоту.

Преобразователи мощности бывают вращающиеся и статистические.

Вращающиеся преобразователи мощности

Электрические машины, преобразующие электрическую энергию в механическую работу, называются электрическими двигателями.

Электрические машины, преобразующие механическую работу в электрическую энергию, называются электрическими генераторами.

Электрические машины

Механическая энергия обычно проявляется в форме вращательного движения. Электрические двигатели и генераторы называются преобразователями вращательной мощности или вращающимися электрическими машинами. Процесс преобразования электрической энергии в механическую работу называется электромеханическим.

Электрические машины состоят из токовых цепей, изготовленных из изолированных проводников и магнитопроводов, изготовленных из ферромагнитных материалов. Машины производят механическую работу за счет действия электромагнитных сил на проводники и ферромагнетики, соединенные магнитным полем. Проводники и ферромагнитные элементы принадлежат либо движущейся части машины (ротору), либо неподвижной части (статору). Вращение движущейся части машины способствует изменению магнитного поля. В свою очередь, в проводниках индуцируется электродвижущая сила, которая вырабатывает электрическую энергию. Аналогично, электрический ток в проводниках машины , называемых обмотками, взаимодействует с магнитным полем и создает силы, которые возбуждают движение ротора.

Статические преобразователи мощности

В отличие от электрических машин, силовые трансформаторы не содержат движущихся частей. Их работа основана на электромагнитной связи между первичной и вторичной обмотками, окружающими один и тот же магнитопровод.

В дополнение к электрическим машинам и силовым трансформаторам существуют силовые преобразователи, работа которых не основана на электромагнитной связи токовых цепей и магнитопровода.

Преобразователи, содержащие полупроводниковые силовые переключатели, известны как статические силовые преобразователи или устройства силовой электроники. Одним из таких примеров является диодный выпрямитель, содержащий четыре силовых диода, соединенных в мост. Питаемый переменным напряжением, диодный выпрямитель выдает пульсирующее постоянное напряжение. Диодный выпрямитель осуществляет преобразование электрической энергии переменного тока в электрическую энергию постоянного тока.

Преобразование электрической энергии постоянного тока в электрическую энергию переменного тока осуществляется инверторами, статическими преобразователями мощности, содержащими полупроводниковые силовые ключи, такие как силовые транзисторы или силовые тиристоры. Статические преобразователи мощности часто используются в сочетании с электрическими машинами.

Роль электромеханического преобразования энергии

Электромеханическое преобразование играет ключевую роль в производстве и использовании электрической энергии.

Электрические генераторы производят электрическую энергию, в то время как двигатели являются потребителями, преобразующими значительную часть электрической энергии в механические работы, необходимые для производственных процессов, транспортировки, освещения и других промышленных и бытовых применений.

Благодаря электромеханическому преобразованию энергия транспортируется и доставляется удаленным потребителям с помощью электрических проводников. Электрическая передача достаточна надежна, она не сопровождается выбросами газов или других вредных веществ и осуществляется с низкими потерями энергии. Существуют линии передачи постоянного тока.

На электростанциях паровые и водяные турбины производят механическую работу, которая подается на электрические генераторы. Через происходящие процессы в генераторе механическая работа преобразуется в электрическую энергию, которая доступна на клеммах генератора в виде переменного тока и напряжения.

Назначение электрических сетей в передаче электрической энергии в промышленные центры и населенные пункты, где силовые кабели и линии распределительной сети обеспечивают электроснабжение различных потребителей, расположенных в производственных цехах, транспортных единицах, офисах и домашних хозяйствах. В процессе передачи и распределения напряжение несколько раз преобразуется с помощью силовых трансформаторов. Электрические генераторы, электродвигатели и силовые трансформаторы являются жизненно важными компонентами электроэнергетической системы

Основные законы определяющие электромеханическое преобразование энергии

Электромеханическое преобразование энергии может быть достигнуто путем применения различных принципов физики. Работа электрических машин обычно основана на магнитном поле, которое соединяет токоведущие цепи и движущиеся части машины. Проводники и ферромагнитные детали в магнитном поле связи подвергаются воздействию электромагнитных сил. Проводники образуют контуры и цепи, несущие электрические токи. Связь потока в контуре может изменяться из-за изменения электрического тока или из-за движения. Изменение потока вызывает электродвижущую силу в контурах.

Основные законы физики, определяющие электромеханическое преобразование энергии в электрических машинах с магнитным полем связи следующие:

  • Закон электромагнитной индукции Фарадея, который определяет взаимосвязь между изменяющимся магнитным потоком и индуцированной электродвижущей силой.
  • Закон Ампера, который описывает магнитное поле проводников, несущих электрический ток
  • Закон Лоренца, определяющий силу, действующую на движущиеся заряды в магнитном и электрическом полях
  • Законы Кирхгофа, которые дают соотношения между напряжениями и токами в токовых цепях, а также между потоками и магнитодвижущими силами в магнитных цепях

Процесс электромеханического преобразования энергии

Процесс электромеханического преобразования энергии в электрических машинах основан на взаимодействии магнитного поля связи с проводниками, несущими электрические токи. Магнитный поток направляется через магнитопроводы, изготовленные из ферромагнитных материалов. Электрические токи направляются через токопроводящие провода. Магнитопроводы формируются путем укладки железных листов, разделенных тонкими слоями изоляции, в то время как цепи тока выполнены из изолированных медных проводников.

Три наиболее важных типа электрических машин:

  • машины постоянного тока;
  • асинхронные;
  • синхронные.

Типы электрических машин имеют различную конструкцию и используют различные способы создания магнитных полей и токов.

Вращающиеся электрические машины имеют неподвижную часть, статор, и движущуюся часть, ротор, который может вращаться вокруг оси машины. Магнитная и токовая цепи могут быть установлены как на статор и ротор. В дополнение к магнитным и токовым цепям электрические машины также имеют другие детали, такие как корпус, вал, подшипники и клеммы токовых цепей.

Вращающиеся электрические машины

Механическая работа электрических машин может быть связана с вращением или перемещением.

Большинство электрических машин состоит из вращающихся электромеханических преобразователей, производящих вращательное движение и имеющих цилиндрические роторы.

Линейные двигатели обеспечивающие линейное перемещение подвижной части встречаются довольно редко.

Токовые цепи машины называются обмотками. Они могут быть подключены к внешним источникам электроэнергии или к потребителям электрической энергии. Концы обмотки доступны в качестве электрических клемм. Электрические клеммы обеспечивают электрический доступ к машине. Поскольку электрические машины выполняют электромеханическое преобразование, они имеют как электрический, так и механический доступ. Через электрические клеммы машина может получать электрическую энергию от внешних источников или поставлять электрическую энергию потребителям в схемы, которые являются внешними по отношению к машине. Ротор расположен внутри полого цилиндрического статора. Вдоль оси ротора расположен стальной вал, доступный с торцов станка. Угловая частота вращения ротора называется частотой вращения ротора.

Электрическая машина может выполнять или принимать механическую работу. Вал составляет механическую клемму машины. Он передает вращающий момент или просто крутящий момент внешним источникам или потребителям механической работы. Крутящий момент создается взаимодействием магнитного поля и электрического тока. Поэтому его еще называют электромагнитным моментом. В тех случаях, когда крутящий момент способствует движению и действует в направлении для увеличения скорости, это называется крутящим моментом привода.

Электрический двигатель преобразует электрическую энергию в механическую работу. Последняя подается через вал на машину, работающую в качестве механической нагрузки, также называемую рабочей машиной.

Электрический генератор преобразует механическую работу в электрическую энергию. Он получает механическую работу от водяной или паровой турбины; таким образом, мощность генератора имеет отрицательное значение. Вращающий момент турбины стремится привести ротор в движение, в то время как крутящий момент, создаваемый электрической машиной, противодействует этому движению.

Поскольку электрический генератор преобразует механическую работу в электрическую энергию и подает ее в сеть питания, мощность генератора имеет отрицательное значение. Знак этих переменных связан с опорными направлениями. Изменение опорных направлений для крутящих моментов и токов приведет к положительным крутящим моментам генератора и положительной мощности генератора.

Реверсивные машины

Электрические машины в основном реверсивны.

Реверсивная электрическая машина может работать либо как генератор, преобразующий механическую работу в электрическую энергию, либо как двигатель, преобразующий электрическую энергию в механическую работу. Переход от генератора в режим работы двигателя сопровождается изменением электрических и механических переменных, таких как напряжение, ток, крутящий момент и скорость. Режим работы может быть изменен без изменений в конструкции машины, без изменения в цепях тока и без изменений в соединении вала между электрической и рабочей машиной. Примером реверсивной электрической машины является асинхронный двигатель. При угловых скоростях вращения ротора ниже синхронной скорости асинхронная машина работает в режиме двигателя. Если скорость увеличивается выше синхронной скорости, электромагнитный крутящий момент противодействует движению, в то время как асинхронная машина преобразует механическую работу в электрическую энергию, таким образом, работая в режиме генератора.

Потери при преобразовании энергии

Преобразование энергии сопровождается потерями энергии в цепях тока, магнитных цепях, а также потерями механической энергии в результате различных форм вращательного трения. Из-за потерь значения мощности на электрическом и механическом терминалы не равны.

В режиме двигателя полученная механическая мощность несколько ниже, чем вложенная электрическая мощность из-за потерь на преобразование.

В режиме генератора полученная электрическая мощность несколько ниже, чем вложенная механическая мощность из-за потерь.

Читайте также: