Построение и использование компьютерных моделей кратко

Обновлено: 30.06.2024

Компьютерная модель (англ. computer model), или численная модель – компьютерная программа, работающая на отдельном компьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы.

Компьютерное моделирование – метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple, Mathematica, Mathcad, MATLAB, VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дискретная модель – математическая модель, которая описывает поведение и свойства объекта только в отдельные моменты времени.

Модель лабиринтного поиска – поиск оптимального пути от входных данных к результату.

Эвристическое моделирование заключается в стремлении воспроизвести то, что однажды уже привело к успеху.

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов: сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования.

2. Разработка концептуальной модели, выявление основных элементов системы и их взаимосвязей.

3. Формализация, то есть переход к математической модели.

4. Создание алгоритма и написание программы.

5. Планирование и проведение компьютерных экспериментов.

6. Анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование.

При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению.

При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Компьютерное моделирование применяют для широкого круга задач, таких как:

Моделирование ядерных испытаний.

Моделирование радиационного воздействия на организм человека.

Анализ распространения загрязняющих веществ в атмосфере.

Конструирование транспортных средств.

Полетные имитаторы для тренировки пилотов.

Прогнозирование цен на финансовых рынках.




Исследование поведения зданий, конструкций и деталей под механической нагрузкой.

Прогнозирование прочности конструкций и механизмов их разрушения.

Проектирование производственных процессов, например химических.

Стратегическое управление организацией.

Исследование поведения гидравлических систем: нефтепроводов, водопровода.

Моделирование сценарных вариантов развития городов.

Моделирование транспортных систем.

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.

Компьютерная модель (англ. computer model), или численная модель – компьютерная программа, работающая на отдельном компьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы.

Компьютерное моделирование – метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple, Mathematica, Mathcad, MATLAB, VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дискретная модель – математическая модель, которая описывает поведение и свойства объекта только в отдельные моменты времени.

Модель лабиринтного поиска – поиск оптимального пути от входных данных к результату.

Эвристическое моделирование заключается в стремлении воспроизвести то, что однажды уже привело к успеху.

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить вычислительные эксперименты в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов: сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся:

1. Постановка задачи, определение объекта моделирования.

2. Разработка концептуальной модели, выявление основных элементов системы и их взаимосвязей.

3. Формализация, то есть переход к математической модели.

4. Создание алгоритма и написание программы.

5. Планирование и проведение компьютерных экспериментов.

6. Анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование.

При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению.

При имитационном моделировании исследуются математические модели в виде алгоритма, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Компьютерное моделирование применяют для широкого круга задач, таких как:

Моделирование ядерных испытаний.

Моделирование радиационного воздействия на организм человека.

Анализ распространения загрязняющих веществ в атмосфере.

Конструирование транспортных средств.

Полетные имитаторы для тренировки пилотов.

Прогнозирование цен на финансовых рынках.

Исследование поведения зданий, конструкций и деталей под механической нагрузкой.

Прогнозирование прочности конструкций и механизмов их разрушения.

Проектирование производственных процессов, например химических.

Стратегическое управление организацией.

Исследование поведения гидравлических систем: нефтепроводов, водопровода.

Моделирование сценарных вариантов развития городов.

Моделирование транспортных систем.

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.


Совершенствование информационных технологий обусловило использование компьютеров практически во всех сферах деятельности человека. Развитие научных теорий предполагает выдвижение основных принципов, построение математической модели объекта познания, получение из нее следствий, которые могут быть сопоставлены с результатами эксперимента.

Использование ЭВМ позволяет, исходя из математических уравнений, рассчитать поведение исследуемой системы в тех или иных условиях. Часто это единственный способ получения следствий из математической модели.

Например, задача о движении трех или более частиц, взаимодействующих друг с другом, актуальна при исследовании движении планет, астероидов и других небесных тел. В общем случае она сложна и не имеет аналитического решения, и лишь использование метода компьютерного моделирования позволяет рассчитать состояние системы в последующие моменты времени.

Совершенствование вычислительной техники, появление ЭВМ, позволяющей быстро и достаточно точно осуществлять вычисления по заданной программе, ознаменовало качественный скачок на пути развития науки.

Решение современных задач требует создания компьютерных моделей, проведения огромного количества вычислений, что стало возможным лишь после появления электронно-вычислительных машин, способных выполнять миллионы операций в секунду. Существенным является и то, что вычисления производятся автоматически, в соответствии с заданным алгоритмом и не требуют вмешательства человека.

К настоящему времени методы компьютерного моделирования получили столь широкое распространение, что практически не осталось такой научной области, где бы они эти методы не нашли своего применения.

Более того, компьютерное моделирование как инструмент исследования обладает целым рядом преимуществ по сравнению с реальным экспериментом, в частности, компьютерный эксперимент может быть выполнен в таких условиях, когда проведение натурного эксперимента затруднено или даже невозможно.

В настоящее время компьютерное моделирование используется для проведения исследований в следующих направлениях:

экология и геофизика:

анализ распространения загрязняющих веществ в атмосфере;

проектирование шумовых барьеров для борьбы с шумовым загрязнением;

прогнозирование погоды и климата;

расчет ядерных реакций;

решение задач небесной механики, астрономии и космонавтики;

изучение глобальных явлений на Земле, моделирование погоды, климата, исследование экологических проблем, глобального потепления, последствий ядерного конфликта и т.д.;

конструирование транспортных средств;

полетные имитаторы для тренировки пилотов;

моделирование транспортных систем;

исследование поведения гидравлических систем (нефтепроводов, водопровода и пр.);

электроника и электротехника:

эмуляция работы различных технических, в частности, электронных устройств;

экономика и финансы:

прогнозирование цен на финансовых рынках;

архитектура и строительство:

исследование поведения зданий, конструкций и деталей под механической нагрузкой;

прогнозирование прочности конструкций и механизмов их разрушения;

проектирование производственных процессов, например химических;

моделирование сценарных вариантов развития городов;

управление и бизнес:

стратегическое управление организацией;

моделирование рынков сбыта и рынков сырья;

моделирование производственных процессов;

экономические исследования развития предприятия, отрасли, страны;

моделирование роботов и автоматических манипуляторов;

моделирование прочностных и других характеристик деталей, узлов и агрегатов;

решение задач механики сплошных сред, в частности, гидродинамики;

компьютерное моделирование различных технологических процессов;

расчет химических реакций и биологических процессов, развитие химической и биологической технологии;

медицина и биология:

моделирование результатов пластических операций;

моделирование пандемий и эпидемий;

моделирование воздействия медикаментов и оперативных вмешательств на метаболизм и другие жизненно важные процессы;

политика и военное дело:

моделирование развития межгосударственных отношений;

моделирование поведения масс людей в различных общественно-политических ситуациях;

моделирование театра военных действий;

социологические исследования, в частности, моделирование выборов, голосования, распространение сведений, изменение общественного мнения, военных действий;

расчет и прогнозирование демографической ситуации в стране и мире.

В моделях отражаются глубинные закономерности, установленные в результате целенаправленных исследований. В роли моделей выступают разнообразные предметы и объекты: рисунки, схемы, карты, графики, формулы.

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов.

В любом случае использование автоматизированного варианта анализа оправдано только при ясном понимании всего процесса функционирования исследуемой системы и требуемых объема, точности и формы представления конечных результатов исследования.

Появление новых средств и методов получения, представления, передачи и обработки информации, использование новых технологий стимулировало процесс разработки перспективных диагностических систем, использующих новые информационные технологии.

Создание систем диагностирования предполагает решение таких вопросов, как исследование их свойств и характеристик, исследование объектов диагностирования, выбор методов и разработка алгоритмов диагностирования.

Исследование объектов диагностирования включает в себя изучение реальных физических объектов, а также построение и анализ моделей этих объектов. В тех случаях, когда проведение экспериментального исследования реального объекта в необходимом объеме затруднено или невозможно, а также при разработке нового объекта, исследование может быть выполнено на моделях.

Моделирование как метод научного исследования широко применяется в технической диагностике не только при изучении объектов, но и при разработке алгоритмов и средств диагностирования, исследовании эффективности систем диагностирования.

Под моделированием объекта диагностирования понимается построение (или выбор) и анализ диагностической модели с целью получения информации, необходимой для определения конечного множества возможных технических состояний этого объекта.

При анализе модели устанавливаются реакции объекта на появление различных дефектов, формируется массив информации об объекте, необходимый при практическом диагностировании. Из множества возможных дефектов объекта обычно рассматриваются и имитируются на модели только наиболее характерные, так как даже для объектов диагностирования небольшой сложности число возможных дефектов и их комбинаций велико, а с увеличением числа учитываемых дефектов размерность модели быстро растет.

Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 23.03.2010
Размер файла 29,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ФИНАНСОВ

Реферат на тему:

студентка 1-го курса гр№119.

Оглавление

Построение и использование компьютерных моделей

Пути построения компьютерных моделей

Компьютерное моделирование начинается как обычно с объекта изучения, в качестве которого могут выступать: явления, процесс, предметная область, жизненные ситуации, задачи. После определения объекта изучения строится модель. При построении модели выделяют основные, доминирующие факторы, отбрасывая второстепенные. Выделенные факторы перекладывают на понятный машине язык. Строят алгоритм, программу.

Когда программа готова, проводят компьютерный эксперимент и анализ полученных результатов моделирования при вариации модельных параметров. И уже в зависимости от этих выводов делают нужные коррекции на одном из этапов моделирования: либо уточняют модель, либо алгоритм, либо точнее, более корректнее определяют объект изучения.

Компьютерные модели проходят очень много изменений и доработок прежде, чем принимают свой окончательный вид. Этапы компьютерного моделирования можно представить в виде схемы:

Объект - Модель - Компьютер - Анализ - Информац. модель

!______! !_____! !____________! !______!

модел-е прогр-е к.эксперимент знание

В методе компьютерного моделирования присутствуют все важные элементы развивающего обучения и познания: конструирование, описание, экспериментирование и т.д. В результате добываются знания об исследуемом объекте-оригинале.

Однако важно не путать компьютерную модель (моделирующую программу) с самим явлением. Модель полезна, когда она хорошо согласуется с реальностью. Но модели могут предсказывать и те вещи, которые не произойдут, а некоторые свойства действительности модель может и не прогнозировать. Тем не менее, полезность модели очевидна, в частности, она помогает понять, почему происходят те или иные явления.

Современное компьютерное моделирование выступает как средство общения людей (обмен информационными, компьютерными моделями и программами), осмысления и познания явлений окружающего мира (компьютерные модели солнечной системы, атома и т.п.), обучения и тренировки (тренажеры), оптимизации (подбор параметров).

Компьютерная модель - это модель реального процесса или явления, реализованная компьютерными средствами.

Компьютерные модели, как правило, являются знаковыми или информационными. К знаковым моделям в первую очередь относятся математические модели, демонстрационные и имитационные программы.

Информационная модель - набор величин, содержащий необходимую информацию об объекте, процессе, явлении.

ь Главной задачей компьютерного моделирования выступает построение информационной модели объекта, явления.

ь Самое главное и сложное в компьютерном моделировании - это построение или выбор той или иной модели.

При построении компьютерной модели используют системный подход, который заключается в следующем. Рассмотрим объект - солнечную систему. Систему можно разбить на элементы - Солнце и планеты. Введем отношения между элементами, например, удаленность планет от Солнца. Теперь можно рассматривать независимо отношения между Солнцем и каждой из планет, затем обобщить эти отношения и составить общую картину солнечной системы (принципы декомпозиции и синтеза).

Некоторые характеристики моделей являются неизменными, не меняют своих значений, а некоторые изменяются по определенным законам. Если состояние системы меняется со временем, то модели называют динамическими, в противном случае - статическими.

Построение компьютерной модели. Моделирование

При построении моделей используют два принципа: дедуктивный (от общего к частному) и индуктивный (от частного к общему).

При первом подходе рассматривается частный случай общеизвестной фундаментальной модели. Здесь при заданных предположениях известная модель приспосабливается к условиям моделируемого объекта. Например, можно построить модель свободно падающего тела на основе известного закона Ньютона ma = mg-Fсопр и в качестве допустимого приближения принять модель равноускоренного движения для малого промежутка времени.

Второй способ предполагает выдвижение гипотез, декомпозицию сложного объекта, анализ, затем синтез. Здесь широко используется подобие, аналогичное моделирование, умозаключение с целью формирования каких-либо закономерностей в виде предположений о поведении системы. Например, подобным способом происходит моделирование строения атома. Вспомним модели Томсона, Резерфорда, Бора.

Технология построения модели при дедуктивном способе:

1. Теоретический этап:

2. Знания, информация об объекте (исходные данные об объекте).

3. Постановка задачи для целей моделирования.

4. Выбор модели (математические формулировки, компьютерный дизайн).

Технология построения модели при индуктивном способе:

1. Эмпирический этап:

2. Постановка задачи для моделирования.

3. Оценки.Количественное и качественное описание

4. Построение модели.

Этапы решения задачи с помощью компьютера (построение модели -- формализация модели -- построение компьютерной модели -- проведение компьютерного эксперимента -- интерпретация результата).

Основные этапы разработки и исследования моделей на компьютере

1. описательная информационная модель

2. формализованная модель

3. компьютерная модель

4. компьютерный эксперимент

5. Анализ полученных результатов и корректировка исследуемой модели

1 этап - описательная информационная модель : такая модель выделяет существенные (с точки зрения целей проводимого исследования ) параметры объекта, а несущественными параметрами пренебрегает

2 этап - Описательная информационная модель записывается с помощью какого-либо формального языка. В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

3 этап - компьютерная модель

Описательная информационная модель записывается с помощью какого-либо формального языка.

В такой модели с помощью формул, уравнений, неравенств и пр. фиксируются формальные соотношения между начальными и конечными значениями свойств объектов, а также накладываются ограничения на допустимые значения этих свойств.

Пути построения компьютерной модели

o Построение алгоритма решения задачи и его кодирование на одном из языков программирования;

o Построение компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и пр.)

4 этап - компьютерный эксперимент

o Если компьютерная модель существует в виде программы на одном из языков программирования, её нужно запустить на выполнение и получить результаты.

o Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график.

5 этап - анализ полученных результатов и корректировка исследуемой модели

o В случае различия результатов, полученных при исследовании информационной модели, с измеряемыми параметрами реальных объектов можно сделать вывод, что на предыдущих этапах построения модели были допущены ошибки или неточности.

o Провести корректировку модели.

Теоретическая основа метода была известна давно. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную - очень трудоемкая работа.

Само название “Монте-Карло” происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом. Дело в том, что одним из механических приборов для получения случайных величин является рулетка. Для вычисления площади круга единичного радиуса проведем эксперимент.

Список литературы:

Подобные документы

Значение вербальных и знаковых информационных моделей для исследования объектов, процессов, явлений. Роль метода формализации в процессе создания компьютерной модели. Использование программы AutoCAD для трехмерного моделирования и визуализации объекта.

курсовая работа [866,5 K], добавлен 08.01.2015

Обзор средств компьютерного имитационного моделирования по созданию веб-приложения для визуализации имитационных моделей. Система имитационного моделирования AnyLogic, Arena, SimuLab. Серверная, клиентская часть. Модель работы отдела банка и участка цеха.

дипломная работа [3,3 M], добавлен 25.05.2015

Сущность принципов информационной достаточности, осуществимости, множественности моделей, параметризации и агрегирования. Построение концептуальной модели. Сравнение размеров программного кода. Особенности технологии компьютерного моделирования.

презентация [49,3 K], добавлен 16.10.2013

Понятие компьютерной модели и преимущества компьютерного моделирования. Процесс построения имитационной модели. История создания системы GPSS World. Анализ задачи по прохождению турникета на стадион посредством языка имитационного моделирования GPSS.

курсовая работа [291,3 K], добавлен 11.01.2012

Особенности метода создания экспериментальных моделей традиционного для классической и современной физиологии. Значение метода математического моделирования в физиологической кибернетике. Этапы разработки моделей эвристического типа за Н.М. Амосовым.

презентация [508,3 K], добавлен 02.04.2011

Формализация как важнейший этап моделирования. Методы описания и свойства моделей. Адекватность проекта целям моделирования. Основные принципы и значение формализации. Исследование на компьютере информационных моделей из различных предметных областей.

презентация [1,2 M], добавлен 24.01.2011

Использование библиотеки готовых компонентов как основы процесса построения моделей организационных систем. Характеристика качественных методов принятия решений. Применение порядковой классификации в процессе UFO-моделирования систем телемеханики.

магистерская работа [732,7 K], добавлен 26.04.2011

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Графические модели. Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели. Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Если система сложна, а требуется проследить за каждым ее элементом, то на помощь могут придти компьютерные имитационные модели. На компьютере можно воспроизвести последовательность временных событий, а потом обработать большой объем информации.

Однако следует четко понимать, что компьютер является хорошим инструментом для создания и исследования моделей, но он их не придумывает. Абстрактный анализ окружающего мира с целью воссоздания его в модели выполняет человек.

Одной из важных проблем в области разработки и создания современных сложных технических систем является исследование динамики их функционирования на различных этапах проектирования, испытания и эксплуатации. Сложными системами называются системы, состоящие из большого числа взаимосвязанных и взаимодействующих между собой элементов. При исследовании сложных систем возникают задачи исследования как отдельных видов оборудования и аппаратуры, входящих в систему, так и системы в целом.

К разряду сложных систем относятся крупные технические, технологические, энергетические и производственные комплексы.

При проектировании сложных систем ставится задача разработки систем, удовлетворяющих заданным техническим характеристикам. Поставленная задача может быть решена одним из следующих методов:

  • методом синтеза оптимальной структуры системы с заданными характеристиками;
  • методом анализа различных вариантов структуры системы для обеспечения требуемых технических характеристик.

Оптимальный синтез систем в большинстве случаев практически невозможен в силу сложности поставленной задачи и несовершенства современных методов синтеза сложных систем. Методы анализа сложных систем, включающие в себя элементы синтеза, в настоящее время достаточно развиты и получили широкое распространение.

Любая синтезированная или определенная каким-либо другим образом структура сложной системы для оценки ее показателей должна быть подвергнута испытаниям. Проведение испытаний системы является задачей анализа ее характеристик. Таким образом, конечным этапом проектирования сложной системы, осуществленного как методом синтеза структуры, так и методом анализа вариантов структур, является анализ показателей эффективности проектируемой системы.

Среди известных методов анализа показателей эффективности систем и исследования динамики их функционирования следует отметить:

  • аналитический метод;
  • метод натуральных испытаний;
  • метод полунатурального моделирования;
  • моделирование процесса функционирования системы на ЭВМ.

Строгое аналитическое исследование процесса функционирования сложных систем практически невозможно. Определение аналитической модели сложной системы затрудняется множеством условий, определяемых особенностями работы системы, взаимодействием ее составляющих частей, влиянием внешней среды и т.п.

Натуральные испытания сложных систем связаны с большими затратами времени и средств. Проведение испытаний предполагает наличие готового образца системы или ее физической модели, что исключает или затрудняет использование этого метода на этапе проектирования системы.

Широкое применение для исследования характеристик сложных систем находит метод полунатурального моделирования. При этом используется часть реальных устройств системы. Включенная в такую полунатуральную модель ЭВМ имитирует работы остальных устройств системы, отображенных математическими моделями. Однако в большинстве случаев этот метод также связан со значительными затратами и трудностями, в частности, аппаратной стыковкой натуральных частей с ЭВМ.

Исследование функционирования сложных систем с помощью моделирования их работы на ЭВМ помогает сократить время и средства на разработку.

Затраты рабочего времени и материальных средств на реализацию метода имитационного моделирования оказываются незначительными по сравнению с затратами, связанными с натурным экспериментом. Результаты моделирования по своей ценности для практического решения задач часто близки к результатам натурного эксперимента.

Метод имитационного моделирования основан на использовании алгоритмических (имитационных) моделей, реализуемых на ЭВМ, для исследования процесса функционирования сложных систем. Для реализации метода необходимо разработать специальный моделирующий алгоритм. В соответствии с этим алгоритмом в ЭВМ вырабатывается информация, описывающая элементарные процессы исследуемой системы с учетом взаимосвязей и взаимных влияний. При этом моделирующий алгоритм сроится в соответствии с логической структурой системы с сохранением последовательности протекаемых в ней процессов и отображением основных состояний системы.

  • моделирование входных и внешних воздействий;
  • воспроизведение работы моделируемой системы (моделирующий алгоритм);
  • интерпретация и обработка результатов моделирования.

Перечисленные этапы метода многократно повторяются для различных наборов входных и внешних воздействий, образуя внутренний цикл моделирования. Во внешнем цикле организуется просмотр заданных вариантов моделируемой системы. Процедура выбора оптимального варианта управляет просмотром вариантов, внося соответствующие коррективы в имитационную модель и в модели входных и внешних воздействий.

Процедура построения модели системы, контроля точности и корректировки модели по результатам машинного эксперимента задает и затем изменяет блок и внутреннего цикла в зависимости от фактических результатов моделирования. Таким образом, возникает внешний цикл, отражающий деятельность исследователя по формированию, контролю и корректировке модели.

Метод имитационного моделирования позволяет решать задачи исключительной сложности. Исследуемая система может одновременно содержать элементы непрерывного и дискретного действия, быть подверженной влиянию многочисленных случайных факторов сложной природы, описываться весьма громоздкими соотношениями и т.п. Метод не требует создания специальной аппаратуры для каждой новой задачи и позволяет легко изменять значения параметров исследуемых систем и начальных условий. Эффективность метода имитационного моделирования тем более высока, чем на более ранних этапах проектирования системы он начинает использоваться.

Следует, однако, помнить, что метод имитационного моделирования является численным методом. Его можно считать распространением метода Монте-Карло на случай сложных систем. Как любой численный метод, он обладает существенным недостатком – его решение всегда носит частный характер. Решение соответствует фиксированным значениям параметров системы и начальных условий. Для анализа системы приходится многократно моделировать процесс ее функционирования, варьируя исходные данные модели. Таким образом, для реализации имитационных моделей сложной модели необходимо наличие ЭВМ высокой производительности.

Для моделирования системы на ЭВМ необходимо записывать моделирующий алгоритм на одном из входных языков ЭВМ. В качестве входных языков для решения задач моделирования могут быть с успехом использованы универсальные алгоритмические языки высокого уровня, Си, Паскаль и др.

Анализ развития наиболее сложных технических систем позволяет сделать вывод о все более глубоком проникновении ЭВМ в их структуру. Вычислительные машины становятся неотъемлемой, а зачастую и основной частью таких систем. Прежде всего это относится к сложным радиоэлектронным системам. Среди них различные автоматические системы, в том числе системы автоматической коммутации (электронные АТС), системы радиосвязи, радиотелеметрические системы, системы радиолокации и радионавигации, различные системы управления.

На этапах разработки, проектирования, отладки и испытания сложных систем с высоким удельным весом аппаратно-программных средств вычислительной техники ставится задача анализа и синтеза вариантов организации структуры аппаратных средств, а также разработки и отладки специализированного ПО большого объема. Эта задача может быть решена с помощью аппаратно-программного моделирования с использованием универсальных моделирующих комплексов, построенных на базе однородных ВС с программируемой структурой.

Аппаратно-программное моделирование можно считать частным случаем полунатурного моделирования. На первом этапе разрабатывается концептуальная модель заданного класса систем на основе анализа типовых процессов, структур и аппаратных блоков. Концептуальная модель реализуется на аппаратно-программных средствах моделирующего комплекса. При этом моделирующий комплекс может настраиваться на соответствующую структуру системы программным путем за счет возможности программирования структуры используемой микропроцессорной ВС. Часть аппаратных и программных средств микропроцессорной ВС моделирующего комплекса непосредственно отражает аппаратно-программные средства, входящие в исследуемую систему (аппаратное моделирование), другая часть реализует имитационную модель функциональных средств исследуемой системы, внешней обстановки, влияния помех и т.п. (программное моделирование).

Разработка аппаратно-программных моделирующих комплексов является сложной технической задачей. Несмотря на это, применение таких комплексов находит все большее распространение. При достаточной производительности вычислительных средств комплекса процесс исследования системы может вестись в реальном масштабе времени. В составе комплекса могут использоваться как универсальные микроЭВМ общего назначение, так и вычислительные средства, непосредственно входящие в исследуемую систему. Подобные моделирующие комплексы являются универсальными стендами для разработки и отладки аппаратно-программных средств, проектируемых систем заданного класса. Они могут использоваться в качестве тренажеров по обучению обслуживающего персонала.

Читайте также: