Получение высокоотражающих покрытий кратко

Обновлено: 25.06.2024

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло — воздух, сопровождается отражением ≈4% падающего потока (при показа­теле преломления стекла ≈1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока.

Для устранения недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. Если оптическая толщина пленки равна λ0/4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции многолучевая интерференция возникает при наложении большого числа когерентных световых пучков.

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной λ0/4), нанесенных на отражающую поверхность. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения 96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения - 7 м) определения размеров изделий (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр).

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д., измеряются весьма малые концентрации примесей в газах и жидкостях. Использование таких точных оптических приборов позволит технологически контролировать качество питьевой воды.

Микроинтерферометр (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности. С помощью интерференционных методов проверяется качество шлифовки линз и зеркал, что очень важно при изготовлении оптических приборов, используемых также и в строительной технике. Интерферометры позволяют проводить измерения углов, исследования быстропротекающих процессов, обтекающем летательные аппараты и т.д.

С помощью интерферометров можно измерить коэффициенты линейного расширения твердых тел, что весьма является важным в связи с созданием новых строительных материалов и новых технологий получения металлопластмассовых и пластиковых строительных изделий. Интерферометры позволяют контролировать качество шлифовки поверхностей. Если на поверхности имеется царапина или вмятина, то это приводит к искривлению интерференционных полос. По характеру искривления полос можно судить о глубине царапины, такие исследования поверхности новых строительных материалов для новейших строительных технологий является важным.

ГЛАВА 27. ДИФРАКЦИЯ СВЕТА

27.1. Принцип Гюйгенса — Френеля

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятст­вий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствие проникать через небольшие отверстия в экране и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света, В общем случае расчет вторичных волн довольно сложный и громоздкий, однако, как будет показано ниже, для некоторых случаев нахождение амплитуды результирующего колебания осуществляется алгебраическим суммированием.

27.2. Метод зон Френеля. Прямолинейное распространение света

Принцип Гюйгенса — Френеля в рамках волновой теории должен был oтветить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмот­рев взаимную интерференцию вторичных волн и применив прием, получивший название метода зон Френеля.


Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис.27.1). Согласно принципу Гюйген­са — Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, Рис. 27.1.

являющейся поверхностью фронта волны, идущей из S (поверхность сферы с центром S). Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на λ/2, т. е. Р1М-Р0М= Р2М-Р1М= Р3М-Р2М=… λ/2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b+λ/2, b+2λ/2, b+3λ/2…

Tак как колебания от соседних зон проходят до точки М расстояния, отличающиеся на λ/2, то в точку М они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

где А1,А2,…- — амплитуды колебаний, возбуждаемых 1-й, 2-й. m-й зонами.


Рис. 27.2.
Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис.27.2). Обозначив площадь этого сегмента через σm что площадь m –й зоны Френеля равна Δσmmm-1, где σm-1 - площадь сферического сегмента, выделяемого внешней границей (m -1)-й зоны. Из рисунка следует, что

rm 2 =a 2 - (a-hm) 2 =(b –mλ/2) 2 -(b+hm) 2 . (27.2)

После элементарных nреобразований, учитывая, что λ А2> А34>…

Общее число зон Френеля, умещающихся на полусфере, очень велико; например, при а=b=10см и λ=0,5мкм N=8×10 5 . Поэтому в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е.


Аm= . (27.5)

Тогда выражение (27.1) можно записать в виде

А=А1/2 + ( А1/2 – А2 + А3/2) + ( А3/2 – А4 + А5/2) +… = А1/2, (27.6)

так как выражения, стоящие в скобках, согласно (27.5), равны нулю, а оставшаяся часть от амплитуды последней зоны ± Аm /2 ничтожно мала.

Таким образом, амплитуда результирующих колебаний в произвольной точке М определяется как бы действием только половины центральной зоны Френеля. Следовательно, действие всей волновой поверхности на точку M сводится к действию ее малого участка, меньшего центральной зоны.

Если в выражении (27.2) положим, что высота сегмента hm 2 =2а hm. Подставив сюда значение (27.3), найдем радиус внешней границы m-й зоны Френеля:


rm= . (27.7)

При а= b =10 см и λ=0,5 мкм радиус первой (центральной) зоны r1=0,158 мм.

Сле­довательно, распространение света от S к М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т. е. прямолинейно. Таким образом, принцип Гюйгенса-Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально. Для этого используются зонные пластинки — в простейшем случае стеклянные пластинки, состоящие из системы чередующихся прозрачных и непрозрачных концентрических колец, построенных по принципу расположения зон Френеля. Если поместить зонную пластинку в строго определенном месте, то для света длиной волны λ она перекроет четные зоны и оставит свободными нечетные начиная с центральной. В результате этого результирующая амплитуда А=А1 + А3 + А5 +… должна быть больше, чем при полностью открытом волновом фронте. Опыт подтверждает эти выводы: зонная пластинка увеличивает освещенность в точке, действуя подобно собирающей линзе.


Рис.27.3.
27.3. Дифракция Френеля на круглом отверстии и диске

Рассмотрим дифракцию на сходящихся лучах, или дифракцию Френеля, осуществляемую в том случае, когда дифракционная картина наблюдается на конечном расстоянии от препятствия, вызвавшего дифракцию.

а) Дифракция на круглом oтверствии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифрак­ционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия (рис.27.3). Экран параллелен плоскости отверстия и находятся от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зовы Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами:

где знак плюс соответствует нечетным m и минус — четным m .

Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсив­ность) в точке В будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю. Ecли отверствие открывает одну зону Френеля, то в точке В амплитуда А = А1 т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре раза. Если oтверстие открывает две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся темных и светлых колец с центрами в точке В (если m четное, то в центре будет темное кольцо, если m нечетное—то светлое кольцо), причем интенсивность в максимумах убывает с расстоянием от центра картины.


Если отверстие освещается не монохроматическим, а белым светом то кольца окрашены.

Число зон Френеля открываемых отверстием, зависит от его диаметра. Если он большой, то Аm

2) для измерения длин волн(интер­ференционная спектроскопия). Количествен­ные закономерности зависят от длины во­лны .

3) для улучшения качества оптических приборов(просветление оптики) и получе­ния высокоотражающих покрытий.

Для устранения указанных недостат­ков осуществляют про­светление оптики. На свободные поверхности линз наносят тонкие пленки с показателем преломления меньшим,чем у материала линзы. При отражении света от границ раздела воздух — пленка и пленка — стекло возникает интерферен­ция когерентных лучей. Толщину пленки d и показатели преломле­ния стекла и пленки можно подобрать так, чтобы интерферирующие лучи гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода:

Интенсивности волн равны, если равны коэффициенты отражения от обеих поверхностей , где и . Приравнивая друг к другу эти выражения. Найдем оптимальное значение абсолютного показателя преломления материала пленки. . Расчет показывает, что амплитуды отраженных лучей равны, если . Т.к. и (показатель преломления воздуха) удовлетворяют условию , то потеря полуволны происходит на обеих поверхностях;⇒ условие минимума при условии нормального падения света , где оптическая толщина пленки. Обычно принимают , тогда ; если и оптическая толщина пленки , то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это делается для наиболее восприимчивой глазом длины волны . Поэтому объективы с просветленной оптикой кажутся голубыми.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции.Возникает при наложении большого числа когерентных световых пучков. Интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Многолучевая интерференция осуществляется в дифракционной решетке, в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной ), нанесенных на отражающую поверхность.

4) Явление интерференции также приме­няется в очень точных измерительных при­борах, называемыхинтерферометрами.Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.

Советский физик В. П. Линник (1889— 1984) использовал принцип действия интерферометра Майкельсона для созда­ниямикроинтерферометра (комбинация интерферометра и микроскопа), служаще­го для контроля чистоты обработки по­верхности.

Интерферометры — очень чувстви­тельные оптические приборы, позволяю­щие определять незначительные измене­ния показателя преломления прозрачных тел (газов, жидких и твердых тел) в за­висимости от давления, температуры, при­месей и т. д. Такие интерферометры полу­чили названиеинтерференционных реф­рактометров.

Применение интерферометров многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью ин-ров исследовалось распространение света в движущихся телах, что привело к изменениям представлений о пространстве и времени.

1) применяется для подтверждения волновой природы света

2) для измерения длин волн(интер­ференционная спектроскопия). Количествен­ные закономерности зависят от длины во­лны .




3) для улучшения качества оптических приборов(просветление оптики) и получе­ния высокоотражающих покрытий.

Для устранения указанных недостат­ков осуществляют про­светление оптики. На свободные поверхности линз наносят тонкие пленки с показателем преломления меньшим,чем у материала линзы. При отражении света от границ раздела воздух — пленка и пленка — стекло возникает интерферен­ция когерентных лучей. Толщину пленки d и показатели преломле­ния стекла и пленки можно подобрать так, чтобы интерферирующие лучи гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода:

Интенсивности волн равны, если равны коэффициенты отражения от обеих поверхностей , где и . Приравнивая друг к другу эти выражения. Найдем оптимальное значение абсолютного показателя преломления материала пленки. . Расчет показывает, что амплитуды отраженных лучей равны, если . Т.к. и (показатель преломления воздуха) удовлетворяют условию , то потеря полуволны происходит на обеих поверхностях;⇒ условие минимума при условии нормального падения света , где оптическая толщина пленки. Обычно принимают , тогда ; если и оптическая толщина пленки , то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это делается для наиболее восприимчивой глазом длины волны . Поэтому объективы с просветленной оптикой кажутся голубыми.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции.Возникает при наложении большого числа когерентных световых пучков. Интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Многолучевая интерференция осуществляется в дифракционной решетке, в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной ), нанесенных на отражающую поверхность.

4) Явление интерференции также приме­няется в очень точных измерительных при­борах, называемыхинтерферометрами.Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.

Советский физик В. П. Линник (1889— 1984) использовал принцип действия интерферометра Майкельсона для созда­ниямикроинтерферометра (комбинация интерферометра и микроскопа), служаще­го для контроля чистоты обработки по­верхности.

Интерферометры — очень чувстви­тельные оптические приборы, позволяю­щие определять незначительные измене­ния показателя преломления прозрачных тел (газов, жидких и твердых тел) в за­висимости от давления, температуры, при­месей и т. д. Такие интерферометры полу­чили названиеинтерференционных реф­рактометров.

Применение интерферометров многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью ин-ров исследовалось распространение света в движущихся телах, что привело к изменениям представлений о пространстве и времени.

Явление интерференции широко используют для создания различных измерительных и контролирующих устройств.

1. Существуют специальные приборы — интерферометры, действие которых основано на явлении интерференции. Их назначение — точное измерение длин волн, показателей преломления, коэффициентов линейного расширения и др.

Действие всех интерферометров основано на одном и том же принципе, и интерферометры различаются лишь конструктивно. На рисунке 17.12 представлена упрощенная схема интерферометра Майкельсона.


Монохроматический пучок света от источника S падает под углом 45° на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, покрыта тонким слоем серебра с таким расчетом, что он половину светового пучка пропустит, а половину отразит (полупрозрачная пластинка), т.е. здесь луч разделяется на две части: луч 1 отражается от посеребренного слоя, луч 2 проходит через него. Луч 1 отражается от зеркала М1 и, возвращаясь обратно, вновь проходит через пластинку P1 (луч 1'). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки P1 (луч 2'). Так как первый луч проходит пластинку Р1 дважды, то для компенсации возникшей разности хода на пути второго луча ставится пластинка Р2 (точно такая же, как и P1 только не покрытая слоем серебра).

Лучи 1' и 2' когерентны, следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала M1 и луча 2 от точки О до зеркала М2. При перемещении одного из зеркал на расстояние \(\frac<\lambda>\) разность хода обоих лучей изменится на \(\frac<\lambda>,\) и в интерференционной картине максимум сдвинется на место минимума, и наоборот, т.е. интерференционный максимум сдвинется на половину расстояния между полосами. Такой сдвиг полос наблюдатель отчетливо увидит. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр для достаточно точных (-10 -9 м) измерений длин (длины тел, длины световой волны, определений температурного коэффициента линейного расширения и др.).

2. Используя явление интерференции, можно оценить качество обработки поверхности изделия с точностью до 10 -6 см. Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластинкой. Неровности поверхности вызовут заметные искривления интерференционных полос, образующихся при отражении света от проверяемой поверхности и нижней границы эталонной пластинки. На рисунке 17.13 приведены наблюдаемые интерференционные картины при отступлении от требуемой точности обработки и при достижении необходимой точности обработки плоской поверхности детали Д.


3. Просветление оптики. Отполированная поверхность стекла отражает около 4% перпендикулярно падающего на нее света. Современные оптические приборы состоят из большого числа оптических стекол — линз, призм и т.д. Поэтому общие потери света в объективе фотоаппарата составляют около 25%, в микроскопе — 50% и т.д. В результате освещенность изображения получается малой, ухудшается также качество изображения.

Часть светового пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкого изображения, а на фотографии образуется "вуаль".

Для уменьшения световых потерь на поверхность оптического стекла на-носят тонкую пленку с абсолютным показателем преломления nп, меньшим, чем абсолютный показатель преломления стекла nс (рис. 17.14). При отражении света от границ раздела воздух—пленка и пленка—стекло возникает интерференция когерентных волн 1 и 2. Толщину пленки h и показатель преломления nп подбирают так, чтобы интерферирующие волны гасили друг друга. Считая, что свет падает нормально \(~(\alpha = 0)\) и учитывая, что потеря полуволны происходит на обеих поверхностях, так как nс > nп > nвозд, будем иметь \(2n_nh = \frac<(2m + 1)\lambda>\) и при \(~m = 0,\) \(2n_nh = \frac<\lambda>.\) Откуда \(h = \frac<\lambda>\) В результате гашения отраженных волн происходит усиление волны, которая проходит в стекло.


Так как обычно на поверхность стекла падает белый свет, то осуществить гашение отраженных волн всех частот невозможно. Толщину пленки подбирают так, чтобы полное гашение имело место для волн средней части спектра (зеленый цвет).

Гашение красных и фиолетовых частей спектра происходит незначительно. Поэтому объектив с просветленной оптикой имеет сиреневатый оттенок.

4. Явление интерференции используется для получения высокоотражающих покрытий. В этом случае используют тонкую пленку толщиной \(h = \frac<\lambda>\) из материала, абсолютный показатель преломления которого nп больше абсолютного показателя преломления стекла nп. В этом случае отражение от передней грани происходит с потерей полуволны, так как nп>nвозд, а отраженные от задней границы — без потери полуволны. В результате \(\Delta = \lambda\) и отраженные волны усилят друг друга.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 511-513.

Интерференция света 900igr.net

№ слайда 1

Интерференция света – нелинейное сложение интенсивностей двух или нескольких све

№ слайда 2

Применение интерференции света Явление интерференции обусловлено волновой природ

№ слайда 3

Применение интерференции света Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопии).

Явление интерференции применяется также для улучшения качества оптических прибор

№ слайда 4

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.

Явление интерференции также применяется в очень точных измерительных приборах, н

№ слайда 5

Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно.

Интерферометр Майкельсона — двухлучевой интерферометр, изобретённый Альбертом Ма

№ слайда 6

Интерферометр Майкельсона — двухлучевой интерферометр, изобретённый Альбертом Майкельсоном. Данный прибор позволил впервыеизмерить длину волны света. В опыте Майкельсона интерферометр был использован Майкельсоном для проверки гипотезы о светоносном эфире. Устройство используется и сегодня в астрономических, физических исследованиях, а также в измерительной технике.

Российский физик В. П. Линник (1889-1984) использовал принцип действия интерферо

№ слайда 7

Российский физик В. П. Линник (1889-1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Явление интерференции волн, рассеянных от некоторого объекта (или прошедших чере

№ слайда 8

Получение высокоотражающих диэлектрических зеркал.

№ слайда 10

Получение высокоотражающих диэлектрических зеркал.

По интерференционной картине можно выявлятьи измерять неоднородности среды (в т.

№ слайда 11

По интерференционной картине можно выявлятьи измерять неоднородности среды (в т.ч. фазовые), в которой распространяются волны, или отклонения формы поверхности от заданной.

Применение интерферометров очень многообразно. Кроме перечисленного, они применя

№ слайда 12

Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

СПАСИБО ЗА ВНИМАНИЕ.

№ слайда 13

Читайте также: