Получение вращающегося магнитного поля кратко

Обновлено: 02.07.2024

Начало современного этапа в развитии электротехники относится к 90-м годам XIX столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу и электропривод. Электрификация началась тогда, когда оказалось возможным строить крупные электрические станции в местах, богатых первичными ресурсами, объединять их работу на общую сеть и снабжать электроэнергией любые центры и объекты электропотребления.

Техническая сторона электрификации заключалась в разработке многофазных систем, из которых практика сделала выбор в пользу системы трехфазной. Наиболее важными и во всяком случае новыми элементами трехфазной системы были электродвигатели, действие которых основано на использовании явления вращающегося магнитного поля.

Ранее упоминался опыт Д.Ф. Араго, в котором диск и вращающийся магнит отражали только возможность осуществления асинхронного электродвигателя с вращающимся магнитным полем. Однако это поле создавалось не неподвижным устройством, каким в современных машинах является статор, а вращающимся магнитом.


Рис. 3.9. Прибор Бейли


Рис. 3.10. К пояснению открытия Феррариса

Однако исчерпывающие и получившие наибольшую известность экспериментальные и теоретические исследования вращающегося магнитного поля выполнили независимо друг от друга выдающиеся ученые итальянец Галилео Феррарис (1847–1897 гг.) и серб Никола Тесла (1856–1943 гг.) [1.6; 3.6; 3.7].

Н. Тесла в своей автобиографии рассказывал, что идея двухфазного асинхронного двигателя родилась у него еще в 1882 г., когда он работал в Будапештской телеграфной компании. Гуляя в парке с другом, он, осененный идеей, тростью сделал на песке набросок принципа, который изложил шесть лет спустя на конференции в американском Институте электроинженеров. Доклад в этом институте состоялся 16 мая 1888 г., т.е. на два месяца позднее доклада Г. Феррариса. Но первую заявку на получение патента на многофазные системы Н. Тесла подал еще 12 октября 1887 г, т.е. ранее выступления Г. Феррариса.

Остановимся сначала на работе Г. Феррариса, исходя не из приоритетных соображений, а из того, что в его работе дан более обстоятельный теоретический анализ, и еще потому, что именно перевод доклада Г. Феррариса в английском журнале попал в свое время в руки М.О. Доливо-Добровольскому и вызвал первый импульс в серии последующих замечательных изобретений.


Рис. 3.11. Модель двигателя Феррариса

Г. Феррарис умел в очень ясной форме объяснять трудные физические процессы. Вот как им было объяснено явление вращающегося магнитного поля. Рассмотрим показанную на рис. 3.10 пространственную диаграмму, на которой ось х представляет собой положительное направление вектора магнитной индукции, создаваемой одной из катушек, а ось у — положительное направление поля другой катушки. Для момента времени, когда одна магнитная индукция в точке О изображается отрезком ОА, а другая — ОБ, суммарная результирующая магнитная индукция изобразится отрезком OR. При изменении ОА и OB точка R перемещается по кривой, форма которой определяется законами изменений во времени двух полей. Если две напряженности магнитного поля имеют одинаковые амплитуды и сдвинуты по фазе на четверть периода, то геометрическим местом точки R станет окружность. Налицо вращение магнитного поля. Если фазу одной из напряженностей магнитного поля или возбуждающего его тока изменить на 180°, то изменится и направление вращения результирующего магнитного поля. Если поместить в это магнитное поле снабженный валом и подшипниками медный цилиндр, то он будет вращаться. Позднее асинхронные двигатели с полым ротором в виде медного стакана получили название двигателей Феррариса.

Н. Тесла, один из самых известных и плодовитых ученых в области электротехники, начинавший свою научную карьеру в 80-х годах XIX в., получил только в области многофазных систем 41 патент. Некоторое время Н. Тесла работал в Эдисоновской компании в Париже (1882–1884 гг.), а затем переехал в США. В 1888 г. все свои патенты по многофазным системам Н. Тесла продал главе известной фирмы Д. Вестингаузу, который в своих планах развития техники переменного тока сделал ставку на работы Н. Теслы. Впоследствии Н. Тесла много внимания уделял технике высоких частот (трансформатор Теслы) и идее передачи электроэнергии без проводов. Интересная деталь: при решении вопроса о стандартизации промышленной частоты, а диапазон предложений был от 25 до 133 Гц, Н. Тесла решительно высказался за принятую им для своих опытных установок частоту 60 Гц. Тогда отказ инженеров Вестингауза от предложения Н. Теслы послужил начальным импульсом для ученого, решившего расстаться с Вестингаузом. Но вскоре именно эта частота была принята в США в качестве стандартной.

Схематически система Н. Теслы в ее наиболее характерной форме представлена на рис. 3.12, слева изображен синхронный генератор, справа — асинхронный двигатель. В генераторе между полюсами вращались две взаимно перпендикулярные катушки в которых генерировались два тока, сдвинутые по фазе на 90°. Концы каждой катушки были выведены на кольца, расположенные на валу генератора (на чертеже для ясности эти кольца имеют различные диаметры). Ротор двигателя имел обмотку в виде двух расположенных под прямым углом одна к другой замкнутых на себя катушек.

Основным недостатком двигателя Н. Тесла, который впоследствии сделал его неконкурентоспособным, было наличие выступающих полюсов с сосредоточенной обмоткой. Эти двигатели имели большое магнитное сопротивление и крайне неблагоприятное распределение намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Таковы были следствия механического переноса в технику переменного тока конструктивных схем машины постоянного тока.

Конструкция обмотки ротора, как выяснилось позднее, тоже оказалась неудачной. Действительно, выполнение обмоток сосредоточенными (а не распределенными по всей окружности ротора) при выступающих полюсах на статоре приводило к ухудшению пусковых условий двигателя (зависимость пускового момента от начального положения ротора), а то обстоятельство, что обмотки ротора имели сравнительно большое сопротивление, ухудшало рабочие характеристики.


Рис. 3.12. Конструктивные схемы генератора и двигателя Тесла

Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Известно, что значительную долю стоимости установки для передачи электроэнергии составляют затраты на линейные сооружения и, в частности, на линейные провода. В связи с этим казалось очевидным, что чем меньше принятое число фаз, тем меньше будет число проводов и тем, следовательно, экономичнее устройство электропередачи. Двухфазная система требовала применения четырех проводов, а удвоение числа проводов по сравнению с установками постоянного или однофазного переменного токов представлялось нежелательным. Поэтому Н. Тесла предлагал в некоторых случаях применять в двухфазной системе трехпроводную линию, т.е. делать один провод общим. В этом случае число проводов уменьшалось до трех. Однако расход металла на провода при этом снижался меньше, чем можно было ожидать, так как сечение общего провода должно было быть примерно в 1,5 раза (точнее, в ?2 раз) больше сечения каждого из двух других проводов.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Выбор электродвигателей

Выбор электродвигателей Вопрос. Для каких механизмов обеспечивается самозапуск их электродвигателей?Ответ. Обеспечивается для механизмов, сохранение которых в работе после кратковременных перерывов питания или понижения напряжения, обусловленных отключением КЗ,

Установка электродвигателей

Установка электродвигателей Вопрос. На каком расстоянии от конструкций зданий устанавливаются электродвигатели и их коммутационные аппараты, за исключением имеющих степень защиты не ниже IP44, а резисторы и реостаты – всех исполнений?Ответ. Устанавливаются на

Защита асинхронных и синхронных электродвигателей напряжением выше 1 кВ

Защита асинхронных и синхронных электродвигателей напряжением выше 1 кВ Вопрос. Какие защиты предусматриваются для электродвигателей?Ответ. Предусматриваются защиты от многофазных замыканий, однофазных замыканий на землю, токов перегрузки, а также от потери питания и

Защита электродвигателей напряжением до 1 кВ

Защита электродвигателей напряжением до 1 кВ Вопрос. Какая защита предусматривается для электродвигателей переменного тока?Ответ. Предусматривается защита от многофазных замыканий, в сетях с глухозаземленной нейтралью – также от однофазных замыканий на заземленные

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА

Глава 1. ОТКРЫТИЕ ЭЛЕМЕНТА ХОББИ СВЯЩЕННИКА Семь металлов древности, а также сера и углерод — вот и все элементы, с которыми человечество познакомилось за многие тысячелетия своего существования вплоть до XIII века нашей эры. Восемь веков назад начался период алхимии. Он

Открытие древнего гончара

Открытие древнего гончара Один из величественнейших городов Междуречья – древний Ур. Он громаден и многолик. Это почти целое государство. Сады, дворцы, мастерские, сложные гидротехнические сооружения, культовые постройки.В небольшой гончарной мастерской, с виду

§ 3.19 Спин и квантование магнитного момента атома

§ 3.19 Спин и квантование магнитного момента атома Но мы всё ещё не у предела; после электронов или атомов электричества пришёл магнетон или атом магнетизма, который входит сейчас двумя различными путями: через изучение магнитных тел и через изучение спектров элементов…

СОТРУДНИКИ ЦНИИ ИМ. АКАД. А. И. КРЫЛОВА Специалисты в области совершенствования параметров магнитного поля ММК

СОТРУДНИКИ ЦНИИ ИМ. АКАД. А. И. КРЫЛОВА Специалисты в области совершенствования параметров магнитного поля ММК И. М. Фомин Л. А. Рудня В. А. Скулябин Е. П. Лапицкий И.И. Гуссв Э. П. Рамлау С. Т. Гузеев К). И. Назаров И. П. Краснов Г. Н.

ГЛАВА 5 Открытие электромагнетизма и создание разнообразных электрических машин, ознаменовавших начало электрификации

ГЛАВА 11 РАСЧЕТНАЯ МОДЕЛЬ УЩЕРБА ПРИ ОТКАЗАХ ЭЛЕКТРОДВИГАТЕЛЕЙ

ГЛАВА 11 РАСЧЕТНАЯ МОДЕЛЬ УЩЕРБА ПРИ ОТКАЗАХ ЭЛЕКТРОДВИГАТЕЛЕЙ В гл. 8 был оценен экономический ущерб от повышенного потребления реактивной мощности асинхронными двигателями (АД), составляющие которого приведены на рис. 5.Чтобы получить более полное представление о

1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА

1.3. ОТКРЫТИЕ НОВЫХ СВОЙСТВ ЭЛЕКТРИЧЕСТВА Одним из первых, кто, познакомившись с книгой В. Гильберта, решил получить более сильные проявления электрических сил, был известный изобретатель воздушного насоса и опыта с полушариями магдебургский бургомистр Отто фон Герике

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов [1.4–1.6].В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

2.7. ОТКРЫТИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ Большой вклад в современную электротехнику сделал английский ученый Майкл Фарадей, труды которого, в свою очередь, были подготовлены предшествовавшими работами по изучению электрических и магнитных явлений [1.1; 1.6; 2.6].Есть

В трёхфазной машине при одной паре полюсов (р=1) оси обмоток должны быть смещены в пространстве на угол 120°, при двух парах полюсов (р=2) оси обмоток должны быть смещены в пространстве на угол 60° и т.д.

Рассмотрим магнитное поле, которое создаётся с помощью трёхфазной обмотки, имеющей одну пару полюсов (р=1) (рис. 5.7). Оси обмоток фаз смещены в пространстве на угол 120° и создаваемые ими магнитные индукции отдельных фаз (BA, BB, BC) смещены в пространстве тоже на угол 120°.

Магнитные индукции полей, создаваемые каждой фазой, как и напряжения, подведённые к этим фазам, являются синусоидальными и отличаются по фазе на угол 120°.

Приняв начальную фазу индукции в фазе А (φA) равной нулю, можно записать:

Магнитная индукция результирующего магнитного поля определяется векторной суммой этих трёх магнитных индукций.

Найдём результирующую магнитную индукцию (рис. 2.8) с помощью векторных диаграмм, построив их для нескольких моментов времени.

а) При t=0 б) При в) При

Как следует из рис. 2.8, магнитная индукция B результирующего магнитного поля машины вращается, оставаясь неизменной по величине. Таким образом, трёхфазная обмотка статора создаёт в машине круговое вращающееся магнитное поле. Направление вращения магнитного поля зависит от порядка чередования фаз. Величина результирующей магнитной индукции

Частота вращения магнитного поля n0 зависит от частоты сети f и числа пар полюсов магнитного поля р.

Обратите внимание, что частота вращения магнитного поля не зависит от режима работы асинхронной машины и её нагрузки.

При анализе работы асинхронной машины часто используют понятие о скорости вращения магнитного поля ω0, которая определяется соотношением:

2.4. Режимы работы трёхфазной асинхронной машины

Асинхронная машина может работать в режимах двигателя, генератора и электромагнитного тормоза.

Режим двигателя

Этот режим служит для преобразования потребляемой из сети электрической энергии в механическую.

В результате взаимодействия обмотки ротора с током и вращающегося магнитного поля возникает электромагнитная сила F. Направление силы определяется по правилу левой руки (силовые линии должны входить в ладонь, четыре пальца – по направлению тока в обмотке ротора). В данном режиме (рис. 5.9) электромагнитная сила создаст вращающий момент, под действием которого ротор начнёт вращаться с частотой n.

Направление вращения ротора совпадает с направлением вращения магнитного поля.

Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения магнитного поля.

Для реверса двигателя нужно изменить порядок чередования фаз подведённого напряжения, т.е. переключить две фазы.

Пусть под действием электромагнитного момента ротор начал вращаться с частотой вращения магнитного поля (n = n0). При этом в обмотке ротора ЭДС E2 будет равна нулю. Ток в обмотке ротора I2 = 0, электромагнитный момент M тоже станет равным нулю. За счёт этого ротор станет вращаться медленнее, в обмотке ротора появится ЭДС, ток. Возникнет электромагнитный момент. Таким образом, в режиме двигателя ротор будет вращаться несинхронно с магнитным полем. Частота вращения ротора будет изменяться при изменении нагрузки на валу. Отсюда появилось название двигателя – асинхронный (несинхронный). При увеличении нагрузки на валу двигатель должен развивать больший вращающий момент, а это происходит при снижении частоты вращения ротора. В отличие от частоты вращения ротора частота вращения магнитного поля не зависит от нагрузки. Для сравнения частоты вращения магнитного поля n0 и ротора n ввели коэффициент, который назвали скольжением и обозначили буквой S. Скольжение может измеряться в относительных единицах и в процентах.




При пуске в ход асинхронного двигателя n=0, S=1.

В режиме идеального холостого хода n = n0, S=0. Таким образом, в режиме двигателя скольжение изменяется в пределах:

Как было показано ранее, одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока. Рассмотрение этого вопроса начнем с анализа магнитного поля катушки с синусоидальным током.

Магнитное поле катушки с синусоидальным током

При пропускании по обмотке катушки синусоидального тока она создает

магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Так для случая, показанного на рис. 1, вектор магнитной индукции направлен по оси катушки вверх. Через полпериода, когда при том же модуле ток изменит свой знак на противоположный, вектор магнитной индукции при той же абсолютной величине поменяет свою ориентацию в пространстве на 1800. С учетом вышесказанного магнитное поле катушки с синусоидальным током называют пульсирующим.

Круговое вращающееся магнитное поле
двух- и трехфазной обмоток

Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.

Для создания кругового вращающегося поля необходимо выполнение двух условий:

  1. Оси катушек должны быть сдвинуты в пространстве друг относительно друга на определенный угол (для двухфазной системы – на 90 0 , для трехфазной – на 120 0 ).
  2. Токи, питающие катушки, должны быть сдвинуты по фазе соответственно пространственному смещению катушек.

Рассмотрим получение кругового вращающегося магнитного поля в случае двухфазной системы Тесла (рис. 2,а).

При пропускании через катушки гармонических токов каждая из них в соответствии с вышесказанным будет создавать пульсирующее магнитное поле. Векторы и , характеризующие эти поля, направлены вдоль осей соответствующих катушек, а их амплитуды изменяются также по гармоническому закону. Если ток в катушке В отстает от тока в катушке А на 90 0 (см. рис. 2,б), то .

Найдем проекции результирующего вектора магнитной индукции на оси x и y декартовой системы координат, связанной с осями катушек:

Модуль результирующего вектора магнитной индукции в соответствии с рис. 2,в равен

при этом для тангенса угла a , образованного этим вектором с осью абсцисс, можно записать

Полученные соотношения (1) и (2) показывают, что вектор результирующего магнитного поля неизменен по модулю и вращается в пространстве с постоянной угловой частотой , описывая окружность, что соответствует круговому вращающемуся полю.

Покажем, что симметричная трехфазная система катушек (см. рис. 3,а) также позволяет получить круговое вращающееся магнитное поле.

Каждая из катушек А, В и С при пропускании по ним гармонических токов создает пульсирующее магнитное поле. Векторная диаграмма в пространстве для этих полей представлена на рис. 3,б. Для проекций результирующего вектора магнитной индукции на

оси декартовой системы координат, ось y у которой совмещена с магнитной осью фазы А, можно записать

Приведенные соотношения учитывают пространственное расположение катушек, но они также питаются трехфазной системой токов с временным сдвигом по фазе на 1200. Поэтому для мгновенных значений индукций катушек имеют место соотношения

Подставив эти выражения в (3) и (4), получим:

В соответствии с (5) и (6) и рис. 2,в для модуля вектора магнитной индукции результирующего поля трех катушек с током можно записать:

а сам вектор составляет с осью х угол a , для которого

Таким образом, и в данном случае имеет место неизменный по модулю вектор магнитной индукции, вращающийся в пространстве с постоянной угловой частотой , что соответствует круговому полю.

Магнитное поле в электрической машине

С целью усиления и концентрации магнитного поля в электрической машине для него создается магнитная цепь. Электрическая машина состоит из двух основных частей (см. рис. 4): неподвижного статора и вращающегося ротора, выполненных соответственно в виде полого и сплошного цилиндров.

На статоре расположены три одинаковые обмотки, магнитные оси которых сдвинуты по расточке магнитопровода на 2/3 полюсного деления , величина которого определяется выражением

где - радиус расточки магнитопровода, а р – число пар полюсов (число эквивалентных вращающихся постоянных магнитов, создающих магнитное поле, - в представленном на рис. 4 случае р=1).

На рис. 4 сплошными линиями (А, В и С) отмечены положительные направления пульсирующих магнитных полей вдоль осей обмоток А, В и С.

Приняв магнитную проницаемость стали бесконечно большой, построим кривую распределения магнитной индукции в воздушном зазоре машины, создаваемой обмоткой фазы А, для некоторого момента времени t (рис. 5). При построении учтем, что кривая изменяется скачком в местах расположения катушечных сторон, а на участках, лишенных тока, имеют место горизонтальные участки.

Заменим данную кривую синусоидой (следует указать, что у реальных машин за счет соответствующего исполнения фазных обмоток для результирующего поля такая замена связана с весьма малыми погрешностями). Приняв амплитуду этой синусоиды для выбранного момента времени t равной ВА, запишем

С учетом гармонически изменяющихся фазных токов для мгновенных значений этих величин при сделанном ранее допущении о линейности зависимости индукции от тока можно записать

Подставив последние соотношения в (7)…(9), получим

; (10)
; (11)
. (12)

Просуммировав соотношения (10)…(12), с учетом того, что сумма последних членов в их правых частях тождественно равна нулю, получим для результирующего поля вдоль воздушного зазора машины выражение

представляющее собой уравнение бегущей волны.

Магнитная индукция постоянна, если . Таким образом, если мысленно выбрать в воздушном зазоре некоторую точку и перемещать ее вдоль расточки магнитопровода со скоростью

то магнитная индукция для этой точки будет оставаться неизменной. Это означает, что с течением времени кривая распределения магнитной индукции, не меняя своей формы, перемещается вдоль окружности статора. Следовательно, результирующее магнитное поле вращается с постоянной скоростью. Эту скорость принято определять в оборотах в минуту:

Принцип действия асинхронного и синхронного двигателей

Устройство асинхронного двигателя соответствует изображению на рис. 4. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

В короткозамкнутой обмотке ротора под действием ЭДС, вызываемой вращающимся полем статора, возникают вихревые токи. Взаимодействуя с полем, они вовлекают ротор во вращение со скоростью , принципиально меньшей скорости вращения поля Отсюда название двигателя - асинхронный.

называется относительным скольжением. Для двигателей нормального исполнения S=0,02…0,07. Неравенство скоростей магнитного поля и ротора становится очевидным, если учесть, что при вращающееся магнитное поле не будет пересекать токопроводящих стержней ротора и, следовательно, в них не будут наводиться токи, участвующие в создании вращающегося момента.

Принципиальное отличие синхронного двигателя от асинхронного заключается в исполнении ротора. Последний у синхронного двигателя представляет собой магнит, выполненный (при относительно небольших мощностях) на базе постоянного магнита или на основе электромагнита. Поскольку разноименные полюсы магнитов притягиваются, то вращающееся магнитное поле статора, которое можно интерпретировать как вращающийся магнит, увлекает за собой магнитный ротор, причем их скорости равны. Это объясняет название двигателя – синхронный.

В заключение отметим, что в отличие от асинхронного двигателя, у которого обычно не превышает 0,8…0,85, у синхронного двигателя можно добиться большего значения и сделать даже так, что ток будет опережать напряжение по фазе. В этом случае, подобно конденсаторным батареям, синхронная машина используется для повышения коэффициента мощности.

Это явление объяснил М. Фарадей тем, что вращающееся магнитное поле порождает в диске вихревые токи, и эти токи взаимодействуют с магнитом.

Вращающимся магнитным полем называют магнитное поле, которое характеризуется вектором магнитной индукции постоянным по величине, но изменяющим свое направление, а именно вращающимся с неизменной угловой скоростью.

Иногда вращающимися считают магнитные поля, которые создают постоянные магниты, совершающие вращательные движения относительно оси, которая не совпадает с осью их симметрии.

Вращающееся магнитное поле можно получить, если наложить два и более магнитных поля:

  • имеющих разные направления,
  • изменяющихся по гармоническим законам (обычно синусоидальным законам);
  • обладающих одинаковыми частотами;
  • сдвинутых друг относительно друга по фазе.

Вращающееся магнитное поле может быть получено в многофазных системах. При этом используются неподвижные катушки. Допустим, что магнитное поле в катушке создает синусоидальный электрический ток. Для того, чтобы система катушек с током создавала круговое вращающееся магнитное поле необходимо:

  1. Чтобы оси катушек имели определенный сдвиг. Так для системы из двух фаз – это угол в 90°. Для трехфазной системы - 120°.
  2. Электрические токи, протекающие по катушкам должны обладать сдвигом по фазе, который соответствует их смещению в пространстве.

Система Тесла для получения вращающегося магнитного поля

Одним из первых вращающееся магнитное поле было получено Н. Тесла. Ученый использовал двухфазную систему. Он пропускал через две катушки (рис.1), расположенные под углом в 90° переменные электрические токи, изменяющиеся по гармоническим законам. При этом каждая катушка создавала пульсирующее магнитное поле.

Готовые работы на аналогичную тему

Рисунок 1. Система Тесла для получения вращающегося магнитного пол. Автор24 — интернет-биржа студенческих работ

На рис.1 указаны направления магнитных полей, которые создают катушки: $\vec_$ и $\vec_$. . Магнитные поля отдельных катушек изменяются по законам синусов, как и токи в катушках. Пусть сдвиг фаз в колебаниях модулей векторов магнитной индукции составляет $\frac<\pi >$:

В проекциях на оси декартовой системы координат ($XOY$) рис.1 уравнения (1) и (2) дают:

Найдем величину полученного поля по теореме Пифагора:

Выражение (5) указывает на то, что величина полученного магнитного поля не изменяется. Из рис.1 видно, что угол, который результирующий вектор магнитной индукции составляет с осью $X$, равен:

$tg\, \left( \alpha \right)=\frac>>=\frac\sin \left( \omega t \right)>\cos <(\omega t)>>=tg\left( \omega t \right)\to \alpha =\omega t\left( 6 \right)$

Результаты, показанные выражениям (5) и (6), говорят нам о том, что вектор магнитной индукции суммарного поля постоянен по величине и совершает вращения в пространстве с угловой скоростью $\omega=const.$ Годограф $\vec$ представляет собой окружность, что отвечает вращающемуся магнитному полю, вращение поля называют круговым.

Эллиптическое магнитное поле

Если возникает асимметрия токов, порождающих магнитное поле или магнитных свойств сердечников катушек, то появляется асимметрия магнитного поля. При этом годограф вектора магнитной индукции покажет эллипс. Эллиптический годограф отвечает сумме пары векторов, имеющих круговые годографы, совершающих вращения в противоположных направлениях.

При совпадении прямого и обратного вращения, годограф вектора магнитной индукции выродится в прямую линию. При этом полученное поле называют пульсирующим.

Круговое магнитное поле можно считать частным случаем эллиптического. Такое становится возможным, если отсутствует одна из фаз.

Применение вращающегося магнитного поля

Взаимодействие вращающегося магнитного поля и электрического тока лежит в основании действия асинхронного двигателя. При этом электрический ток течет в обмотке ротора, вращающееся магнитное поле создается обмотками статора.

Статор имеет трехфазную обмотку. Ее оси сдвинуты в пространстве на 120° по окружности. В обмотках статора текут токи, изменяющиеся в соответствии с законами:

Переменные токи порождают магнитные поля с индукциями, направленными по осям обмоток:

По принципу суперпозиции результирующее поле в сердечнике статора получается, как сумма отдельных полей. Используя векторную диаграмму сложения:

и подход с проектированием на оси (XYZ) декартовой системы координат (как выше в двухфазной системе), величину результирующего поля имеем:

При этом вектор магнитной индукции образует с осью ординат угол, равный:

$tg\, \left( \hat\vec> \right)=tg\, \left( \omega t \right)\to\alpha =\omega t\left( 10 \right)$

Мы получили, что постоянный по величине вектор магнитной индукции вращается с неизменной угловой скоростью ω, то есть имеем вращающееся по кругу магнитное поле.

Отметим, что $B_m$ – максимальная величина магнитной индукции поля, порождаемого одной обмоткой. Магнитное поле вращается внутри статора с угловой частотой $\omega=const,$ которая определяется частотой источника тока, который питает обмотки статора.

Направление вращения магнитного поля определено очередностью фаз. Если переключить любые две обмотки, то поле станет вращаться в противоположную сторону.

При увеличении количества пазов сердечника, и делении каждой обмотки надвое (причем ее пазы следует разместить так, что начала и концы частей обмоток находятся в пазах, которые смещены по окружности статора на π/2), то при включении сети возникнет магнитное поле с удвоенным количеством полюсов. Частота такого поля станет вдвое меньше.

Разделим обмотки на $m$ частей. При этом будут порождаться магнитные поля с количеством магнитных полюсов $m$, угловая частота вращения такого поля составит:

где $\omega$ – частота питания; $m$ - количество пар полюсов магнитного поля.

Чаще всего частоту вращения магнитного поля называют скоростью вращения ($n$). Единицей вращения этой скорости считают оборот в минуту.

где $\nu $ – частота питания (в Гц).

Каждая фазная обмотка отдельно создает пульсирующее поле. Пульсирующее поле появляется при авариях, например, обрыве какой – то фазы.

Читайте также: