Получение однофазного переменного тока кратко

Обновлено: 07.07.2024

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

где n – это количество витков обмоток

а соотношение dФB/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Однофазный переменный ток

Однофазный переменный ток

Если проводник А вращать в магнитном потоке, образованном двумя полюсами магнита, в направлении по часовой стрелке (рис. 1), то при пересечении проводником магнитных силовых линий в нем будет индуктироваться э. д. с, величина которой определяется выражением

где В — магнитная индукция в Тл, l — длина проводника в м, v — скорость движения проводника в м/сек, α - угол, под которым проводник пересекает магнитные силовые линии.

Пусть В, I и v для данного случая остаются постоянными величинами, тогда индуктированная э. д. с. будет зависеть только от угла α , под которым проводник пересекает магнитное поле. Так, в точке 1, когда проводник двигается вдоль магнитных силовых линий, величина индуктированной э. д. с. будет равна нулю, при перемещении проводника в точку 3 э. д. с. будет иметь наибольшее значение, так как силовые линии будут пересекаться проводником в направлении, перпендикулярном к ним, и, наконец, э. д. с. вновь достигнет нуля, если проводник переместится в точку 5.

Изменение индуктированной э. д. с. в проводнике, вращающемся в магнитном поле

Рис. 1. Изменение индуктированной э. д. с. в проводнике, вращающемся в магнитном поле

В промежуточных точках 2 и 4, в которых проводник пересекает силовые линии под углом α = 45°, величина индуктированной э. д. с. будет соответственно меньше, чем в точке 3. Таким образом, при повороте проводника из точки 1 в точку 5, т. е. на 180°, индуктированная э. д. с. изменяется от нуля до максимума и снова до нуля.

Совершенно очевидно, что при дальнейшем повороте проводника А на угол 180° (через точки 6, 7, 8 и 1) характер изменения индуктированной э. д. с. будет такой же, но направление ее изменится на обратное, так как проводник будет пересекать магнитные силовые линии уже под другим полюсом, что равносильно пересечению их в противоположном первому направлении.

Следовательно, при повороте проводника на 360° индуктированная э. д. с. не только изменяется все время по величине, но и дважды меняет свое направление.

Если проводник замкнуть на какое-либо сопротивление, то в проводнике появится электрический ток, также изменяющийся по величине и направлению.

Электрический ток, непрерывно изменяющийся по величине и направлению, называется переменным током .

Что такое синусоида

Характер изменения э. д. с. (тока) за один оборот проводника для наглядности представляют в графическом виде при помощи кривой. Так как величина э. д. с. пропорциональна sin α , то, задавшись определенными углами, можно при помощи таблиц определить значение синуса каждого угла и в соответствующем масштабе построить кривую изменения э. д. с. Для этого на горизонтальной оси будем откладывать углы поворота проводника, а на вертикальной оси в соответствующем масштабе индуктированную э. д. с.

Если обозначенные ранее на рис. 1 точки соединить плавной кривой линией, то она даст представление о величине и характере изменения индуктированной э. д. с. (тока) при любом положении проводника в магнитном поле. Вследствие того что величина индуктированной э. д. с. в каждый момент определяется синусом угла, под которым проводник пересекает магнитное поле, приведенная на рис. 1 кривая носит название синусоиды , а изменяющаяся по ней э. д. с. — синусоидальной .

Синусоида и величины ее характеризующие

Рис. 2. Синусоида и величины ее характеризующие

Рассмотренные нами изменения э. д. с. по синусоиде соответствуют повороту проводника в магнитном поле на угол 360°. При повороте проводника на следующие 360° изменения индуктированной э. д. с. (и тока) вновь произойдут по синусоиде, т. е. будут периодически повторяться.

Соответственно, вызванный этой э. д. с. электрический ток называется синусоидальным переменным током . Совершенно очевидно, что и напряжение, которое может быть измерено нами на концах проводника А, при наличии замкнутой внешней цепи также будет изменяться по синусоиде.

Переменный ток, полученный при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током .

Синусоидальные переменные токи находят наибольшее применение в технике. Однако можно встретить переменные токи, изменяющиеся не по закону синуса. Такие переменные токи называются несинусоидальными .

Амплитуда, период, частота однофазного переменного тока

Сила тока, изменяющегося по синусоиде, непрерывно меняется. Так, если в точке А (рис. 2) ток был равен 3а, то в точке Б он уже будет больше. В другой какой-либо точке на синусоиде, например в точке С, ток будет иметь уже новое значение и т. д.

Сила тока в отдельные моменты при изменении его по синусоиде носит название мгновенных значений тока .

Наибольшее по величине мгновенное значение однофазного переменного тока при изменении его по синусоиде называется амплитудой . Нетрудно видеть, что за один оборот проводника ток два раза достигает амплитудного значения. Одно из значений аа' является положительным и откладывается вверх от оси 001 а другое вв' — отрицательное и откладывается от оси вниз.

Время, в течение которого индуктированная э. д. с. (или сила тока) проходит весь цикл изменений, называется периодом Т (рис. 2). Период обычно измеряется в секундах.

Величина, обратная периоду, называется частотой ( f ). Иначе говоря, частота переменного тока есть число периодов в единицу времени, т. е. в секун ду. Так, например, если переменный ток в течение 1 секунды десять раз принимает одинаковые по величине и направлению значения, то частота такого переменного тока будет составлять 10 периодов в секунду.

Для измерения частоты вместо числа периодов в секунду применяется единица, получившая название герц (гц). Частота 1 герц равна частоте 1 пер/сек. При измерении больших частот удобнее пользоваться единицей, в 1000 раз большей герца, т. е килогерцем (кгц), или в 1000000 раз большей герца, — мегагерц (мггц).

Переменные токи, применяемые в технике, в зависимости от частоты могут быть подразделены на токи низкой частоты и токи высокой частоты.

Действующее значение переменного тока

Действующее значение переменного тока

Постоянный ток, проходя по проводнику, нагревает его. Если, пропустить по проводнику переменный ток, проводник также будет нагреваться. Это и понятно, так как хотя переменный ток и меняет все время свое направление, но выделение тепла совершенно не зависит от направления тока в проводнике.

При пропускании переменного тока через лампочку нить ее будет накаливаться. При стандартной частоте переменного тока 50 гц никакого мигания света наблюдаться не будет, так как нить лампочки накаливания , обладая тепловой инерцией, не успевает остыть в те моменты, когда ток в цепи равен нулю. Применение для освещения переменного тока с частотой меньше 50 гц уже нежелательно в связи с тем, что появляются неприятные, утомляющие зрение колебания силы света лампочки.

Проводя и дальше аналогию с постоянным током, можно ожидать, что переменный ток, проходя по проводнику, создает вокруг него магнитное поле. На самом деле п еременный ток не создает магнитного поля, а потому, что создаваемое им магнитное поле будет также переменным по направлению и величине.

Переменный ток все время изменяется как по величине, так и по направлени ю. Естественно возникает вопрос, как же измерить переменный т ок и какое значение его при изменении по синусоиде следует принять как производящее то или иное действие.

С этой целью переменный ток сравнивают по производимому им действию с постоянным током, величина которого в течение опыта остается неизменной.

Переменный ток и напряжение

Предположим, что по проводнику с неизменным сопротивлением пропущен постоянный ток 10 А и при этом обнаружено, что проводник нагрелся до температуры 50°. Если теперь по этому же проводнику пропустить не постоянный, а переменный ток и так подобрать его величину (действуя, например, реостатом), чтобы проводник также нагрелся до температуры 50°, то в этом случае мы можем сказать, что действие переменного тока равно действию постоянного тока.

Нагревание проводника в обоих случаях до одной и той же температуры говорит о том, что за единицу времени переменный ток выделяет в проводнике такое же количество тепла, как и постоянный.

Переменный синусоидальный ток, выделяющий в данном сопротивлении за единицу времени такое же количество тепла, как и постоянный ток, является эквивалентным по величине постоянному току . Эту величину тока называют действующим (Iд) или эффективным значением переменного тока . Следовательно, для нашего примера действующее значение переменного тока будет составлять 10 А . При этом максимальные (амплитудные) значения тока будут превосходить по величине действующие значения.

Опыт и подсчеты показали, что действующие значения переменного тока меньше амплитудных его значений в √ 2 (1,41) раза. Следовательно, если амплитудное значение тока известно, то действующее значение тока I д может быть определено путем деления амплитуды тока Iа на √ 2, т. е. I д = I а/ √ 2

Наоборот, если известно действующее значение тока, то может быть вычислено амплитудное значение тока, т. е. I а = I д √ 2

Такие же соотношения будут действительны и для амплитудных и действующих значений э. д. с. и напряжений: Ед = Еа/ √ 2 , U д = U а/ √ 2

Измерительные приборы чаще всего показывают действующие значения, поэтому при обозначениях индекс "д" обычно опускается, но забывать об этом не следует.

Полное сопротивление в цепях переменного тока

Полное сопротивление в цепях переменного тока

При включении в цепь переменного тока потребителей, имеющих индуктивность и емкость, приходится считаться как с активным, так и с реактивным сопротивлением (реактивное сопротивление появляется при включении конденсатора или катушки индуктивности в цепь переменного тока). Поэтому при определении тока, проходящего по такому потребителю, необходимо подведенное напряжение делить на полное сопротивление цепи (потребителя).

Полное сопротивление (Z) цепи однофазного переменного тока определяется по следующей формуле:

Z = √ (R 2 + ( ω L - 1/ωC) 2

где R — активное сопротивление цепи в омах , L — индуктивность цепи в генри, С — емкость цепи (конденсатора) в фарадах , ω — угловая частота переменного тока.

В цепях переменного тока применяются различные потребители, в которых необходимо учитывать или все три величины R, L, С или только некоторые из них. Одновременно с этим необходимо учитывать и угловую частоту переменного тока.

В некоторых потребителях при соответствующих значениях угловой частоты можно принимать во внимание только величины R и L. Так, например, при частоте переменного тока 50 гц катушку соленоида или обмотку генератора можно рассматривать лишь как содержащую активное и индуктивное сопротивление. Иначе говоря, емкостью в этом случае можно пренебречь. Тогда полное сопротивление переменному току такого потребителя можно подсчитать по формуле:

Z = √ (R 2 + ω 2 L 2 )

Если такую катушку, или обмотку, рассчитанную для работы в цепи переменного тока, включить в цель постоянного тока с таким же напряжением, по катушке пойдет очень большой ток, который может привести к значительному выделению тепла, и изоляция обмотки может быть повреждена. Напротив, по катушке, рассчитанной для работы в цепи постоянного тока и включенной в цепь переменного тока с тем же напряжением, будет проходить небольшой ток, и прибор, в котором применена эта катушка, не произведет необходимого действия.

Треугольник сопротивлений, треугольник напряжений и треугольник мощностей:

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки. Электроны перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Элементы цепи синусоидального тока. Векторные диаграммы

Резистор

Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение

u = Um sin t (см. рис. 1), то ток i через него будет равен

i = = = Im sin t (2)

Соотношение (2) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i, то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.

Из (2) вытекает: ; .

Полученный результат показывает, что ток и напряжение совпадает по фазе, следовательно соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.



Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью.



Рис. 3.а) Обозначение емкости на схеме С1 конденсатор; С2 электролитический конденсатор; С3 переменный конденсатор Рис. 3.б) Электрическое поле заряженного конденсатора


Если к конденсатору приложить синусоидальное напряжение u = Um sin t, то за счет изменяющейся в соответствии с изменением направления поляризации диэлектрика через конденсатор будет протекать переменный ток.

Поскольку ток это скорость движения зарядов (количество заряда в единицу времени через поперечное сечение проводника), а заряд на обкладках конденсатора связан с напряжением между пластинами конденсатора зависимостью:


,

где С – емкость конденсатора, откуда: q = Cu .

И так, напряжение на конденсаторе изменяется по синусоидальному закону:


u = Um sin t

Тогда ток через конденсатор определится выражением

i = = (Cu) = C = CUm sin( t + ) = Im sin( t + ) .(3)

Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране будет иметь место картинка, соответствующая рис. 5.


Из (3) вытекает: ; .

Введенный параметр XC = называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление, XC имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 5.б). Из рис. 5.б). вытекает, что при конденсатор пред ставляет разрыв для тока, а при . .


Ток опережает напряжение на угол . Этому соответствует векторная диаграмма, представленная на рис. 6.

Рассмотрим цепь, состоящую из активного сопротивления и конденсатора (Рис. 7).

Вектор падения напряжения на активном сопротивлении совпадает по направлению с током, а вектор напряжения на конденсаторе отстаёт от вектора тока на угол . Следовательно, векторная диаграмма такой схемы будет выглядеть следующим образом:


Рис. 8.

Катушка индуктивности

Индуктивность это устройство, способное при прохождении через него тока создавать магнитное поле, в котором запасается электромагнитная энергия.

Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Для создания идеального индуктивного элемента нужно использовать сверхпроводящую катушку индуктивности. В реальных катушках индуктивности всегда присутствует активное сопротивление провода.



Рис. 9. Обозначение катушки индуктивности на схеме Рис. 10. Магнитное поле катушки индуктивности

Для упрощения физического процесса рассмотрим идеальный индуктивный элемент, не обладает ни активным сопротивлением, ни емкостью.


Пусть протекающий через него ток определяется выражением i = Im sin t . Тогда для напряжения на зажимах катушки индуктивности можно записать

u= - e = = (Li) = L Im sin ( t + ) = Um sin ( t + ). (5)


где = Li - потокосцепление.


Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.

Из (5) вытекает: = ωL = U = ωL I = XL I ;

откуда XL = ωL ; где XL – реактивное индуктивное сопротивление катушки индуктивности.


Введенный параметр XL = ωL называют реактивным индуктивным сопротивлением катушки; его размерность – Ом. Как и у емкостного элемента, этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при катушка индуктивности не оказывает сопротивления протекающему через него току, и при .

Опережение током на угол напряжение соответствует повороту вектора на угол против часовой стрелки. Следовательно, уравнению соответствует векторная диаграмма, представленная на рис. 11

Естественно, что катушка изготавливается из металлического провода, который имеет активное сопротивление, полное сопротивление содержит активную и реактивную части: Z = R + jXL

Проводимости

Под комплексной проводимостью любой цепи понимается величина обратная ее полному комплексному сопротивлению:


(2.50)

где g– активная проводимость данной цепи;

b– результирующая реактивная проводимость.



, (2.51)

где bLиbC– индуктивная и емкостная проводимости соответственно.

Понятие проводимости приобретает особый смысл в том случае, если ветвь содержит активные и реактивные элементы. На ветви, изображенной на Рис. 24, определим ее активную и реактивную проводимости:


Рис.24. Участок цепи с активно-индуктивным сопротивлением



. (2.52)

Из векторной диаграммы (Рис. 23) можно выделить треугольник токов:


Рис.25. Векторный треугольник токов

Разделив стороны векторного треугольника токов на вектор напряжения, получим скалярный треугольник проводимостей.


Рис.26. Скалярный треугольник проводимостей

Резонанс токов

Резонансный режим, возникающий при параллельном соединении R, L, C,называется резонансом токов. В отличие от рассмотренного ранее режима резонанса напряжений, данный режим не столь однозначен.


Рис.27. Цепь с параллельным соединением разнородных приемников

В цепи (Рис. 27) режим резонанса токов возникает при условии равенства нулю результирующей реактивной проводимости этой цепи:

Реактивные проводимости ветвей:

.

Подставим выражения b1иb2в ( 2 .53):



и после преобразования получим резонансную частоту :


(2.54)


Структура полученного уравнения показывает, что существует четыре варианта частоты :


1. Если R1 = R2 ¹ r ,то =w 0

2. Если R1 = R2 = r ,то =w 0 – с физической точки зрения это означает, что входное сопротивление данного контура равно ее волновому, которое не зависит от частоты, значит, резонанс будет иметь место при любой частоте. Для доказательства этого положения определим входное сопротивление цепи:



3. Если под корнем получилось отрицательное число, значит, резонансной частоты не существует для данных параметров R1, R2, r , L, C.


4. Если под корнем положительное число, то получаем - единственную резонансную частоту.

Однофазный переменный ток

Получение однофазного переменного тока

Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки. Электроны перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.

Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

  • Полезные советы
  • О дереве и лесе
  • Строение дерева и древесины
  • Характеристика пород
  • Свойства древесины
  • Пороки древесины
  • Пиломатериалы
  • Сушка древесины
  • Интересное о дереве
  • Тайны древесного ствола
  • Шиповые соединения брусков
  • Оборудование рабочего места
  • Пиление
  • Строгание
  • Сверление
  • Соединение гвоздями
  • Соединение шурупами
  • Соединение на клею
  • Отделка поверхности изделий
  • Выжигание по дереву
  • Выпиливание лобзиком
  • Резьба по дереву
  • Инкрустация по дереву
  • Токарные работы по дереву
  • Интересное о металлах
  • Станки по обработке металлов
  • Оборудование рабочего места
  • Металлы и сплавы
  • О свойствах металлов
  • Сортовой прокат
  • Нарезание внутренней резьбы
  • Нарезание наружной резьбы
  • Опиливание металла
  • Рубка металла
  • Пиление слесарной ножовкой
  • Измерение штангенциркулем
  • Измерение микрометром
  • Разметка проката
  • Виды проката
  • Отделка изделий
  • Гибка металла
  • Правка заготовок
  • Разметка заготовок
  • Графическое изображение
  • Резание металла ножницами
  • Сверление отверстий
  • Соединения заклёпками
  • Процесс изготовления деталей
  • Изделия из проволоки
  • Тонколистовой металл и проволока
  • Электродвигатели
  • Источники и проводники
  • Оснащение рабочего места
  • Электробезопасность
  • Электроарматура и светильнии
  • Монтаж и ремонт
  • Измерительные приборы
  • Однофазный переменный ток
  • Трёхфазный переменный ток
  • Выпрямители переменного тока
  • Электромагниты
  • Электрозвонок и электрореле
  • Электроцепь и электросхема
  • Пять заблуждений о клееном брусе
  • Светодиодные экраны и электронное табло
  • Чем нарезать резьбу
  • Трансформаторы
  • Вышивка бисером
  • Функции станков с ЧПУ
  • Стандартизация
  • Освещение
  • Техэкспертиза
  • Обработка стекла
  • Робототехника
  • Деревообработка
  • Изготовление окон
  • Строительство
  • Вальцовочное оборудование
  • Стабилизаторы напряжения для дома
  • Технология токарных работ в промышленности
  • Алюминиевые сплавы
  • Искусственное старение древесины
  • Упругость и прочность металла
  • Всё о плазменной резке
  • Использование станков в производстве
  • Особенности гибки металла
  • Пресс-ножницы
  • Сушильные камеры
  • Листовая штамповка – основные ее преимущества
  • Железное кружево
  • Термовоздушная станция – современная альтернатива паяльнику
  • Ядерный взрыв или атака инопланетян. О новых технологиях обработки материалов.
  • Страхование

Однофазный переменный ток

Однофазный переменный ток

Практически в домашних условиях применяют однофазный переменный ток, который получают с помощью генераторов переменного тока. Устройство и принцип действия этих генераторов основывается на явлении электромагнитной индукции — возникновение электрического тока в замкнутом проводнике при изменении магнитного потока, проходящего через него. Это явление было открыто английским ученым М.Фарадеем (1791-1867) в 1831 г.
Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:

i = Im · sin (2 ·π·f·t ),
где i — мгновенное значение тока;
Im — амплитудное (наибольшее) значение тока;
f — частота переменного тока;
t — время.


На рис. справа представлен график переменного тока и указаны амплитудные и мгновенное значения переменного тока в момент времени t .

Частота измеряется в герцах (Гц) в честь немецкого ученого Г. Герца (1857-1894). В сети переменного тока она равна 50 Гц. Частота переменного тока характеризует быстроту периодических процессов, число колебаний, совершаемых в единицу времени. Она измеряется с помощью специальных приборов — частотомеров.
Величина, обратная частоте, называется периодом колебания Т. Он равен для сети переменного тока 0,02 секунды.
Частота переменного тока зависит от частоты вращения ротора генератора и числа пар полюсов индуктора. Она определяется по формуле:

где p — число пар полюсов индуктора;
n — частота вращения ротора в минуту.
Если генератор имеет одну пару полюсов, то ротор такого генератора совершает 3000 об/мин для получения переменного тока частотой 50 Гц.
Переменный ток так же, как и постоянный ток, может производить тепловое действие. Накаливание волоска лампочки осуществляется как переменным, так и постоянным током. Поэтому, сравнивая тепловые эффекты постоянного и переменного токов ( Q = = Q - _ ), получают соотношение между действующим (эффективным) и максимальным токами:

где I , U — действующие значения тока и напряжения;
Im , Um — максимальные значения тока и напряжения.

Измерительные приборы, включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

Переменный ток одного напряжения, в отличие от постоянного, легко преобразовать в переменный ток другого напряжения с помощью трансформатора.

Трансформатором называется электромагнитный аппарат, который служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте тока. Трансформаторы широко используются при передаче и распределении электрической энергии переменного тока. Они бывают однофазные и трехфазные.

Однофазный трансформатор состоит из сердечника и двух обмоток изолированного провода. Сердечник трансформатора делается из листов электротехнической стали и служит магнитопроводом. Листы стали изолируются лаком для уменьшения потери энергии в сердечнике. Обмотка, подключенная в сеть, называется первичной, а обмотка, с которой снимается напряжение, — вторичной. Трансформаторы, в которых вторичная обмотка имеет большее число витков, чем первичная, являются повышающими, а трансформаторы, в которых вторичная обмотка имеет меньшее число витков, чем первичная, являются понижающими. Отношение числа витков W 1 и W 2 обеих обмоток трансформатора равно отношению напряжений U 1 и U 2 на зажимах обмоток и называется коэффициентом трансформации К , т. е.

Читайте также: