Получение объемных изображений в телевидении кратко

Обновлено: 05.07.2024

Одной из тем в исторической науке является так называемый научно-технический прогресс. Во все эпохи исследователи выделяют в изучаемых странах, цивилизациях господствующие орудия труда, технологии в производстве, строительстве. Все это обычно называют еще материально-технической базой. По мнению ученых, она оказывает заметное влияние на разные стороны исторического процесса.

Одной из современных технологий, имеющей широкое распространение и уже достаточно привычной, является телевизионное вещание, то есть передача изображения с помощью научных открытий в области электроники, механики на дальнее расстояние. История телевидения считается в целом достаточно недолгой по сравнению с историей других технологий, но имеющей насыщенное содержание.

Изобретатели, внесшие вклад в развитие ТВ

В привычном для современности виде телевидение сложилось далеко не сразу. Этому предшествовали десятилетия исследований, опытов, экспериментов. Сама идея передачи изображения на расстояние возникла вследствие определенных открытий в сфере физики, электроники, механики. Эта идея была выдвинута и над ней велась работа несколькими учеными в разных странах примерно в конце XIX – начале XX века. Исследования и эксперименты велись в сфере электроники и механики.

Основным приемом, с помощью которого предполагалось передавать изображение на расстояние, было разложение картинки на составные элементы, их передача через определенную систему связи, а затем их прием и соединение устройством, которое принимало сигналы.

В 1880 году русский исследователь Порфирий Иванович Бахметьев выдвинул идею передачи картинки через ее разложение на части и соединение в принимающем устройстве. В 1900 году другой русский исследователь Александр Аполлонович Полумордвинов изобрел систему, сочетающую принципы оптики и механики, для передачи цветной картинки. В 1907 году русский ученый Борис Львович Розинг изобрел систему передачи картинки через электронно-лучевой пучок, придумав тем самым электронный способ телевизионного вещания. Его ученик Владимир Козьмич Зворыкин потом продолжил разработки Розинга.

кто изобрел телевидение

Немецкий исследователь Пауль Нипков в конце XIX столетия придумал способ телевещания, основанный на механике. Он предложил разделять изображение с помощью крутящегося диска с отверстиями. Этот прием потом на десятилетия лег в основу телевизионного вещания для разложения изображения. Однако для его соединения нужно было устройство для приема световой энергии и ее перевода в электрическую. Такую систему придумал в 1888 году русский исследователь Александр Григорьевич Столетов. Ее использовал потом в своих исследованиях и экспериментах Розинг.

В итоге при ответе на вопрос, кто изобрел телевидение, следует подчеркнуть, что не было одного изобретателя, а несколько ученых сделали разные открытия и приборы для телевизионного вещания.

Первое опытное телевещание

Начало телевизионных передач относится примерно к одному времени 1929–1931 годов сразу в нескольких ведущих в отношении этих разработок странах. К тому времени была выработана стандартная система механического вещания через 30 строк развертки изображения с помощью устройства Нипкова.

история создания телевидения

Первая отечественная телепередача

Датой начала первых телевизионных передач в России считается 1 октября 1931 года. Тогда ночью из пункта радиосвязи в Москве, куда отнесли необходимую аппаратуру и где оборудовали студийное помещение, была проведена трансляция передачи. Количество принимающих сигнал телевизоров обычно оценивается числом не менее 10.

Передачи стали транслироваться регулярно по определенной программе. Они, как считается, не подготавливались заранее, это обычно была импровизация. Размеры принимающих телевизоров в то время были примерно с размер коробки со спичками. В подготовке оборудования для проведения всех этих трансляций принимал большое участие ученый Павел Васильевич Шмаков. Именно он сконструировал аппарат для передачи сигнала.

Отмечается, что телевидение тогда получило достаточно широкое распространение за счет механического принципа трансляции, которая проводилась на средних и длинных частотах волн. Эти частоты принимаются на больших расстояниях, поэтому первые программы принимались в самых разных городах страны.

Если бы программы транслировались на электронном принципе, то сигнал принимался бы только на близком расстоянии от источника, поскольку электронное вещание ведется на коротких волнах, прием которых требует отсутствия заграждающих предметов между источником сигнала и приемником. Считается, что в истории создания телевидения это сыграло определенную роль, поскольку достаточно быстро и широко познакомило с ним зрителей.

история развития телевидения

Становление отечественного ТВ

В дальнейшие годы для распространения телевизионного сигнала на территорию всего Советского союза строились в разных пунктах центры подачи этого сигнала. Считается, что был еще второй вариант – связать населенные пункты сетью специальных кабелей.

В ближайшее десятилетие происходила конкуренция между механическим и электронным принципами подачи сигнала. Первый был проще, но качество изображения, которое он передавал, считалось не очень высоким. Во многом это было обусловлено небольшим размером экрана. Чтобы увеличить его размеры, требовался достаточно большой по диаметру диск Нипкова. Это представлялось громоздким и неудобным.

Вскоре на смену механической передаче сигнала пришла электронная. В так называемых развитых в научно-техническом отношении странах первые регулярные опыты по переходу на электронное телевещание начались в период 1936–1940 годов. Считается, что в Советском союзе механическое вещание прекратилось в 1938 году, когда на Шаболовке был оборудован центр электронного вещания. В истории развития телевидения обычно ученые выделяют несколько этапов.

Экспериментальный этап

В этот период проводились первые опыты по передаче изображения через телевизионный сигнал. Он включает в себя также время экспериментов и изобретений разных устройств, аппаратов. Обычно его для Советского союза относят примерно к началу 30-х годов. В это время речь шла только об отработке самого принципа передачи, определения и производства нужных для этого устройств. После этого уже перешли к внедрению телевидения масштабно по всей стране.

история телевидения в россии

Регулярное вещание

Этот этап растянулся на десятилетия. Его обычно начинают с 30-х или уже с конца 30-х годов вплоть до 60-х годов XX века. В этот период в стране налаживались технические условия для телевещания. С одной стороны, строились пункты подачи сигнала, телецентры. Они долгое время в целом были обособлены друг от друга, не были соединены линиями связи в одну сеть. Для них в промышленности производились соответствующие устройства.

С другой стороны, выпускались принимающие устройства – телевизоры. Их характеристики разработчики постепенно улучшали, одной из них была диагональ экрана. Со временем она все больше увеличивалась. Это, как считается, меняло и характер передач, которые начинали применять все более разные приемы и средства визуальной подачи картинки.

ТВ как средство массовой информации

К этому этапу уже в целом была сформирована сеть центров телевещания. Теперь они стали соединяться линиями связи в одну телевизионную систему страны. Этот период охватывает время с конца 60-х до 90-х годов. Центральное московское телевидение теперь можно было услышать почти во всех регионах страны.

В конце 60-х годов в действие был введен телевизионный центр Останкино, обладавший по тому времени значительными техническими мощностями. Регулярно передавалось уже около 4 программ. Картинка становилась цветной.

история возникновения телевидения

Считается, что даже мощные наземные передающие станции не охватывали деревень, всех населенных пунктов. В 1965 году началась передача сигнала через искусственный спутник. Внедрение спутникового сигнала стало следующим значительным технологическим шагом в развитии телевидения. Теперь началось строительство принимающих станций для сигнала со спутника.

Юридическое положение телевидения тоже меняется. В 1970 году сформирован специальный отдельный государственный комитет по телевидению и радиовещанию.

Современный этап развития

Начало этого периода относят к 90-м годам. Для него, как и для прежних периодов, характерна тесная связь с общественно-политическими, экономическими процессами в стране. Если раньше при коммунистической партии, стремившейся к контролю за средствами массовый информации, телевидение было государственным, его передачи и каналы контролировались с точки зрения их содержания, то в 90-х годах после распада СССР ситуация изменилась.

В России стали внедряться рыночные отношения. Поэтому на телевидении появились частные коммерческие каналы. Они составляли конкуренцию государственным. Также начали вещание зарубежные каналы. Особенностью периода считается широкое внедрение новых технологических изобретений, например, цифровых технологий.

В телевидении для формирования объемного изображения применяется принцип стереопар . Это когда берется пара плоских изображений нужного объекта предназначенные для правого и левого глаза. Этот метод основан на эффекте создания иллюзии объемного изображения, когда каждый глаз видит свою картинку, при этом создается угловое смещение из-за разного расстояния от картинок объекта к зрителю.

Обычно стереопара представляет собой рядом расположенные плоские картинки на расстоянии, которое равно межзрачковому расстоянию у человека. Такие картинки очень трудно рассматривать, ведь нужно взгляд каждого глаза располагать параллельно.

Для простоты восприятия изображения налаживают одно на другое, а для их разделения для каждого глаза используют такие методы: анаглиф (разная окрашенность каждой картинки), разная поляризация, временное разделение, цельные стереопары. Для просмотра видео созданных с применением этих методов нужны специальные очки.

Все возможные методы получения 3D изображения на сегодня основаны на работе именно стереопары и различаются только методом обработки этой стереопары.

Анаглиф

При этом методе формирования 3D изображения в стереопаре картинки для левого и правого глаза окрашиваются в свои цвета. Обычно для левого глаза берется красный цвет, а для правого берут синий или голубой цвет.

Для просмотра такого видео нужно использовать очки, в которых применяются светофильтры соответствующих цветов. Здесь получается стереопара, в которой в красном канале идет картинка для левого глаза, а в синем канале идет изображение для правого глаза.

При методе анаглиф очень сильно искажается цветопередача из-за окрашивания общего изображения в цвета картинки.

картинка анаглиф

Чересстрочный метод

Этот метод получения стереопары подразумевает разделение разных картинок на четные и нечетные строки . То есть изображение для одного глаза передается на четных строках, а для другого глаза на нечетных.

При таком методе разрешение изображение по вертикали уменьшается в два раза. Это и есть главный недостаток чересстрочного метода формирования стереопары. Но идет полная цветопередача. Этот метод редко используется, в основном при выпуске DVD 3D дисков .


Поляризация

Используется в 3D телевизорах пассивная поляризация , при этом применяются поляризационные фильтры на экране и очках.

Горизонтальная стереопара (SideBySide)

При этом два изображения расположены рядом друг с другом. Здесь различают два способа:

  • a) параллельная стереопара , здесь взгляд направляют параллельно;
  • б) перекрестная стереопара , изображение расположенное справа предназначено для левого глаза, а изображение слева – для правого глаза.

Вертикальная стереопара (OverUnder)

Здесь изображения расположены одно над другим и просматривают такое видео через специальный плеер, преобразующий изображение для просмотра с очками.


Page flip (временное разделение)

Картинка для одного глаза передается в четных кадрах, а для другого в нечетных кадрах . Для просмотра применяются очки с жк затворами, которые закрывают в нужный момент то один глаз то другой.

Раздельная стереопара

При этом методе видео для каждого глаза разделены на два независимых потока . Могут использовать два метода формирования:

  • Separatefiles — в разных файлах передаются потоки;
  • Dualstream — потоки расположены в одном контейнере.

Недостатком может служить сложность синхронизации, но при этом удобно обрабатывать такую информацию.

Blu-Ray 3D

Этот формат используется для записи 3D дисков. Как носители используются диски BD25 и BD50. Этот метод является частным случаем раздельной стереопары в Dualstream. Для сжатия видеопотока используется специальный кодек.

Анаморфная стереопара

Это один из видов горизонтальной или вертикальной стереопары. Но четкость изображения уменьшена, такой формат показывает качество, как и чересстрочный метод. Оба этих метода применяются в телевизионном вещании.

Выводы

Все распространяемые сегодня форматы 3D видео созданы с использованием одного из этих методов. Для каждого из этих методов используется и свой способ просмотра. Поэтому, не всегда приобретя фильм в формате 3D, вы сможете его просмотреть на любом телевизоре 3D. В зависимости от используемого телевизора 3D со своим методом воспроизведения объемного изображения нужно и фильмы выбрать с соответствующим методом формирования 3D картинки.


Многие обозреватели предполагают, что следующим качественным скачком будет появление объемного телевидения. Предсказывают, что такое телевидение появится в течение 10 лет. В данной статье рассказывается, как уже сегодня на основе промышленно выпускаемых устройств создаются системы показа стереоскопического видео.

Краткая историческая ретроспектива

В истории развития телевидения и цифрового видео можно выделить следующие крупные этапы:

1 - черно-белое телевидение - передается яркость изображения.

2 - цветное телевидение - передается яркость и цветовые составляющие. С точки зрения объема данных, добавление цвета - это количественный переход. С точки зрения наблюдателя - качественный.

3 - появление цифрового видео (Video CD, DVD) - качественный переход с точки зрения формата данных.

4 - цифровое видео и телевидение высокого разрешения (Blu-Ray, HDTV) - количественный переход с точки зрения объема данных. Однако передаются все те же составляющие: яркость и цвет.

Среди специалистов и зрителей назрело ожидание очередного качественного перехода, давно предсказанного писателями-фантастами, - появление объемного телевидения. Долгое время "узким местом" в реализации стереоскопического видеопоказа был объем данных, который было невозможно передать существующими средствами. Цифровое телевидение позволило передавать достаточное количество информации и стало основой ряда устройств, позволяющих осуществить объемную визуализацию.

Каким должно быть стереоскопическое телевидение

Попробуем сформулировать основные требования к объемному телевидению для широкого применения в домашних условиях.

С точки зрения пользователя (зрителя):

Устройство воспроизведения должно создавать реалистичное ощущение объемности изображения.

Просмотр должен осуществляется естественно, без напряжения, для просмотра не должны требоваться дополнительные устройства (например, шлем или специальные очки). Он должен быть доступен как для одного наблюдателя, так и для нескольких зрителей одновременно.

Устройство визуализации должно быть достаточно компактным и удобным для размещения в жилых помещениях.

С точки зрения инженеров, обобщенные требования к средствам и техническим устройствам объемного телевидения:

Объем данных, необходимых для показа стереоскопического изображения, не должен существенно превосходить объем данных, передаваемых для обычного изображения.

Способ передачи данных должен быть совместим с существующими стандартами и технологиями.

Казалось бы, перечисленным требованиям трудно удовлетворить одновременно. Однако совокупность современных технических решений делают это возможным.

Физические основы стереоскопического восприятия

Получить представление об объемности окружающего мира человеку позволяет ряд явлений: геометрическая и воздушная перспектива, тени и блики на поверхностях объектов, относительные размеры объектов. Изобразительные приемы, моделирующие эти явления, используются художниками с давних пор для передачи объемности трехмерных предметов, нарисованных на плоскости.

Природа наделила человека бинокулярным зрением - парой глаз, расположенных на расстоянии 60-70 мм. За счет этого человек видит мир одновременно с двух точек наблюдения. В результате изображения, получаемые левым и правым глазом, слегка отличаются. Эти два изображения принято называть стереопарой. Анализируя различия между изображениями стереопары, мозг человека получает информацию об объеме и удаленности наблюдаемых объектов (рис. 1).

Кажущееся смещение рассматриваемого объекта, вызванное изменением точки наблюдения, называется параллаксом и является главным фактором в восприятии трехмерности мира.

Все способы, которые широко используются для создания стереоэффекта в видео, используют принцип раздельного просмотра - левому глазу человека демонстрируется левое изображение стереопары, правому - правое. Различия заключаются в том, каким образом достигается сепарация (разделение) изображений стереопары. Большинство современных устройств стереовизуализации и в кино, и в телевидении основаны на методах, известных более 100 лет.

Анаглифному методу показа 150 лет. Метод предложен Дальмейда и Дюко дю Ороном в 1858 году. Реализован в кино Луи Люмьером в 1935-м. Анаглифный метод (от греч. anagliphos - рельефный) состоит в окрашивании изображений стереопары в дополнительные цвета. Оба кадра стереопары формируют одно изображение. Разделение левого и правого кадра происходит с помощью цветных очков, окрашенных в соответствующие цвета. Анаглифный метод используется и в кинопоказе, и в телевизионных трансляциях. Этот метод работает практически на любых цветных телевизорах и мониторах. Достоинство метода - простота и дешевизна реализации, недостаток -- потеря части цветов и необходимость использования очков.

Поляризационному методу стереопроекции около 120 лет. Предложен Ж. Андертоном в 1891 году. Получил широкое распространение после изобретения в 1935-м Е. Лэндом поляроидной пленки. Левый и правый кадр проецируются одновременно, но свет поляризуется (линейно или циркулярно) в разных направлениях. Просмотр осуществляется с помощью очков, имеющих соответствующие светофильтры. Поляризационный метод получил широкое распространение в кинопрокате благодаря четкому разделению стереопары, сохранению цветности; недостатки - необходимость использования дорогостоящего оборудования, специальных устройств визуализации и очки, которые зритель должен надевать. Используется в кинотеатрах IMAX и др.

Растровому стерео более 110 лет. Впервые метод безочкового стерео с применением параллельного светопоглощающего растра предложен одновременно Бертье и Лизегангом в 1896 году. Впервые в мире для демонстрации стереокино этот метод был предложен в СССР С. Ивановым и А. Андриевским и реализован под руководством Б. Иванова в 1942-м. Первый в мире кинотеатр с растрово-линзовым экраном "Стереокино" был открыт в Москве в 1947-м. Растр выглядел в виде ряда непрозрачных вертикальных полос. Свет проходил в прозрачные участки между полосами, каждому глазу зрителя показывался необходимый фрагмент изображения. Размеры экрана составляли 3х3 м.

Наибольший эффект от линзово-растрового способа показа достигается, когда показываются не два кадра стереопары, а ряд кадров, сделанных с небольшим смещением по горизонтали (многоракурсная съемка). В этом случае при просмотре образуется широкая зона стереовидения, в которой наблюдатель может перемещаться, поочередно наблюдая сцену с разных ракурсов. Появляется возможность как бы заглянуть за объекты переднего плана. Это придает натуральность наблюдаемому стереоизображению. В фотографии для съемки серии кадров используют специальные стереофотокамеры с рядом объективов (рис. 3), или специальные штативы, позволяющие при съемке перемещать камеру в горизонтальном направлении (рис. 4).

Достоинство растрового метода в том, что устройство сепарации объединено с самим изображением и зрителю нет необходимости надевать какие-либо очки для просмотра. Кроме того, формирование объемного изображения из серии кадров, снятых с различных точек зрения, позволяет придать большую реалистичность сцене.

Недостаток в том, что для качественного воспроизведения объемного изображения требуется гораздо больше данных. Если для анаглифного и поляризационного методов достаточно двух кадров стереопары, то для растрового желательно иметь одновременно 9-12 кадров. Далее будет рассказано о способе решения данной проблемы.

Стереоскопические мониторы (телевизоры)

Существует большое количество реализаций стереоскопических мониторов. Практически у всех известных марок (LG, Philips, Sharp, Panasonic, Sony и др.) есть модели стереомониторов, основанные на принципе линзового растра. Это можно объяснить тем, что данные устройства достаточно хорошо отвечают требованиям 1-5 из обозначенных выше. Разработка линзово-растровых стереомониторов началась еще в прошлом веке (например, Philips), однако действительно хорошего эффекта и определенного коммерческого успеха удалось добиться лишь сравнительно недавно, с распространением стандарта высокого разрешения (HD). Это связано с тем, что для формирования кодированного многоракурсного изображения требуется разрешение более высокое, чем для каждого из исходных кадров по отдельности: под каждую линзу должны войти элементы всех исходных кадров. Только с появлением возможности передавать и декодировать видео высокого разрешения количества пикселов стало достаточно, чтобы увеличить качество воспроизводимого стерео (3D) эффекта.

Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/8 ноября 2012.
Пока процесс обсуждения не завершён, статью можно попытаться улучшить, однако следует воздерживаться от переименований или удаления содержания, подробнее см. руководство к дальнейшему действию.
Не снимайте пометку о выставлении на удаление до окончания обсуждения. Администраторам: ссылки сюда, история (последнее изменение), журналы, удалить .

Объёмное телевидение — общий термин, соответствующий различным видам телевизионных систем, воспроизводящих в той или иной степени трёхмерный характер окружающего мира [1] . Эти системы должны обеспечивать, по крайней мере, одно из следующих условий восприятия человеком телевизионного изображения:

  • различие конвергенции (скашивания) глаз в зависимости от удаленности (глубины) наблюдаемого объекта (стереоскопические, голографические телевизионные системы);
  • различие аккомодации (фокусировки) глаз в зависимости от удаленности наблюдаемого объекта (голографические телевизионные системы);
  • оглядывание объекта наблюдения при перемещении головы телезрителя (многоракурсные телевизионные системы);
  • изменение положения точки наблюдения в трёхмерном телевизионном пространстве по желанию телезрителя (телевизионные системы со свободной точкой наблюдения — free viewpoint television).

Совершенная система объёмного телевидения обладает двумя новыми качествами, отличающими её от простой телевизионной системы: трёхмерной интерактивностью — возможностью взаимодействия телезрителя с трёхмерным изображением и объёмностью, позволяющей глазам человека работать в естественном режиме, перемещая взор с близких объектов наблюдения на дальние.

Степень совершенства систем объёмного телевидения можно оценивать, пользуясь их классификацией [2] [3] , на основе геометрической части пленоптической функции [4] , которая представляет собой запись распределения интенсивности света внутри пучка лучей на входе оптической системы глаза: P=P(θ, φ, r, x, y, z). Она является функцией шести параметров (измерений), при этом: θ, φ, r — составляют сферическую систему координат с центром в точке наблюдения, а x, y, z — декартовы координаты точки наблюдения. Шесть параметров (измерений) практически полностью определяют конфигурацию (геометрию) системы отображения в пространстве.

Поскольку совершенная система объёмного телевидения должна реализовать полный набор параметров (обладать полной конфигурацией) можно говорить о шестимерности совершенной системы объемного телевидения. С учётом сказанного, в таблице дан пример классификации различных систем телевидения.

№ п/п Параметры Формула (полная) Формула (сокращённая) Телевидение
1 θ, φ 2D(θ, φ) 2D Двумерное (обычное)
2 θ, φ, r 3D(θ, φ, r); 2,5D(θ, φ, r) 3D; [2,5D] Объёмное [стереоскопическое] без оглядывания объектов наблюдения
3 θ, φ, r, x 4D(θ, φ, r, x) 4D(r, x) Объёмное с оглядыванием по горизонтали
4 θ, φ, r, x, y 5D(θ, φ, r, x, y) 5D(r, x, y) Объёмное с оглядыванием по горизонтали и вертикали
5 θ, φ, r, x, y, z 6D(θ, φ, r, x, y, z) 6D(r, x, y, z) Объёмное с произвольным перемещением точки наблюдения
θ, φ – угол места и азимут линии визирования; r – расстояние от точки наблюдения до точки объекта; x, z (горизонтальные), y (вертикальная) – координаты точки наблюдения.

Здесь приведены условные формулы вариантов систем телевидения. Подобная формула 3D(θ, φ, x) (отсутствует в таблице), означает, что мы имеем дело с двумерным изображением θ, φ трёхмерного объекта, при возможности его оглядывания, перемещаясь по горизонтали x. В данном случае в телевизионной системе отсутствует измерение r, то есть, не предусмотрена возможность изменения аккомодации и конвергенции глаз человека при отслеживании объёмного сюжета.

Поскольку наличие угловых координат θ и φ в любой телевизионной системе обязательно, их можно опустить и использовать сокращённую формулу, например, 5D(r, x, z). Последняя обозначает систему объемного телевидения, или телевизора (формулы могут не совпадать) с трёхмерным с глубиной r изображением и возможностью перемещаться в трёхмерном пространстве (трёхмерная интерактивность) в горизонтальной плоскости x, z.

В приведенной системе классификации обычная стереоскопическая (3D — от англ. 3-dimensional -обозначение, принятое в торговле) система будет иметь формулу 2,5D(r).

Такое дробное обозначение нуждается в пояснении. Когда мы направляем свое внимание на определенную зону пространства, задавая дистанцию наблюдения, эта зона выделяется с помощью органа зрения. Выделение по углу происходит благодаря пику разрешающей способности глаза возле линии визирования, а выделение по глубине (дальности) — благодаря аккомодации и конвергенции глаз. Аккомодация (фокусировка) глаза обеспечивает ясное видение в пределах глубины резкости. Конвергенция (скашивание) глаз минимизирует, диспаратность на выбранной дистанции наблюдения, исключая двоение изображения. Если телевизионная система не обеспечивает функций конвергенции и аккомодации глаз, то в ней отсутствует измерение r, если обеспечивает обе функции, можно говорить о наличии этого измерения, если обеспечивается только одна, о 50 % реализации измерения r или о 0,5 r. При наблюдении стереопары конвергенция глаз меняется при переносе внимания с близких точек объекта на дальние, а аккомодация остается неизменной, соответствуя дистанции расположения стереопары. Такая неестественная работа глаз приводит к их повышенному утомлению.

Телевизионные приёмники объёмного телевидения (телевизоры) подразделяются на три типа:

  • с плоским экраном (воспроизводящие обычное плоское телевизионное изображение, но позволяющие с помощью специального пульта (джойстика) реализовать свойство трёхмерной интерактивности);
  • со стереоскопическим экраном (со специальными очками или без очков, например, с лентикулярным растром);
  • объёмного изображения.

В свою очередь телевизоры объёмного изображения подразделяются на два типа:

Для обоих типов телевизоров объёмного изображения система телевидения может характеризоваться формулой 6D(r, x, y, z).

С давних времен человечество мечтало о передаче изображений на расстояния. Все мы слышали сказки и легенды про волшебные зеркала, тарелочки с яблочками, и все тому подобное. Но прошло не одно тысячелетие, прежде чем эта мечта осуществилась.

Первые телевизоры, пригодные для массового производства появились в конце 30-х годов прошлого столетия. Однако этому предшествовало несколько десятилетий упорных исследований и множества гениальных открытий.

С чего все начиналось

Old TV

Параллельно этим исследованиям происходило и множество других, сыгравших в итоге не менее важную роль в истории создания телевизоров. К примеру в 1879 году английским физиком Уильямом Круксом были открыты вещества способные светится при воздействии на них катодными лучами – люминофоры. Позднее было установлено, что яркость свечения люминофоров напрямую зависит от силы их облучения. В 1887 году первую версию катодо-лучевой трубки (кинескопа) представляет немецкий физик Карл Браун.

Old TV

К концу 19-века сама идея телевидения не кажется уже чем-то абсурдным и фантастическим. Никто из ученых уже не сомневается в возможности передачи изображений на расстояния. Один за другим выдвигаются проекты телевизионных систем, по большей части неосуществимые с точки зрения физики. Главные же принципы работы телевидения были созданы французским ученым Морисом Лебланом. Независимо от него, подобные труды создает и американский ученый Е. Сойер. Они описали принцип, согласно которому для передачи изображения требуется его быстрое покадровое сканирование, с дальнейшим превращением его в электрический сигнал. Ну а так как радио тогда уже существовало и успешно использовалось, то вопрос с передачей электрического сигнала решился сам собой.

В 1907 году Борису Розингу удалось теоретически обосновать возможность получения изображения посредством электронно-лучевой трубки, разработанной ранее немецким физиком К. Брауном. Розингу так же удалось осуществить это на практике. И хотя удалось получить изображение в виде одной единственной неподвижной точки, это был огромный шаг вперед. В целом, в деле развития электронных телевизионных систем, Розинг сыграл огромную роль.

В 1933 году, в США, русский эмигрант Владимир Зворыкин продемонстрировал иконоскоп – передающую электронную трубку. Принято считать, что именно В. Зворыкин является отцом электронного телевидения.

Приблизительно в то же время, независимо от Зворыкина, передающую трубку создает и советский ученый С. Катаев.

Механические телевизоры. Диск Нипкова

Old TV

Телевидение уходит в массы

Old TV

В 1925 году шведскому инженеру Джону Бэрду удалось впервые добиться передачи распознаваемых человеческих лиц. Опять таки с использованием диска Нипкова. Несколько позже, им же была разработана и первая телесистема, способная передавать движущиеся изображения.

Первый же электронный телевизор, пригодный для практического применения был разработан в американской научно-исследовательской лаборатории RCA, возглавляемой Зворыкиным, в конце 1936 года. Несколько позже, в 1939 году, RCA представила и первый телевизор, разработанный специально для массового производства. Эта модель получила название RCS TT-5. Она представляла из себя массивный деревянный ящик, оснащенный экраном с диагональю в 5 дюймов.

У нас

В 1932 году, при разработке плана на вторую пятилетку, телевидению было уделено много внимания. 15 ноября 1934 года впервые состоялась трансляция телевизионной передачи со звуком. Довольно длительное время существовал лишь один канал – Первый канал. На время Великой Отечественной Войны транслирование было прервано, и восстановлено лишь после ее окончания. А в 1960 году появился и Второй канал.

Первый советский телевизор выпущенный промышленностью назывался Б-2. Эта механическая модель появилась в апреле 32 года. Первый же электронный телевизор был создан гораздо позже - в 1949 году. Это был легендарный КВН 49. Телевизор был оснащен столь маленьким экраном, что для более-менее комфортного просмотра перед ним устанавливалась специальная линза, которую нужно было наполнять дистиллированной водой. В дальнейшем появилось и множество других, более совершенных моделей. Впрочем, качество сборки и надежность советских телевизоров (даже самых поздних моделей) были настолько низкими, что стали притчей во языцех. Производство же цветных телевизоров, в СССР началось лишь в средине 1967 года.

Цветное телевидение

Хотя систему цветного телевидения разработал еще Зворыкин в 1928 году, лишь к 1950 году стало возможна ее реализация. Да и то лишь в качестве эксперементальных разработок. Прошло много лет, прежде чем эта технология стала общедоступной повсеместно.

Первый, пригодный к продаже цветной телевизор создала в 1954 году все та же RCA. Эта модель была оснащена 15 дюймовым экраном. Несколько позже были разработаны модели с диагоналями 19 и 21 дюйм. Стоили такие системы дороже тысячи долларов США, а следовательно, были доступны далеко не всем. Впрочем, при желании, была возможность приобрести эту технику в кредит. Из-за сложностей с повсеместной организацией цветного телевещания, цветные модели телевизоров не могли быстро вытеснить черно-белые, и долгое время оба типа производились параллельно. Единые стандарты (PAL и SECAM) появились и начали внедрятся в 1967 году.

Развитие телевидения

Old TV

В начале радиолампы были вытеснены полупроводниками – первый телевизор на основе полупроводников был разработан в 1960 году фирмой Sony. В дальнейшем появились модели на основе микросхем. Теперь же существуют системы, когда вся электронная начинка телевизора заключена в одну единственную микросхему.

Но рассказывая про историю телевидения, нельзя не упомянуть и еще одно относительно простое, но очень важно изобретение. Первый пульт дистанционного управления был создан в 1950 году. Этот пульт подключался к телевизору посредством длинного провода. Несколькими годами позже Роберт Адлер предложил использовать для этой цели ультразвук. Предпринималось также попытки использования луча видимого света. Но в итоге остановились на инфракрасном излучении, которое и используется до сих пор.

Читайте также: