Подобные слагаемые это кратко

Обновлено: 02.07.2024

Определение и примеры подобных слагаемых

В большинстве учебных пособий тема подобных слагаемых разбирается после знакомства с буквенными выражениями, когда появляется необходимость проводить с ними различные преобразования.

Подобные слагаемые – это слагаемые, которые имеют одинаковую буквенную часть.

Слагаемые – это, как известно, составные элементы суммы. Это значит, что они могут присутствовать лишь в тех выражениях, которые представляют собой сумму. Буквенная часть – это одна или произведение нескольких букв, которые представляют собой переменные. Слагаемые с буквенной частью – это произведение некоторого числа и буквенной части. Здесь некоторое число также носит название числового коэффициента.

Рассмотрим сумму двух слагаемых 3 · a + 2 · a . В этой сумме слагаемые имеют одну и ту же буквенную часть, которая представлена буквой a . Согласно определению, эти два слагаемых являются подобными. Числа 2 и 3 в данном случае являются числовыми коэффициентами.

Рассмотрим сумму 5 · x · y 3 · z + 12 · x · y 3 · z + 1 . Здесь подобными являются слагаемые 5 · x · y 3 · z и 12 · x · y 3 · z , которые имеют одинаковую буквенную часть x · y 3 · z . Следует обратить внимание на то, что в буквенной части присутствует степень y 3 . Наличие степени не нарушает данное выше определение буквенной части в связи с тем, что y 3 по сути является произведением y · y · y .

Числовые коэффициенты 1 и − 1 в случае подобных слагаемых часто не записываются, но подразумеваются. К примеру, сумма 3 · z 5 + z 5 − z 5 состоит из трех слагаемых 3 · z 5 , z 5 и − z 5 , которые являются подобными. Здесь z 5 – это одинаковая буквенная часть, 3 , 1 и - 1 – коэффициенты.

Если слагаемые в буквенном выражении не имеют буквенной части, то они также являются подобными. Например, сумма 5 + 7 · x − 4 + 2 · x + y представлена 4 подобными слагаемыми, два из которых ( 5 и - 4 ) не имеют буквенной части.

Буквенная часть может быть представлена не только произведением букв, но также и произвольным буквенным выражением. Например:

3 · 5 · a - 2 · 5 · a + 12 · 5 · a .

Здесь общей буквенной частью подобных слагаемых является выражение 5 · a .

По аналогии можно выделить подобные слагаемые в выражении 4 · ( x 2 + x − 1 / x ) − 0 , 5 · ( x 2 + x − 1 / x ) − 1 . Это будут слагаемые с одинаковой буквенной частью ( x 2 + x − 1 / x ) .

Обобщим изложенные выше утверждения и дадим еще одно определение подобных слагаемых.

Подобные слагаемые – это слагаемые в буквенном выражении, которые имеют одинаковую буквенную часть, а также слагаемые, которые не имеют буквенной части, если под буквенной частью понимать любое буквенное выражение.

Числовые коэффициенты подобных слагаемых могут быть равны, тогда мы говорим о том, что подобные слагаемые одинаковые. Если же числовые коэффициенты различаются, то подобные слагаемые будут разными.

Возьмем для примера выражение 2 · x · y + 3 · y · x и рассмотрим такой нюанс: являются ли слагаемые 2 · x · y и 3 · y · x подобными. В задачах этот вопрос может иметь следующую формулировку: одинаково ли буквенное выражение части x · y и y · x указанных слагаемых? Буквенные множители в приведенном примере имеют различный порядок, что в свете данного выше определения не делает их подобными.

Однако, если использовать переместительное свойство умножения, то можно изменить порядок множителей, не влияя на результат умножения. Это позволяет нам переписать выражение 2 · x · y + 3 · y · x можно переписать в виде 2 · x · y + 3 · x · y . Тогда слагаемые будут подобны.

К слову, в некоторых источниках при нестрогом отношении к вопросу, слагаемые из примера могут называться подобными. Но лучше не допускать таких неточностей в трактовках.

Приведение подобных слагаемых, правило, примеры

Под преобразованием выражений, которые содержат подобные слагаемые, подразумевается проведение сложения этих слагаемых. Проводится это действие обычно в три этапа:

  • перестановка слагаемых таким образом, чтобы подобные слагаемые оказались рядом;
  • вынесение за скобки буквенной части;
  • вычисление значения числового выражения, которое осталось в скобках.

Приведем пример таких вычислений.

Возьмем выражение 3 · x · y + 1 + 5 · x · y . Выделим подобные слагаемые и переставим их друг к другу: 3 · x · y + 1 + 5 · x · y = 3 · x · y + 5 · x · y + 1 .

Теперь вынесем за скобки буквенную часть: x · y · ( 3 + 5 ) + 1 .

Нам осталось вычислить значение выражения, которое записано в скобках: x · y · ( 3 + 5 ) + 1 = x · y · 8 + 1 .

Обычно числовой коэффициент записывается перед буквенной частью: x · y · 8 + 1 = 8 · x · y + 1 .

Описанные три шага для экономии времени записывают в виде правила приведения подобных слагаемых. Согласно правило для того, чтобы привести подобные слагаемые, необходимо сложить их коэффициенты, а затем умножить полученный результат на буквенную часть при ее наличии.

Запишем более короткий вариант решения выражения, рассмотренного выше. В выражении 3 · x · y + 1 + 5 · x · y коэффициентами подобных слагаемых 3 · x · y и 5 · x · y являются числа 3 и 5 . Сумма коэффициентов равна 8 . Умножим ее на буквенную часть и получим: 3 · x · y + 1 + 5 · x · y = 8 · x · y + 1 .

Приведите подобные слагаемые: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 .

Решение

Начнем с приведения подобных слагаемых 0 , 5 · x и 3 , 5 · x . Используя правило, сложим их коэффициенты 0 , 5 + 3 , 5 = 4 . Умножим буквенную часть на полученный результат 4 · x .

Теперь займемся приведением подобных слагаемых без буквенной части: 1 2 + ( - 1 4 ) = 1 2 - 1 4 = 1 4 . Вспомним правило сложения чисел с разными знаками и выполним вычитание обыкновенных дробей. Получим: 1 2 + ( - 1 4 ) = 1 2 - 1 4 = 1 4

Итог: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = 4 · x + 1 4 .

Приведем краткую запись решения: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = ( 0 , 5 · x + 3 , 5 · x ) + ( 1 2 − 1 4 ) = 4 · x + 1 4 .

Ответ: 0 , 5 · x + 1 2 + 3 , 5 · x − 1 4 = 4 · x + 1 4 .

Особо хочется отметить тот факт, что приведение подобных слагаемых базируется на распределительном свойстве умножения относительно сложения, которое можно выразить равенством a · ( b + c ) = a · b + a · c . Когда мы выполняем приведение подобных слагаемых, мы используем это равенство справа налево, т.е. в виде a · b + a · c = a · ( b + c ) .


На этом уроке мы закрепим понятие коэффициента и умение применять распределительное свойство умножения. Сформируем представления о подобных слагаемых. Введем понятие подобных слагаемых. Научимся приводить подобные слагаемые. Рассмотрим ряд примеров на упрощение выражений.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Подобные слагаемые"

Сегодня на уроке мы узнаем, какие слагаемые называют подобными, а также научимся приводить подобные слагаемые или, проще говоря, упрощать выражения.

Коэффициентом называют числовой множитель, который записан перед буквенным (одним или несколькими) множителем.

Распределительное свойство умножения справедливо для любых чисел a, b и c.


Оно позволяет, как раскрывать скобки, так и выносить общий множитель за скобки.

Часто при работе с выражениями сначала их обычно упрощают, т.е. преобразуют в более компактную и удобную для вычислений форму.

Например

Найти значение выражения 5х + 2х – 3х + 7х при х = 3.

Конечно, можно просто подставить вместо х указанное значение и посчитать сумму полученных произведений.


Но такой процесс вычислений займёт немало времени. Вычисления значительно упростятся, если обратить внимание, на то, что все слагаемые имеют один и тот же буквенный множитель х. И вот тут к нам на помощь приходит распределительное свойство умножения. Мы знаем, что на основании распределительного свойства можно выносить общий множитель за скобки. Вынесем в нашем выражении общий буквенный множитель х за скобки.


Смотрите, как мы себе упростили вычисления. Такие преобразования можно выполнять только в тех случаях, когда слагаемые имеют одинаковую буквенную часть.

Такие слагаемые называют подобными, а сами преобразования называют приведением подобных слагаемых.

Определение

Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.

Замену суммы подобных слагаемых одним слагаемым называют приведением подобных слагаемых.

Подобные слагаемые могут отличаться только коэффициентами. Кроме того, подобными считают и равные слагаемые, а также числа.

Заметим, что слагаемые, у которых равны коэффициенты, а буквенные множители различны, подобными не являются, хотя и к ним иногда полезно применять распределительное свойство умножения.

Например


Ответим на вопрос: зачем же нужно приводить подобные слагаемые?

Ответ на этот вопрос прост. Приводят подобные слагаемые для того, чтобы сделать суммы более короткими, т.е. преобразовывают их в суммы с меньшим числом слагаемых.


Посмотрите, в нашей начальной сумме было 4 слагаемых, а мы её преобразовали в выражение, состоящее из двух множителей. С более короткими суммами легче выполнять вычисления.

Запишем правило, по которому приводят подобные слагаемые:

Для того чтобы привести подобные слагаемые, надо:

1) сложить коэффициенты подобных слагаемых;

2) результат умножить на общую буквенную часть.

Задание


Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.

Замену суммы подобных слагаемых одним слагаемым называют приведением подобных слагаемых.

В одном из прошлых уроков мы узнали и разобрали одно важное свойство распределительных чисел: распределительное свойство умножения относительно сложения.

Сегодня мы подробно посмотрим, как оно позволяет нам раскрывать скобки и приводить подобные слагаемые, а также в целом упрощать выражение.


Раскрытие скобок


Распределительное свойство умножения справедливо для любых чисел a, b и c.

Также мы уже упоминали, что это свойство можно обобщить, во-первых, для большего числа слагаемых, во-вторых, в роли общего множителей могут выступать не только числа, но и выражения.

Сейчас подробно посмотрим на примерах.

Пример:

Посмотрим на выражение \(\mathbf<(\frac<15>+\frac)\cdot74>\)

Мы можем сначала посчитать выражение в скобках, а можем сначала раскрыть скобки, избавившись от дробей, а затем выполнить сложение.

Воспользуемся вторым способом:

В данном случае мы имели выражение, максимально близкое к тому, что мы видим в формулировке распределительного свойства.

Теперь рассмотрим такое выражение: \(\mathbf\)

Тут мы видим вычитание вместо сложения и деление вместо умножения.

Но мы уже умеем заменять вычитание на сложение, заменяя вычитаемое на слагаемое, противоположное вычитаемому:

Также и деление мы умеем заменять на умножение, заменяя делитель на множитель, обратный делителю:

Теперь мы получили выражение, соответствующее формулировке распределительного свойства.

Применим же свойство и найдем значение выражения.

Заметим, что хоть мы и заменяли вычитание на сложение, в конце мы все равно вычитали.

Также несмотря на то, что мы заменяли деление на умножение, в конце мы все равно делили.

Распределительное свойство также работает и в таком виде:


Также важно понимать, что распределительное свойство может работать не только с двумя числами, но и с любым другим их количеством.


Три точки обозначают любое количество слагаемых от нуля до бесконечности.

Аналогично предыдущему примеру, слагаемые в скобках могут быть с разными знаками. В таком случае они будут с такими же знаками и в правой части равенства.

Пример:

Раскроем скобки в выражении \(\mathbf\) :

Также важно понимать, что на месте a, b и других букв в скобках могут стоять любые другие выражения.

Пример:

Также и множитель снаружи скобок может быть не только числом или скобкой, а любым другим выражением, например, как в этом примере ax и bx являются произведениями двух множителей.

Как мы сказали, множитель может быть любым выражением, например, выражением в скобках. Рассмотрим еще такой пример.

Пример:

Раскроем скобки в выражении \(\mathbf\) :

Тут можно действовать в любом порядке: можно считать первую скобку общим множителем, раскрывая вторую, а можно и наоборот.

Мы будем сейчас раскрывать вторую скобку, то есть (\(\mathbf\)) будет общим множителем:

Теперь общими множителями для первой и второй скобок будут с и d соответственно:

Промежуточный шаг можно было пропустить, так как скобки не несли в нем смысла, но оставим его здесь для наглядности.

Пройти тест и получить оценку можно после входа или регистрации

Вынесение общего множителя


Распределительное свойство умножения относительно сложения помогает нам выносить общий множитель, то есть, смотря на формулировку, мы из правой части переходим в левую.

Сразу скажем, что по аналогии с раскрытием скобок, мы не должны пугаться вычитания и деления, а должны, если сомневаемся, заменять их на сложение и умножение соответственно.

Пример:

Вынесем общий множитель в выражении \(\mathbf\) :

Мы видим, что выражение состоит из трех слагаемых, каждое из которых является произведением.

В каждом из этих произведений есть множитель а.

Его мы и будем выносить.

В данном случае не стояла задача раскрывать скобки. Мы это сделали, чтобы ответ выглядел более законченным

Также можно выносить несколько множителей одновременно.

Пример:

Вынесем общие множители в выражении \(\mathbf\)

В данном случае в выражении три произведения, в каждом из которых есть множитель а и с, вынесем их:

Кстати, всегда можно проверить себя, раскрыв скобки и убедившись в равенстве полученного выражения и исходного.

Как мы уже сказали, в роли множителей могут выступать всевозможные выражения, а не только числа или произведения. Покажем на примере.

Пример:

Вынесем общие множители в выражении \(\mathbf\) :

Мы видим, что общий множитель есть у первых двух слагаемых и у вторых двух соответственно, вынесем их.

Получается, что выражение состоит из двух слагаемых, каждое из которых является произведением, и в каждом из этих произведений есть множитель \(\mathbf<(a+b>\), вынесем его:

Так мы получили ответ.

Пройти тест и получить оценку можно после входа или регистрации

Приведение подобных слагаемых

В заголовке мы упомянули два новых термина, поэтому сначала дадим им определения.

Подобными слагаемыми называют такие слагаемые, которые имеют одинаковую буквенную часть.

Пример:

Посмотрим, какие есть подобные слагаемые в выражении \(\mathbfb+0.2b>\)

У первого и третьего слагаемого буквенная часть равна \(\mathbf\), значит, эти два слагаемых являются подобными.

У второго, четвертого и пятого слагаемого буквенная часть равна \(\mathbf\), эти три слагаемых являются подобными.

Если же мы зададимся вопросом, являются ли подобными первые два слагаемых, то ответ будет отрицательным.

В самом деле, их буквенные части отличаются: \(\mathbf\)

Внимательный читатель заметит, иногда \(\mathbf\), при условии, что \(\mathbf\), но мы не можем на это полагаться, так как не знаем конкретных значений, поэтому такие слагаемые считать подобными не будем.

Нередко для удобства подобные слагаемые подчеркивают, причем каждую группу подобных слагаемых подчеркивают разным типом подчеркиваний:


Теперь зная, что такое подобные слагаемые, приступим к их сложению (приведению).

Чтобы привести (сложить) подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть.

Пример:

Возьмем то же выражение и приведем в нем подобные слагаемые.

Как вы видите, процесс очень похож на вынесение общего множителя. В данном случае общим множителем для подобных слагаемых является их одинаковая буквенная часть.

Пример:

Приведем подобные слагаемые в выражении \(\mathbf\)

Пример:

Раскроем скобки и приведем подобные слагаемые в выражении \(\mathbf\)

В целом, ничего нового в этом задании нет, надо просто аккуратно применить те приемы, которые мы уже освоили.

Пройти тест и получить оценку можно после входа или регистрации

Дополнительная информация


Мы уже говорили про математику в литературе, но речь была про малоизвестные случаи.

Наш урок имеет порядковый номер 42, а это число является крайне популярным в культуре!

После семи с половиной миллионов лет работы компьютер выдал один ответ: число 42.

Дальше отрывок из книги, как отреагировали существа:

“— Сорок два! — взвизгнул Лунккуоол. — И это всё, что ты можешь сказать после семи с половиной миллионов лет работы?

— Я всё очень тщательно проверил, — сказал компьютер, — и со всей определённостью заявляю, что это и есть ответ. Мне кажется, если уж быть с вами абсолютно честным, то всё дело в том, что вы сами не знали, в чём вопрос.

— Но это же великий вопрос! Окончательный вопрос жизни, Вселенной и всего такого! — почти завыл Лунккуоол.

— Да, — сказал компьютер голосом страдальца, просвещающего круглого дурака. — И что же это за вопрос? “

Книга оказалась крайне популярной и читающее сообщество начало гадать, что могло означать это число, какой смысл вкладывал автор.

Сам же автор долго уходил от ответа, но потом признался, что это была просто шутка, а 42 - первое попавшееся число, которое понравилось автору.

Но само число стало частью культуры, и, например, в сообществе программистов, часто можно встретить примеры с именно этим числом.

Читайте также: