Плоское движение это кратко

Обновлено: 05.07.2024

Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости. Уравнения плоского движения: xA= f1(t), yA= f2(t), j = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят.

Плоским движением твердого тела называется такое его движение, при котором каждая его точка все время движется в одной и той же плоскости.

Плоскости, в которых движутся отдельные точки тела, параллельны между собой и параллельны одной и той же неподвижной плоскости. Плоское движение твердого тела часто называют плоскопараллельным. Траектории точек тела при плоском движении являются плоскими кривыми.

Плоское движение твердого тела имеет большое значение в технике. Вращательное движение твердого тела вокруг неподвижной оси является частным случаем движения твердого тела.

При изучении плоского движения, как и любого другого, необходимо рассмотреть способы задания этого движения, а также приемы вычисления скоростей и ускорений точек тела.

Если в теле провести некоторую прямую О1О2, перпендикулярную плоскостям, в которых происходит движение точек, то все точки этой прямой будут двигаться по одинаковым траекториям с одинаковыми скоростями и ускорениями; сама прямая будет, естественно, сохранять свою ориентацию в пространстве. Таким образом, при плоском, движении твердого тела достаточно рассмотреть движение одного из сечений тела.

Сечение твердого тела будем называть плоской фигурой. Положение фигуры на ее плоскости полностью определяется положением отрезка прямой линии, жестко скрепленной с этой плоской фигурой.

Уравнения плоского движения твердого тела

Для задания положения плоской фигуры на плоскости относительно системы координат , лежащей в плоскости фигуры, достаточно задать на этой плоскости положение отрезка АВ, скрепленного с фигурой.

Положение отрезка АВ, относительно системы координат определяется заданием координат какой-нибудь точки этого отрезка и его направления. Например, координаты точки А ( ) и направление, заданное углом .

Уравнения движения плоской фигуры относительно системы координат имеют вид: .


Твердое тело при плоском движении имеет три степени свободы.

называются уравнениями плоского движения твердого тела.



Перейдем к изучению движения отдельной точки твердого тела. Положение любой точки М плоской фигуры относительно подвижной системы отсчета ,скрепленной с этой движущейся фигурой и лежащей в ее плоскости, полностью определяется заданием координат x и y точки М (Рис.6-3).

Между координатами точки М в различных системах отсчета существует связь:

где - длина отрезка ОМ, - постоянный угол между ОМ и осью . С учетом выражений и получаем

Формулы (6-2) являются уравнениями движения точки М плоской фигуры относительно координат . Эти формулы позволяют определить координаты любой точки плоской фигуры по заданным уравнениям движения этой фигуры и координатам этой точки относительно подвижной системы отсчета, скрепленной с движущейся фигурой.

Используя матрично-векторные обозначения уравнения (6-2) можно записать в такой форме:

где А – матрица поворота на плоскости:

Разложение плоского движения на поступательное

И вращательное движения.

Теорема. Любое движение твердого тела, в том числе и движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых переносное, а другое – относительное.

В частности, движение плоской фигуры в ее плоскости относительно системы , расположенной в той же плоскости, можно разложить на переносное и относительное движения следующим образом. Примем за переносное движение фигуры ее движение вместе с поступательно движущейся системой координат , начало которой скреплено с точкой О фигуры, принятой за полюс. Тогда относительное движение фигуры будет по отношению к подвижной системе координат вращением вокруг подвижной оси, перпендикулярной плоской фигуре и проходящей через выбранный полюс.

Для доказательства этого достаточно показать, что плоскую фигуру в ее плоскости из одного положения в любое другое можно перевести двумя перемещениями – поступательным перемещением в плоскости фигуры вместе с каким –либо полюсом и поворотом в той же плоскости вокруг этого полюса.

Рассмотрим два любых положения плоской фигуры 1 и 2. Выделим отрезок АB в рассматриваемой фигуре. Перевод фигуры из положения 1 в положение 2 можно рассматривать как суперпозицию двух движений: поступательного из 1 в 1' и вращательного из 1' в 2 вокруг точки A', называемой обычно полюсом (рис. 6-4а). Существенно, что в качестве полюса можно выбрать любую точку, принадлежащую фигуре или даже лежащую в плоскости вне фигуры. На рис. 6-4б, к примеру, в качестве полюса выбрана точка В. Обратите внимание: длина пути при поступательном перемещении изменилась (в данном случае увеличилась), но угол поворота остался прежним!

24. Плоскопараллельное (плоское) движение твердого тела.

Движение абсолютно твердого тела, при котором все его точки движутся в плоскостях, параллельных некоторой заданной неподвижной плоскости, называется плоскопараллельным. Другими словами, прямая, лежащая в плоскости сечения, в процессе движения тела не покидает этой плоскости.

Таким образом, плоское движение твердого тела полностью определяется движением плоской фигуры, образованной в результате сечения тела плоскостью. В дальнейшем, под плоским движением твердого тела будем понимать движение плоской фигуры в заданной плоскости.

Соотношение между скоростями точек плоской фигуры

Определим произвольный центр (начало отсчета) и выделим на заданной плоской фигуре две произвольно выбранные точки и , определяемые радиус-векторами и (рис.К.20).


Проведем вектор , соединяющий точки и . Пусть скорость точки известна и равна . Определим скорость точки .

Из рисунка видно, что вектора , и связаны соотношением (правило сложения двух векторов)

Скорость точки равна , тогда учитывая (К.25) получим

Определим физический смысл последнего слагаемого в правой части уравнения (К.26). Вектор является переменным вектором постоянного модуля (направление может меняться, а модуль остается постоянным, так как расстояние между точками и не меняется), поэтому в соответствие с формулой (К.12) получим и . Таким образом, вектор имеет размерность скорости и определяет скорость движения точки по окружности радиуса вокруг точки .

где - скорость движения точки или скорость поступательного движения плоской фигуры; - скорость вращательного движения точки по окружности радиуса вокруг точки .

В итоге можно утверждать, что плоское движение может быть рассмотрено как сумма двух движений: поступательное движение со скоростью и вращательное движение вокруг оси перпендикулярной плоскости движения.

Теперь докажем важную теорему, связывающую модули скоростей двух, произвольно выбранных точек плоской фигуры.

Теорема. Проекции скоростей двух точек плоской фигуры на прямую, соединяющую эти точки, равны.

Выберем на плоской фигуре две произвольные точки и , движущиеся со скоростями и . Соединим эти точки прямой . Пусть скорость наклонена к прямой под углом , а скорость наклонена к прямой под углом .


Требуется доказать, что .

Доказательство.

Покажем на рисунке скорость . Поскольку является скоростью поступательного движения плоской фигуры, а все точки фигуры при поступательном движении перемещаются с одинаковыми скоростями, то скорость может быть перенесена и в точку .

Покажем на рисунке направление скорости . Скорость является скоростью вращательного движения точки вокруг точки . Таким образом, скорость точки разложена на составляющие и . Для определения скорости точки сложим скорости и по правилу параллелограмма в соответствие с формулой (К.27) , где . Проведем эти построения на рисунке.

Из равенства левых частей уравнений следует равенство их правых частей, то есть

Найди готовую курсовую работу выполненное домашнее задание решённую задачу готовую лабораторную работу написанный реферат подготовленный доклад готовую ВКР готовую диссертацию готовую НИР готовый отчёт по практике готовые ответы полные лекции полные семинары заполненную рабочую тетрадь подготовленную презентацию переведённый текст написанное изложение написанное сочинение готовую статью

Частица массой находится в одномерном потенциальном поле в стационарном состоянии, описываемом волновой функцией , где и - постоянные ( ). Найдите энергию частицы и вид функции , если .

Квантовый гармонический осциллятор находится в основном состоянии. Найдите вероятность обнаружения частицы в области , где - амплитуда классических колебаний.

Частица находится в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками, имеющими ширину . В каких точках интервала плотность вероятности обнаружения частицы одинакова для основного и второго возбуждённого состояний?

Частица массой находится в кубической потенциальной яме с абсолютно непроницаемыми стенками. Найдите длину ребра куба, если разность энергий 6-ого и 5-ого уровней равна . Чему равна кратность вырождения 6-ого и 5-ого уровней?

Частица массой находится в основном состоянии в двумерной квадратной потенциальной яме с бесконечно высокими стенками. Найдите энергию частицы, если максимальное значение плотности вероятности местонахождения частицы равно .

Частица находится в двумерной квадратной потенциальной яме с бесконечно высокими стенками во втором возбуждённом состоянии. Сторона ямы равна а. Определите вероятность нахождения частицы в области: а) ; б) ; в) .

Частица находится в двумерной прямоугольной потенциальной яме с бесконечно высокими стенками. Координаты x и y частицы лежат в пределах 0 50 руб.

Волновая функция основного состояния электрона в атоме водорода имеет вид , где - расстояние электрона до ядра, - первый радиус боровской орбиты. Определите наиболее вероятное расстояние электрона от ядра.

Пользуясь решением задачи о гармоническом осцилляторе, найдите энергетический спектр частицы массой в потенциальной яме вида Здесь , а - собственная частота гармонического осциллятора.

Оцените с помощью соотношения неопределённостей Гейзенберга неопределённость скорости электрона в атоме водорода, полагая размер атома . Сравните полученную величину со скоростью электрона на первой боровской орбите.

Оцените относительную ширину спектральной линии, если известны время жизни атома в возбуждённом состоянии и длина волны излучаемого фотона .

Найти плотность сепарированной нефти 1-го горизонта при температуре 64 оС, если плотность ее при 20 оС равна 854 кг/м3, и нефти 2-го горизонта при 82 оС, если плотность ее при 20 оС равна 886 кг/м3.

При прохождении нефтегазовой смеси через штуцер в сепараторе образуются капли нефти диаметром 65 мкм. Смесь находится под давлением 0,4 МПа при 305 К. Найти скорость осаждения капель нефти и определить пропускную способность вертикального гравитацион

На дожимной насосной станции (ДНС) в сепараторе первой ступени поддерживают давление 0,4 МПа. Длина сборного коллектора, идущего от АГЗУ до ДНС, 12 км и (внутренний) диаметр его 0,3 м, разность геодезических отметок 10 м. Сборный коллектор горизонтал

Рассчитать основные параметры процесса освоения скважины, методом замены жидкости, выбрать промывочную жидкость и необходимое оборудование. Составить схему размещения оборудования при освоении скважины. Скважина заполнена буровым раствором плотностью

Краткое содержание: Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное и вращательное движения. Угловая скорость и угловое ускорение при плоском движении. Скорости точек тела при плоском движении. Мгновенный центр скоростей. Методы нахождения положения мгновенного центра скоростей.

Плоское движение твердого тела

Плоским движением твердого тела называется такое его движение, при котором каждая его точка все время движется в одной и той же плоскости.

Плоскости, в которых движутся отдельные точки тела, параллельны между собой и параллельны одной и той же неподвижной плоскости. Плоское движение твердого тела часто называют плоскопараллельным. Траектории точек тела при плоском движении являются плоскими кривыми.

Плоское движение твердого тела имеет большое значение в технике. Вращательное движение твердого тела вокруг неподвижной оси является частным случаем движения твердого тела.

При изучении плоского движения, как и любого другого, необходимо рассмотреть способы задания этого движения, а также приемы вычисления скоростей и ускорений точек тела.

Если в теле провести некоторую прямую О1О2, перпендикулярную плоскостям, в которых происходит движение точек, то все точки этой прямой будут двигаться по одинаковым траекториям с одинаковыми скоростями и ускорениями; сама прямая будет, естественно, сохранять свою ориентацию в пространстве. Таким образом, при плоском, движении твердого тела достаточно рассмотреть движение одного из сечений тела.


Рекомендуемые материалы

Сечение твердого тела будем называть плоской фигурой. Положение фигуры на ее плоскости полностью определяется положением отрезка прямой линии, жестко скрепленной с этой плоской фигурой.

Уравнения плоского движения твердого тела


Для задания положения плоской фигуры на плоскости относительно системы координат , лежащей в плоскости фигуры, достаточно задать на этой плоскости положение отрезка АВ, скрепленного с фигурой.

Положение отрезка АВ, относительно системы координат определяется заданием координат какой-нибудь точки этого отрезка и его направления. Например, координаты точки А () и направление, заданное углом .

Уравнения движения плоской фигуры относительно системы координат имеют вид: .

Твердое тело при плоском движении имеет три степени свободы.


называются уравнениями плоского движения твердого тела.


Перейдем к изучению движения отдельной точки твердого тела. Положение любой точки М плоской фигуры относительно подвижной системы отсчета , скрепленной с этой движущейся фигурой и лежащей в ее плоскости, полностью определяется заданием координат x и y точки М (Рис.6-3).


Между координатами точки М в различных системах отсчета существует связь:


, (6-1)

где - длина отрезка ОМ, - постоянный угол между ОМ и осью . С учетом выражений и получаем


, (6-2)


Формулы (6-2) являются уравнениями движения точки М плоской фигуры относительно координат . Эти формулы позволяют определить координаты любой точки плоской фигуры по заданным уравнениям движения этой фигуры и координатам этой точки относительно подвижной системы отсчета, скрепленной с движущейся фигурой.

Используя матрично-векторные обозначения уравнения (6-2) можно записать в такой форме:


, (6-3)

где А – матрица поворота на плоскости:

, , , .

Разложение плоского движения на поступательное

и вращательное движения.

Теорема. Любое движение твердого тела, в том числе и движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых переносное, а другое – относительное.

В частности, движение плоской фигуры в ее плоскости относительно системы , расположенной в той же плоскости, можно разложить на переносное и относительное движения следующим образом. Примем за переносное движение фигуры ее движение вместе с поступательно движущейся системой координат , начало которой скреплено с точкой О фигуры, принятой за полюс. Тогда относительное движение фигуры будет по отношению к подвижной системе координат вращением вокруг подвижной оси, перпендикулярной плоской фигуре и проходящей через выбранный полюс.

Для доказательства этого достаточно показать, что плоскую фигуру в ее плоскости из одного положения в любое другое можно перевести двумя перемещениями – поступательным перемещением в плоскости фигуры вместе с каким –либо полюсом и поворотом в той же плоскости вокруг этого полюса.


Рассмотрим два любых положения плоской фигуры 1 и 2. Выделим отрезок АB в рассматриваемой фигуре. Перевод фигуры из положения 1 в положение 2 можно рассматривать как суперпозицию двух движений: поступательного из 1 в 1' и вращательного из 1' в 2 вокруг точки A', называемой обычно полюсом (рис. 6-4а). Существенно, что в качестве полюса можно выбрать любую точку, принадлежащую фигуре или даже лежащую в плоскости вне фигуры. На рис. 6-4б, к примеру, в качестве полюса выбрана точка В. Обратите внимание: длина пути при поступательном перемещении изменилась (в данном случае увеличилась), но угол поворота остался прежним!

Угловая скорость и угловое ускорение тела при плоском движении.

Для характеристики вращательной части плоского движения твердого тела вокруг подвижной оси, проходящей через выбранный полюс, вводится понятие угловой скорости и углового ускорения .

и , где - единичный вектор, направленный по оси вращения.

Если угол поворота вокруг подвижной оси, проходящей через полюс, обозначить , то , а

Векторы и можно изображать в любых точках подвижной оси вращения, т.е. они являются свободными векторами.

Скорости точек тела при плоском движении

Теорема. Скорость какой-либо точки фигуры при ее плоском движении равна векторной сумме скорости полюса и относительной скорости этой точки от вращения фигуры вокруг полюса.

Применяя к плоскому движению теорему о сложении скоростей для какой-либо точки В фигуры, получаем , где - абсолютная скорость точки В плоской фигуры; - скорость точки В переносного поступательного движения плоской фигуры вместе, например, с точкой А этой фигуры; - скорость точки B в относительном движении, которым является вращение плоской фигуры вокруг точки А с угловой скоростью w.


Так как за переносное движение выбрано поступательное движение вместе с точкой А, то у всех точек плоской фигуры одинаковые переносные скорости, совпадающие с абсолютной скоростью точки А, т.е.


Скорость относительного движения, в случае когда оно является вращательным движением, равна

Скорость расположена в плоскости движущейся фигуры и направлена перпендикулярно отрезку АВ, соединяющему точку В с полюсом А. Эту относительную скорость можно выразить в виде векторного произведения , где угловая скорость считается направленной по подвижной оси вращения, проходящей через точку А и перпендикулярной плоскости фигуры. Относительную скорость обозначим . Это обозначение показывает, что скорость относительного движения точки В получается от вращения плоской фигуры вокруг подвижной оси, проходящей через точку А, или просто вокруг точки А.

, где

Что и требовалось доказать.

Мгновенный центр скоростей

Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.


Теорема. В каждый момент времени при плоском движении фигуры в ее плоскости при (непоступательное движение), имеется один единственный центр скоростей.

Для доказательства достаточно указать способ нахождения мгновенного центра скоростей, если известны скорость какой-либо точки О плоской фигуры и ее угловая скорость в рассматриваемый момент времени.


, , , следовательно


.

Мгновенный центр скоростей находится на перпендикуляре к скорости , проведенном из точки О, на расстоянии .

Мгновенный центр скоростей это единственная точка плоской фигуры для данного момента времени. В другой момент времени мгновенным центром скоростей будет уже другая точка.


Возьмем точку Р за полюс

Так как , то . Аналогичный результат получается для любой другой точки плоской фигуры.

.

.

Скорости точек плоской фигуры определяются в данный момент так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей.

Скорости точек плоской фигуры пропорциональны их расстояниям до мгновенного центра скоростей.

Методы нахождения положения МЦС

1). Известен вектор скорости какой -либо точки A плоской фигуры и ее угловая скорость .


МЦС (точка P) находится на перпендикуляре к вектору , проведенном через точку A. Расстояние и откладывается в сторону, которую указывает вектор после поворота на угол в направлении дуговой стрелки . При этом получается, что скорость

()

2). Известны не параллельные друг другу скорости и двух точек плоской фигуры.



МЦС (точка P) находится в точке пересечения перпендикуляров, проведенных через точки A и B к скоростям этих точек. Угловая скорость плоской фигуры равна . Отметим, что для нахождения только положения МЦС достаточно знать лишь направления скоростей двух точек .

3). Известны параллельные друг другу скорости и точек A и B плоской фигуры, перпендикулярные отрезку AB, направленные в одну сторону и не равные по модулю ().


МЦС (точка P) находится в точке пересечения продолжения отрезка AB и прямой, проведенной через концы векторов и . При заданной длине отрезка AB расстояния от МЦС до точек A и B определяются из пропорции . Угловая скорость фигуры . Случай равенства () см. п. 6.

Методы нахождения положения МЦС

4). Известны параллельные друг другу скорости и точек A и B плоской фигуры, перпендикулярные отрезку AB, направленные в разные стороны.


МЦС (точка P) находится в точке пересечения отрезка AB и прямой, проведенной через концы векторов и . При заданной длине отрезка AB расстояния от МЦС до точек A и B определяются из пропорции: . Угловая скорость фигуры .

5). Плоская фигура катится без скольжения по неподвижной кривой.



МЦС (точка P) находится в точке соприкосновения фигуры с кривой, так как скорости точек фигуры и неподвижной кривой, находящиеся в соприкосновении, равны между собой и, следовательно, равны нулю. Если известна скорость какой-либо точки A фигуры, то угловая скорость .

В лекции "Учет основных средств" также много полезной информации.

6). Известно, что скорости и двух точек плоской фигуры параллельны друг другу и не перпендикулярны отрезку AB.



МЦС в данный момент времени не существует или, другими словами, находится в бесконечности. Угловая скорость плоской фигуры в данный момент равна нулю. Движение фигуры называется мгновенно-поступательным. Скорости всех точек фигуры равны . Аналогичный результат показан в п. 4.

Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости. Уравнения плоского движения: xA= f1(t), yA= f2(t), j = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят. Скорости точек тела при плоском движении: ; , vBA= w×BA, т.е. скорость какой-либо точки В плоской фигуры равна геометрической сумме скорости полюса А и скорости точки В при вращении плоской фигуры вокруг полюса А. Теорема: при плоском движении проекции скоростей двух точек тела на ось, проходящую через эти точки, равны между собой: vAcosa = vBcosb. Мгновенный центр скоростей – точка плоской фигуры, скорость которой в данный момент равна нулю – Р. Если тело движется непоступательно, т.е. w¹0, то мгн.цент.ск. всегда существует. При поступательном движении м.ц.с. находится в ¥. – скорость любой точки плоской фигуры имеет модуль, равный произведению угловой скорости фигуры на длину отрезка, соединяющего точку с м.ц.с., и направлена ^ этому отрезку в сторону вращения фигуры. , скорости точек тела пропорциональны их расстояниям до м.ц.с. , угловая скорость тела равна отношению скорости какой-нибудь точки к ее расстоянию до м.ц.с. Определение положения м.ц.с.: 1) м.ц.с. – точка пересечения перпендикуляров, восстановленных к скоростям точек (напр. в точке В и точке К); 2) если скорости точек А и В параллельны между собой и перпендикулярны АВ, то для определения м.ц.с. должны быть известны модули и направления скоростей (см. vA и vB); 3) если они при этом равны между собой, то м.ц.с. находится в ¥, а угловая скорость w=vA/¥=0; 4) если известно, что скорости двух точек А и В равны, параллельны и не перпендикулярны АВ, то м.ц.с. в ¥, и угловая скорость w=vA/¥=0, если это имеет место только к некоторый момент времени, то имеем мгновенное поступательное движение; 5) если плоская фигура катится без скольжения по неподвижной поверхности, то м.ц.с. плоской фигуры будет в точке соприкасания. Теорема Шаля: плоскую фигуру можно переместить из одного положения в любое другое положение на плоскости одним поворотом этой фигуры вокруг некоторого неподвижного центра. Этот центр на неподвижной плоскости, совпадает с м.ц.с. и называется мгновенным центром вращений (ось вращений). При движении плоской фигуры м.ц.с. непрерывно изменяет свое положение. Геометрическое место м.ц.с., отмеченных на неподвижной плоскости, называется неподвижной центроидой. Геометрическое место м.ц.с., отмеченных на плоскости фигуры, назыв. подвижной центроидой (колесо катится по прямой: неподвижная центроида – прямая, подвижная – окружность). При движении плоской фигуры подвижная центроида катится без скольжения по неподвижной центроиде (теорема Пуансо).

16) Сложным движением точки

Сложным движением точки называется такое ее движение, при котором она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за неподвижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, совершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и движения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета).

Движение точки по отношению к подвижной системе координат называется относительным движением точки. Скорость и ускорение этого движения называют относительной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки.

Переносной скоростью и переносным ускорением точки называют скорость и ускорение той, жестко связанной с подвижной системой координат точки, с которой совпадает в данный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называется абсолютным или сложным. Скорость и ускорение точки в этом движении называют абсолютной скоростью и абсолютным ускорением и обозначают и .




В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости. Уравнения плоского движения: xA= f1(t), yA= f2(t), j = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят. Скорости точек тела при плоском движении: ; , vBA= w×BA, т.е. скорость какой-либо точки В плоской фигуры равна геометрической сумме скорости полюса А и скорости точки В при вращении плоской фигуры вокруг полюса А. Теорема: при плоском движении проекции скоростей двух точек тела на ось, проходящую через эти точки, равны между собой: vAcosa = vBcosb. Мгновенный центр скоростей – точка плоской фигуры, скорость которой в данный момент равна нулю – Р. Если тело движется непоступательно, т.е. w¹0, то мгн.цент.ск. всегда существует. При поступательном движении м.ц.с. находится в ¥. – скорость любой точки плоской фигуры имеет модуль, равный произведению угловой скорости фигуры на длину отрезка, соединяющего точку с м.ц.с., и направлена ^ этому отрезку в сторону вращения фигуры. , скорости точек тела пропорциональны их расстояниям до м.ц.с. , угловая скорость тела равна отношению скорости какой-нибудь точки к ее расстоянию до м.ц.с. Определение положения м.ц.с.: 1) м.ц.с. – точка пересечения перпендикуляров, восстановленных к скоростям точек (напр. в точке В и точке К); 2) если скорости точек А и В параллельны между собой и перпендикулярны АВ, то для определения м.ц.с. должны быть известны модули и направления скоростей (см. vA и vB); 3) если они при этом равны между собой, то м.ц.с. находится в ¥, а угловая скорость w=vA/¥=0; 4) если известно, что скорости двух точек А и В равны, параллельны и не перпендикулярны АВ, то м.ц.с. в ¥, и угловая скорость w=vA/¥=0, если это имеет место только к некоторый момент времени, то имеем мгновенное поступательное движение; 5) если плоская фигура катится без скольжения по неподвижной поверхности, то м.ц.с. плоской фигуры будет в точке соприкасания. Теорема Шаля: плоскую фигуру можно переместить из одного положения в любое другое положение на плоскости одним поворотом этой фигуры вокруг некоторого неподвижного центра. Этот центр на неподвижной плоскости, совпадает с м.ц.с. и называется мгновенным центром вращений (ось вращений). При движении плоской фигуры м.ц.с. непрерывно изменяет свое положение. Геометрическое место м.ц.с., отмеченных на неподвижной плоскости, называется неподвижной центроидой. Геометрическое место м.ц.с., отмеченных на плоскости фигуры, назыв. подвижной центроидой (колесо катится по прямой: неподвижная центроида – прямая, подвижная – окружность). При движении плоской фигуры подвижная центроида катится без скольжения по неподвижной центроиде (теорема Пуансо).

16) Сложным движением точки

Сложным движением точки называется такое ее движение, при котором она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за неподвижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, совершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и движения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета).

Движение точки по отношению к подвижной системе координат называется относительным движением точки. Скорость и ускорение этого движения называют относительной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки.

Переносной скоростью и переносным ускорением точки называют скорость и ускорение той, жестко связанной с подвижной системой координат точки, с которой совпадает в данный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называется абсолютным или сложным. Скорость и ускорение точки в этом движении называют абсолютной скоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

Читайте также: